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Abstract

This paper examines various texture features extracted
from skin lesion images obtained by using diffuse re-
flectance spectroscopic imaging. Different image texture
features have been applied to such images to separate
precancerous from benign cases. These features are ex-
tracted based on co-occurrence matrix, wavelet decomposi-
tion, fractal signature, and granulometric approaches. The
results so far indicate that fractal and wavelet-based fea-
tures are effective in distinguishing precancerous from be-
nign cases.

1. Introduction

New methods of non-invasive skin analysis have been an
ongoing research. Multiple groups have worked on non-
invasive methods for detecting abnormal cells [1]-[3]. Ac-
cording to the annual Cancer Statistics Review, an estimated
42,000 new cases of melanoma of the skin in the U.S. was
reported for 1998 [4]. Visual inspection of the lesions by the
doctor does not always result in conclusive decisions on the
state of the lesion. The current methods of skin analysis in-
volve removing a tissue sample from the body surface, and
performing biopsy to determine whether the tissue is be-
nign or precancerous. This invasive technique is unpleasant
for the patient. It is also time consuming, since the biopsy
report can take up to several weeks to be completed, and
sometimes impossible, if the patient has too many lesion
sites. The doctors could greatly benefit from a fast and re-
liable system which could enhance the separation of benign
and precancerous skin lesions without the need for biopsy.

In this paper, a non-invasive optical method based on im-
age processing techniques is reported to identify benign and

1* E-mail contact: kehtar@ee.tamu.edu
This work is partly supported by a US Department of Education graduate
assistantship.

precancerous tissues. This developed diffuse reflectance
spectroscopic imaging method does not require the removal
of skin samples. Data acquisition involves shining white
light onto the skin surface obliquely, and detecting the dif-
fusely reflected light by a set of fibers. Each fiber provides a
1-D signal, which can then be combined to produce an im-
age, increasing the extractable amount of information. The
following sections describe the image acquisition and pro-
cessing techniques, and the feature extraction methods used
in separating two types of tissues, namely, benign and pre-
cancerous.

2. Image acquisition

Image acquisition was performed at UT MD Anderson
Cancer Center in Houston with the help of an experienced
dermatologist. White light (Oriel, 75 W Xenon Arc Lamp)
was coupled to a fiber optic probe made from brass tubing,
and 200µm diameter, low-OH optical fibers. The source
fiber was oriented at a 45o angle of incidence. Thirteen nor-
mally incident collection fibers, arranged in a linear array
and spanning 0.35 cm, collected the diffusely reflected light
(Fig. 1).
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Figure 1. Optical probe for light transmission.
The source fiber transmits the white light onto
the skin surface. The diffusely reflected light
off the skin surface is collected by a series of
thirteen optical collection fibers.
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The outputs from these collection fibers were then placed at
the object plane of the imaging spectrograph (Oriel, Mul-
tispec 257). The spectrograph spectrally dispersed the 1-
D light distribution and projected the image onto the CCD
matrix (Princeton Instrument Inc., 1530P) as in Fig. 2. The
vertical dimension of the image represented the spatial dis-
tribution of the diffuse reflectance. The horizontal dimen-
sion represented the spectral distribution for light from each
collection fiber. A personal computer was used to automat-
ically record the spectra of the collected white light.
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Figure 2. Diffuse Reflectance Spectroscopic
Imaging System. The spectral information
from the diffusely reflected light off the skin
surface are transmitted to the CCD camera
system via the probe and the imaging spec-
trograph.

A sample diffuse reflectance spectral image is shown in
Fig. 3. The spectral intensity of the same image is presented
in Fig. 4.

Spectral images were acquired from 18 skin lesion cases.
The biopsy reports identified 8 of the lesions as benign, and
the remaining 10 as precancerous. For each case, 3 images
were obtained from the lesion site, and 3 images from the
neighboring healthy tissue, with the exception of the first
case, where 5 images were collected each for lesion and
healthy sites, for a total of 112 image samples. In each im-
age acquisition, the probe was removed and repositioned to
obtain the images from different locations on the lesion and
the healthy skin. Before each image was stored, background
subtraction was executed to remove dark room camera sys-
tem noise. The resulting image was then calibrated against
the k-factor of each fiber, since each fiber had a different
transmission/absorption curve.

3. Image texture features

The major task of this work involved the study of image
texture features to identify effective texture features in the
spectral skin images. A wide collection of image texture

features based on co-occurrence matrix, wavelet decompo-
sition, fractals, granulometries were extracted and exam-
ined to obtain those features whose distributions were rela-
tively non-overlapping for benign and precancerous cases.
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Figure 3. A sample image. The horizontal axis
represents the location of fibers. The vertical
axis reflects the wavelength at which the light
was collected. Different shades of gray in the
image represent the relative intensity of the
received light.
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Figure 4. The spectral intensity of the image
in Fig. 2. The vertical axis represents the
image intensity at different fiber locations and
wavelengths.

