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Abstract—A binary Block Interference Channel (BIC) is model
of binary channels with memory that allows for a mathematically
tractable computation of channel capacity. One can easily imag-
ine interconnecting such channels into a network that allows
point-to-point communication between any two nodes in the
network. Given a pair of network nodes, nding the path with
the highest capacity is quite trivial if we can assume that all
participating nodes in any path connecting the two nodes can
perform coding at arbitrary complexity such that at each link
capacity is achieved. However, even if the complexity assumption
is not taken into account, in most real-life networks (such as the
current Internet), only a minimum amount of coding is performed
at the link layer. In most networks, coding is performed ve
or six layers up in the OSI network model, i.e., on either
the presentation or the application layer. Under such realistic
circumstances, nding the path with the highest capacity is no
longer trivial. In this paper, we propose a solution based on a
modi ed version of the Dijkstra’s Algorithm.

I. INTRODUCTION

Many modern communication networks can be mathemat-
ically described as networks of binary communication chan-
nels. In many scenarios, errors occuring along these channels
can be approximately modeled as random outages.
However, often these channels exhibit the so-called memory

effect. For a period following an error, a channel often expe-
riences a higher than normal rate of error. For example, when
a packet received at an intermediate router completely lls
up the router’s queue, any subsequent packet (and hence the
binary symbols therein) will be dropped until the congestion
is cleared up. For this reason, we often say that network errors
are “bursty.” Clearly, in many applications, accurate behavior
and performance analysis has to take into account the fact that
channel errors exhibits memory.
The Gilbert Channel Model (GCM) [2] is one of the

simplest models for analyzing the engineering performance
of channels with memory. Despite (or we may say because
of) its simplicity, the GCM has been widely used in analyzing
a wide variety of real-life networks [3].
For example, GCM is used to analyze the performance of

slotted ALOHA over fading communications channels [4],
correlated loss over TCP/IP networks [5], real-time wireless
communications [6], and many others.
For many different types of wireless fading channels, the

GCM is a very attractive alternative to sophisticated mod-
els such as Hidden Markov models (HMMs) [7] because
compared to the HMM’s, the GCMs are analytically more
tractable. This desirable property leads to a polynomial-time
algorithm for nding the path with the best error performance
(QoS) in a network of Gilbert channels [8].

However, the GCM does not lend itself for a tractable
information-theoretic analysis of channel capacity. The math-
ematical expression for Shannon capacity of a single Gilbert
channel is a set of recursive equations in the various underlying
channel parameter [9]. The complexity only gets worse when
the capacity analysis is extended to network paths, which is
crucial for nding the path with the best Shannon capacity.
For this very reason, McEliece and Stark introduced the

novel concept of Block Interference Channel (BIC) [10]. A
Gilbert channel models a channel with memory as two (or
a nite number of) multiplexed channels that are selected at
each time t based on the current state St of a Markov chain
with two (or the same number of) states.
A BIC model simpli es this by requiring that the above

Markov chain have balanced transition probabilities, which
immediately means the state sequence is now an i.i.d sequence.
In addition, in a BIC, the Markov chain is not updated
everytime t increases, but rather at a lower clock cycle (which
in this paper we denote by k) every m cycles.
These simpli cations allow one to compute a closed-form

expression for Shannon capacity upper-bound in cases where
the side information Sk is available to the receiving end.
It is shown in [10] that in the limit of large m, this side
information can be readily and reliably inferred by the receiver.
In such cases, the upper bound becomes tight. In this paper, we
focus our analysis on a special class of BICs that contain two
underlying Binary Symmetric Channels (BSCs) as described
in Example 1a of [10]: one lossless BSC denoted by Δ0, and
the other BSC Δδ with crossover probability δ.
At this point, we also would like to point out that if we can

assume that all participating nodes in any path connecting the
two nodes can perform coding at arbitrary complexity such
that at each link capacity is achieved, then given any pair of
network nodes, the task of nding the path with the highest
capacity is quite trivial. One could rst compute the capacity
for each link, assign these capacities on the corresponding link,
and run a (min,max) [11] algorithm on the network.
However, even if the unrealistic arbitrary-complexity as-

sumption is not taken into account, in most real-life networks
(such as the current implementation of the Internet), only a
minimum amount of coding is performed at the physical link
layer. In most networks, coding is not performed until the
symbols reach ve or six layers up in the OSI network model,
i.e., on either the presentation or the application layer.
Under such realistic circumstances, nding the path with

the highest capacity is no longer trivial. Each possible path
constitutes a separate channel with its own Shannon capacity,
and therefore the (min,max) algorithm cannot be used.
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In this paper, we propose a solution based on a modi ed
version of the Dijkstra’s Algorithm (DA) [12]. The solution
involves de ning a rule to combine parameters of adjacent
BICs into parameters of a composite BIC, and a rule to
compare two different BICs. Using these rules, the algorithm
computes path parameters and compares them to nd the
path with the most desirable BIC parameters. The algorithm
presented in this paper can be used in networks where GCM
(and hence BIC) is used to analyze the underlying links, and
wherever shortest path routing is used.
Finally, before we begin our main discussion in the next

section, we provide our view of why an information-theoretic
routing optimization in a network of BICs is a very relevant
topic. With the advent of Universal Mobile Telecommuni-
cations Systems (UMTS) networks where multimedia (espe-
cially speech) and data packets will have to coexist in the
underlying commonWideband Code-Division Multiple Access
(WCDMA) networks, the GCM has become more important.
The recent UMTS recommendations for QoS measures is

