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Abstract

Fine balance between loss-of water and gain-of water is essential for maintaining body fluid 

homeostasis. The development of neural manipulation and mapping tools has opened up new 

avenues to dissect the neural circuits underlying body fluid regulation. Recent studies have 

identified several nodes in the brain that positively and negatively regulate thirst. The next step 

forward would be to elucidate how neural populations interact with each other to control drinking 

behavior.

Introduction

Thirst is an instinctive drive that prompts animals toward intense water seeking and 

consumption to restore body fluid balance. Precise tuning of fluid balance is essential for 

survival. Classical and contemporary studies across species have unveiled the basic 

principles of thirst regulation.

In this review, we will briefly overview fluid regulatory mechanisms conserved in many 

species, and summarize gain-of-function and loss-of-function studies of neural populations 

and circuitry. Second, we will describe our current understanding of the mechanisms 

involved in thirst quenching and satiety.

Driving of thirst

Thirst driving system across species and gain of function studies

In many species, Angiotensin II (Ang II) along with systemic osmolality plays important 

roles in driving thirst and drinking behavior. The dipsogenic effect of Ang II was first 

demonstrated in rodents: intracranial injection of Ang II into the third ventricle and other 

brain areas immediately induced water drinking behavior [1]. Besides rodents, rhesus 

monkeys [2–4], goats [5,6], cows [7], sheep [8], pigs [9,10], dogs [11,12], and cats [13–15] 

have been found to drink water in response to intracranial administration of Ang II. These 

studies were followed up by electrical stimulation of the lamina terminalis (LT), a major site 

of Ang II action that increases fluid intake in several mammalian species (Table 1). Ang II 

also causes water drinking behavior in reptiles, amphibians and birds [1,16]. Interestingly, 
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studies in aquatic amphibious fishes revealed a unique system of Ang II-related thirst 

regulation. In mudskipper, Ang II stimulates the area postrema (AP), a hindbrain nucleus, to 

induce swallowing action [17,18]. Recent studies with contemporary neural manipulation 

tools have expanded our knowledge of thirst circuits at a finer resolution. In particular, 

optogenetic manipulation using light-sensitive channels [19], and Designer Receptors 

Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic manipulation 

[20] allowed to link the activity of a specific neural population with behavioral outcome. 

The LT is composed of three structures; the subfornical organ (SFO), the organum 

vasculosum of the lamina terminalis (OVLT) and the median preoptic nucleus (MnPO). Of 

these, SFO and OVLT lack the normal blood–brain barrier, and have direct access to 

circulation. Recently, several genetically defined neural populations related to thirst have 

been identified in the LT [21,22] (Table 1). Stimulation of a glutamatergic population of 

SFO neurons marked by the expression of the transcription factor ETV-1 [23••], nitric oxide 

synthase 1 (nNOS) [23••,24••,25] and Ca2+/calmodulin-dependent kinase II (CamKII) [23••,

26], evoked voracious drinking of water. The MnPO also has excitatory populations 

expressing nNOS or adenylate cyclase activating polypeptide 1 (Adcyap1) that positively 

regulate drinking behavior [27••,28]. Similarly, in the OVLT, nNOS – or angiotensin 1A 

receptor (Agtr1a) – expressing neurons were identified as thirst-promoting neurons [27••,

28].

Outside the LT, vasopressin-expressing neurons in the suprachiasmatic nucleus (SCN) that 

project to thirst neurons in the OVLT have been shown to mediate anticipatory thirst before 

sleep [29•]. The lateral hypothalamic area (LHA) is also known for regulating ingestive 

behavior [30]. A recent study reported that activation of neurotensin (Nts)-expressing LHA 

neurons promotes fluid but not food intake [31]. Because LHA is one of the major 

downstream target of thirst neurons in the MnPO [27••,28,32•], it is possible that Nts 

neurons may receive direct inputs from the LT to relay thirst information to the next brain 

station.