Unfortunately there is no universally agreed upon def-
inition of texture in the image processing literature. That
is why many different mathematical approaches have been
used to define texture features. Basically, the term texture is



used to reflect variations in a statistical sense in gray level
values. Image texture analysis has been applied to various
types of medical images to identify different types of tis-
sues, in particular benign versus malignant. There are no
successful classification of benign and precancerous skin
tissues in the reviewed literature. An overview of the texture
features examined in this study is provided below.

3.1. Co-occurrence matrix texture features

Co-occurrence matrix statistics introduced by Haral-
ick [5],[6] constitute the most widely used image texture
features. Experiments involving human visual system have
revealed that second order statistics play a major role in vi-
sual description of texture. Co-occurrence matrix is a real-
ization of this attribute.

A first order histogram shows the gray level distribution
within an image. However, it does not provide any infor-
mation about the relationship of gray levels in the image. A
second order histogram based on the co-occurrence matrix,
on the other hand, shows such in formation by consider-
ing pixel pairs. For an 8-bit image having 256 gray levels,
the second order histogram represents all possible gray level
pairs as a 256x256 matrix. Each entry in this matrix denotes
the number of occurrences of a pair of gray level values be-
ing a distanced apart at an orientation angleθ. Normally
four orientations corresponding to 0o (horizontal), 45o (di-
agonal), 90o (vertical), and 135o (anti-diagonal) are used.

Based on the co-occurrence matrix, the following tex-
ture features are defined: standard deviation, correlation,
maximum probability, contrast, inhomogeneity, inverse dif-
ference moment, and entropy. In this study, these features
were examined.

3.2. Wavelet-based texture features

Multi resolution wavelet analysis is a recently developed
scheme [7] that represents data at various scales with dif-
ferent time or spatial resolutions. The concept of wavelet
analysis is similar to the scale used in maps. High scales
correspond to non-detailed global views of a map, while low
scales to small, detailed or closer views. Thus low scales are
closely related to the notion of high frequency that last for
a very short time or spatial duration. At high scales (cor-
responding to low frequency in Fourier sense), the time or
spatial resolution is high, while at low scales it is low. The
aim is to capture high frequency content in a signal or an
image as more often than not, the high frequency contents
(edges) occur within a short time or spatial resolution.

Wavelet decomposition of images takes place in a similar
manner. Instead of time, two spatial dimensionsx (rows)
andy (columns) are involved. The two-dimensional dis-
crete wavelet transform of an image is separable. This al-

lows the discrete wavelet transform to be first applied in
one-dimension across the rows of the image. Each row
(treated as a one-dimensional signal) is then decomposed
into two equal half-length coarse and detail components.
The resulting transformed rows are placed in an intermedi-
ate matrix. The discrete wavelet transform is again applied
to the columns of the intermediate matrix.

Such a decomposition yields a transformed image with
the same height and width as the original image. As a re-
sult, four subimages are generated, each half in resolution
with respect to the height and width. Thus a 256x256 image
is decomposed into four 128x128 subimages. These subim-
ages comprise one coarse and three detail subimages. The
horizontal (H), diagonal (D), vertical (V) component subim-
ages correspond to the high frequency, while the coarse
component subimage (C) correspond to the low frequency
part of the image. The next level of decomposition is done
on the coarse subimage generating four other subimages
similar to the first level of decomposition.

Two texture features are then derived from each subim-
age. These features are called energy and entropy. In this
study, various types of wavelets were investigated, in par-
ticular Daubecheis and spline wavelets.

3.3. Fractal signature texture features

Fractal geometry has been employed to define texture
features [8]. A fractal is a set for which the so-called Haus-
dorff Dimension is strictly greater than the topological di-
mension, the intuitive notion of dimension. A signal or im-
age can be considered to be a fractal having a shape com-
posed of parts similar to whole in some way. The concept of
self-similarity at all scales is specified by a measure known
as Fractal Dimension (FD) (simplified form of Hausdorff
Dimension). This dimension is different from the topolog-
ical dimension. For example, we normally consider curves
having a dimension of 1, surfaces having a dimension of 2,
and solids having a dimension of 3, while fractal dimension
characterizes their roughness.

There exist a number of approaches to compute frac-
tal dimension from images. Among them, multi-resolution
fractal analysis evaluates fractal dimensions at different
scales, thereby taking into account possible variations in
modeling image texture as fractal surfaces. Fractal di-
mension obtained in this manner is known as fractal Sig-
nature (S). In order to model texture as fractals, frac-
tal signatureS(ε) for each successive scaleε is computed
from three consecutive points(log(ε − 1), log(A(ε − 1))),
(log(ε), log(A(ε))), (log(ε), log(A(ε + 1))) using the lin-
ear regression technique, whereA(ε) denotes the image sur-
face area at scaleε. Fractal signatureS(ε) is the slope of the
best-fit line through these points. In this study, many (20)
scales for 4 as well as 8-neighborhood points were used to



compute fractal texture signatures or features.

3.4. Granulomteric texture features

Granulometric texture features are based on morpholog-
ical granulometric size distributions describing the granu-
larity within a binary image. Moments of size distributions
serve as granulometric features. The basic idea is to char-
acterize a binary image as a collection of grains and then
sieve the grains. As the mesh size of the sieve is increased
gradually, the residual area of the sieved image gets re-
duced since only larger grains fall through the increasing
size sieve. Thus a decreasing size distribution of the resid-
ual area is obtained that serves as an indicator of texture of
the binary image. Sieving is done by a morphological op-
eration called opening, and the sequence of sieved images
is called a granulometry. Opening operation sieves an im-
age by only passing those parts that contain a specific shape
known as a structuring element.

The above granulometric approach has been extended
from binary images to gray level images [9]. Similar to
the binary case, a series of openings by a sequence of ex-
panding structuring elements results in reduced gray level
heights of an image surface. This generates a decreasing
sequenceΩ(k) of the volumes underneath the opened im-
ages, wherek denotes the opening index. The normaliza-
tionΦ(k)=1-Ω(k)/Ω(0) is considered to be a probability dis-
tribution function and the moments of the corresponding
density functiondΦ(k)/d(k), named pattern spectrum, are
taken to be granulometric texture features. Normally the
first three moments mean, variance, and skewness are used.

Different structuring elements can be employed to probe
an image surface. In this study, structuring elements con-
sidered included flat linear along directions 45o and -45o,
flat top and cone shapes.

4. Feature analysis

Before performing texture feature analysis, the image in-
tensity was mapped between 0 and 255 for each individ-
ual image for the 8-bit texture feature algorithms. Then
the above-mentioned texture features were extracted to
examine the separability of distributions between benign
and precancerous tissue images: Tested texture features
were derived from co-occurrence matrix, wavelet, frac-
tal signatures, and granulometry approaches, as explained
above [10].

The effective features were determined by calculating
the Fisher discriminant or distance for each feature set.
Fisher distance is a measure of class separability [11]. The
mean and standard deviation of the feature values in each
class are used to compute the Fisher distance. For a two-

class problem as in this study, the Fisher distance is given
by

Fbp = (µb − µp)2/(σ2
b + σ2

p) (1)

whereµb is the mean of the feature values for the benign
class,µp is the mean of the feature values for the precancer-
ous class,σb is the standard deviation of the feature values
for the benign class, andσp is the standard deviation of the
feature values for the precancerous class.

As can be seen from the above equation, the Fisher dis-
tance increases as the difference between the means of the
feature values for the two classes increases, or as the sep-
arability between the two classes increases. In a similar
manner, as the standard deviation of the feature values in
each class decreases, the Fisher distance increases. This in-
dicates that the extracted features can be ranked using the
Fisher distance, and features that generate relatively high
Fisher distances can be considered effective.

Table 1. Typical Fisher distances used to de-
cide feature selection.

Features Fisher Distance
fractal (4 neighborhood) 1.8729
wavelet (Daubecheis energy) 0.6995
co-occurrence (standard deviation)0.1135
granulometry (45o cone) 0.0148

Figures 5 and 6 show sample plots of the texture fea-
tures, namely the fractal and wavelet based features, that
were found to be effective in separating precancerous from
benign cases.

In these figures, feature values from a lesion image were
calibrated against feature values from the corresponding
healthy images by performing feature division. The benign
and precancerous labels were determined by biopsy. As can
be seen, each of these features generated one false negative.
By using both of these features simultaneously as the input
to a classifier, it is possible to avoid such false cases. For
the database studied, the results indicate that the fractal and
wavelet texture features are effective in separating precan-
cerous from benign cases.

5. Conclusions and future work

Image processing texture feature extraction provides a
non-invasive method in separating benign from precancer-
ous skin lesions. Finding effective texture features that de-
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Figure 5. Sample plot of fractal texture feature
for benign and precancerous tissue images.
The horizontal axis represents the image in-
dex or case number, and the vertical axis rep-
resents the feature value.
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Figure 6. Sample plot of wavelet-based tex-
ture feature for benign and precancerous tis-
sue images. The horizontal axis represents
the image index or case number, and the ver-
tical axis represents the feature value, as in
Figure 5.

scribe each class most distinctly is the most challenging task
in this image classification problem. In this work, various
texture features were extracted from benign and precancer-
ous skin lesion images. Results so far show that skin le-
sions can be characterized using appropriate image texture

features. This is a promising finding for the future of non-
invasive skin lesion classification. More images are to be
acquired and added to the current database to increase the
confidence of this finding. In addition, the features found
effective will be used as the input to a statistical or neural
net classifier for carrying out a ROC analysis.
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