We note that the LT is also implicated in the regulation of sodium ingestion. A study showed 

that SFO neurons expressing Agtr1a mediate sodium intake [33]. It is intriguing that 

SFOAgtr1a neurons seem to be a subset of SFOnNOS neurons, but their activation drives 

sodium intake instead of water. Future studies are required to reconcile how appetites for 

water and sodium are encoded by partially overlapping SFO excitatory neurons.

Loss-of-function studies of the LT

In parallel to gain-of-function studies, several loss-of-function techniques have been 

employed in the past few decades to study the functional necessity of a given neural circuit 

(Table 2). Early studies demonstrated that radio-frequency lesions of forebrain areas 

including the LT disrupted fluid balance and thirst mechanisms in goats [34] and rats 

[35,36]. The physical destruction of the neural connection between the SFO and MnPO has 

been shown to attenuate water intake in rats [37,38]. Consistently, in rats with lesions of the 

SFO and OVLT, there was a decrease in the number of Fos-like immuno-reactive neurons in 

the MnPO, following intravenous infusion of hypertonic saline solution [39]. Moreover, 

ablation of the MnPO by multiple techniques such as electrolytic ablation [40] or ibotenic 
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acid [41] all blocked drinking behavior. A comprehensive study in sheep also supports this 

view: radiofrequency ablation of MnPO reduced drinking behavior, but ablation of the 

OVLT or SFO alone had minor effects on drinking in response to hypertonic saline [42]. 

Taken together, ablation of individual nuclei of the LT (with the most profound effects by 

MnPO ablation) has an impact on angiotensin-induced or hypertonicity-induced drinking.

Classical loss-of-function approaches generally affect all neurons in a given brain area, 

whereas recent manipulation tools can be used to silence/ablate a genetically defined neural 

population. Augustine et al. applied cell-type-specific ablation by caspase [43] to individual 

nuclei of the LT. The study revealed that MnPOnNOS neurons are essential for driving 

drinking behavior induced by photostimulation of SFOnNOS neurons [27••]. By contrast, 

stimulation of MnPOnNOS neurons after ablating SFOnNOS/OVLTnNOS still triggered 

drinking. Thus, the MnPOnNOS neuronal population is required to integrate the signals from 

thirst-driving neurons of the SFO [27••]. However, there are some discrepancies regarding 

the requirement of SFO neurons for drinking. Permanent ablation of the SFO [42,44,45] or 

SFOnNOS neurons (unpublished) had temporally/minimum effect on water intake. In 

contrast, acute optogenetic inhibition of SFOnNOS neurons [24••], or the SFO → OVLT 

projection [33] using archaerhodopsin significantly attenuated water intake. Although 

precise mechanisms are unknown, it is feasible that the function of SFOnNOS neurons may 

be required for drinking in short periods, but permanent ablation induces neural plasticity 

over time that compensates for the loss of SFO neurons to maintain body fluid balance.

Quenching of thirst

Functional studies of the LT

Thirsty animals including humans stop drinking water before the systemic environment 

recovers (rehydration). This early termination of drinking was known both behaviorally and 

endocrinologically. For instance, studies in dogs [46,47] and rhesus monkeys [48] with a 

gastric fistula showed that only sham-drinking rapidly inhibited vasopressin release from the 

brain. On the basis of these observations, it was proposed that there may be thirst-quenching 

neural circuits that respond to drinking. More recently, drinking water has been shown to 

inhibit the activity of thirst-related neurons [24••,27••,32••,49•]. These studies suggested that 

water intake stimulates thirst-quenching signals in the brain that leads to rapid drinking 

termination.

At the circuit level, we have just begun to get handles on thirst-quenching neurons mainly in 

the LT. It was demonstrated that the activation of GABAergic neurons in the SFO 

(SFOVGAT) suppresses water intake in thirsty animals [23••]. Similarly, optogenetic 

activation of inhibitory neurons in the MnPO/OVLT suppressed water intake [27••,50•]. 

Thus, it appears that stimulation of inhibitory populations in the LT quenches thirst in 

general.

Although LT inhibitory neurons are sufficient to inhibit drinking, few studies have addressed 

their physiological role related to thirst quenching. Our laboratory tackled this question by 

optical recording from individual neural populations in the LT. We showed that MnPO 

inhibitory neurons that coexpress glucagon-like peptide 1 receptor (MnPOGLP1R) are 
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activated upon gulping action regardless of liquid type, and they send mono-synaptic 

inhibition to SFOnNOS neurons [27••]. These experiments implicated that MnPOGLP1R 

neurons receive signals from the oropharyngeal areas in response to drinking. Sensory 

stimuli from the oropharyngeal area are generally transported through cranial nerves V, VII, 

IX, and X to the central pattern generator within the nucleus tractus solitarius (NTS), which 

elicits swallowing action. Although fluid-sensing mechanisms in the peripheral area remain 

poorly understood, MnPOGLP1R neurons may receive oropharyngeal inputs from other brain 

regions such as the NTS, and provide rapid quenching of thirst circuits.

Functional studies of other brain regions

Several other brain regions are also implicated in thirst-quenching. The NTS receives 

peripheral inputs including visceral and baroreceptor signals [51–54], and is known to 

regulate various appetites [53,55,56]. For example, optogenetic stimulation of 

cholecystokinin (CCK) expressing NTS neurons decreases feeding [57]. Lesions of NTS 

neurons have been reported to cause overdrinking in rats [51,52] suggesting that the NTS 

plays a role in optimizing water intake. However, distinct neural populations that control 

water intake remain unknown. Another hindbrain structure related to thirst-quenching is the 

parabrachial nucleus (PBN). Stimulation of oxytocin receptor-expressing neurons in the 

PBN (OxtrPBN neurons) has been shown to suppress fluid intake, but not food or salt intake 

[58•]. The PBN is one of the major projection sites of NTS neurons [59] that forms 

reciprocal connections with forebrain areas [60–63]. It is possible that the PBN relays thirst-

quenching signals from the NTS to forebrain regions such as the MnPO.

Although recent studies have pinpointed multiple thirst-quenching nodes, it is still unclear 

how activation of these neurons suppresses drinking. Do they reduce the valence of water, or 

the motivation to drink? Currently, understanding of emotional and conscious processing of 

thirst is severely limited. On the basis of anatomical connections in rodents [64] and 

functional studies in humans [65], the LT-thalamus-insular/cingulate cortex axis may be 

related to the genesis of thirst perception.

Conclusions and future directions

1. Efferent connections from the LT to other brain regions for driving thirst.

The brain regions including the LT, NTS, PBN, and insular/cingulate cortex have 

been all implicated in fluid regulation. However, how interoceptive information 

from the LT is processed in downstream neural circuits remains unknown. Future 

studies should focus on identifying the specific circuitry from the LT and 

functionally annotate individual neural populations to behavioral and hormonal 

outputs related to thirst.

2. How do peripheral organs sense drinking and send signals to thirst-quenching 

neurons?

Water intake stimulates multiple sensory signals including taste [66], 

oropharyngeal gulping motion, and osmolality changes in the gut (Figure 1) [67]. 

Interestingly, one thirst-quenching population (e.g. MnPOGLP1R neurons) 
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represents a specific aspect of drinking behavior (in this case, liquid gulping). 

However, there are still important questions remain to be answered. Are there 

distinct types of thirst-quenching neurons that detect other sensory stimuli 

evoked by water intake? How does each neural population ‘know’ that peripheral 

drinking events have occurred? Recent development of in vivo optical recording, 

manipulation, and tracing tools will help identify molecular and neural basis of 

thirst-quenching and satiety.
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Figure 1. 
Flow chart of the inhibitory effects on the SFO thirst driving neurons. After ingestion, the 

MnPOGLP1r neurons quickly respond to drinking of any types of liquid, and provide 

transient inhibition to the SFOnNOS neurons. It remains unknown which neurons are 

specifically activated by hypo-osmolarity induced by water ingestion and send the persistent 

inhibitory signal to the SFO.
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