based on a set of user satisfaction assessments of individual
speech and data sessions [13].
For speech services, user satisfaction drops signi cantly in

the presence of long spans (in packets) of service outage.
For data services, disruption and termination comes from
successive retransmissions.
These new QoS measures require the next level of approxi-

mation of behavioral analysis that is not available from system
outage probability analysis (which inherently assumes zero
correlation between the outages) commonly found in CDMA
literature [14], [15]. Recently, detailed analysis (in the context
of QoS and capacity) of WCMDA [16], [17] incorporates
correlated outage behavior by using GCM. In the next level of
analysis that incorporates coding and capacity, the simpli ed
BIC models would prove indispensable.
This paper is organized as follows. In Section II, we

provide a concise mathematical formulation of the problem
and de ne the notations. In Section III we explain the so-called
Generalized Dijkstra’s Algorithm that plays the central role in
our results. Finally, in Section IV we discuss our conclusion
and some suggestions for future research.

II. FORMULATION AND NOTATION
We model our network as a digraph G = (V, E), and

denote by V , E, and Π the node, edge and path sets of G,
respectively. Denote by s and d ∈ V the network source and
destination nodes, and by Π ⊂ Π the set of all network paths
from s to d. A path π ∈ Π whose nodes Vπ ⊂ V are connected
by Eπ ⊂ E is denoted by either 〈v0, . . . , vJ〉 or 〈e1, . . . , eJ〉.
The symbol 〈vi, vi+1〉 denotes the edge (path) connecting the
two (non-) adjacent nodes vi and vi+1.
Each edge ei ∈ E has its own edge weight which is a 2-D

vector λi ∈ Λ. The elements (εi, δi) of λi are the parameters
εi and δi of the BIC for a given ei. The special value λ = ∞
denotes the absence of connection between two nodes.
For all ei ∈ E we assume that λi are xed, and that 0 ≤

εi ≤ 1 and 0 ≤ δi ≤
1

2
. We also assume that each BIC ei

consists of two BSC’s: (1) a noiseless BSC denoted by Δ0,
and (2) a BSC with crossover probability si denoted by Δδi

.

Consider a binary sequence x = {x0, x1, x2, . . . } trans-
mitted from s to d. The BIC assumes that x can be
grouped together into X = {X0, X1, X2, . . . } where Xk =
{xkm+0, xkm+1, . . . , xkm+m−1}. We assume that each chan-
nel imposes a zero transmission delay. Therefore, we can think
of k as the time variable for the entire network.
For each edge ei ∈ E, de ne a sequence of i.i.d binary ran-

dom variables Si = {Si0, Si1, Si2, . . . }. The random variables
are such that the probability of Sik = 0 (indicating that ei is
representing Δ0) is εi. Conversely, the probability of Sik = 1
(indicating that ei is representing Δδi

) is 1− εi.
Denote by C : Λ → C ≡ [0, 1] the function that measures

the capacity of an edge e ∈ E with a channel parametrized by
λ ∈ Λ. For convenience, denote by β : Π → Λ the function
that measures the parameter λπ (or λi) of a given path π (or
a given edge ei) and the shorthand notation C(e) = C(β(e)).
The addition operator can be de ned in Λ. Let us denote this

operation by ⊕. If λ1 = β(e1), λ2 = β(e2), and π = 〈e1, e2〉,
then we say that λπ = λ1⊕λ2. These expressions imply that
⊕ and Λ have to obey some algebraic properties (such as
closure), which we will discuss in the next section.
Having de ned ⊕, we can now express the path channel

parameter λπ in terms of λi using a generalized summation

λπ =
⊕

λi (1)

Let us call the pair (Λ,⊕) the B algebra equipped with the
associated β and C functions. Note that ⊕, β and C are not
enough to calculate the path π∗ with the highest capacity.
For this, we need to able to compare edge weights and path
lengths (using their corresponding capacities). Mathematically,
we need a total order operator � acting on Λ and C to evaluate
expressions like cπ � cπ′ and λπ � λπ′ . With a de nition of
�, we can write the following expression:

λ
∗ = minπ{λπ | π ∈ Π }

c∗ = minπ{ cπ | π ∈ Π }

π∗ = argminπ(C(π)) (2)

Next, we de ne ⊕ operating on our BICs. First, note that the
blocks Xi are independent, and thus we can think of each
Xi block as a symbol drawn from a q-ary alphabet where
q = 2m. Further, as shown in [10], each BIC can be thought of
as a 2m-ary symmetric channel with channel error probability
ε(1− (1− δ)−m). Let q-SC(p) be the abbreviation for a q-ary
symmetric channel with channel error probability p.
It is easy to prove that a series combination of a q-SC(p1)

and a q-SC(p2) is equivalent to a q-SC(p). The equations for
p and the Shannon capacity of q-SC(p) are:

p1 = ε1(1− (1 − δ1)
−m)

p2 = ε2(1− (1 − δ2)
−m)

p = p1 ⊕ p2

p1 ⊕ p2 = 1− (1− p1)(1 − p2)−
1

q−1
(p1p2)

Each BIC on ei is the same, whether it is parametrized by a
2-D vector λi or by a scalar pi, which is obviously preferable.
In this new parametrization, λi ≡ pi = εi(1 − (1 − δi)

−m)
and thus the space Λ now is just [0, 1].
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Denote by Cq(p) (or C(p) if q is xed) the Shannon
capacity of a q-SC(p). Note that the argument p can now
correspond to the parameter of a single channel corresponding
to an edge e, or from a path constructed from several such
edges. From [18], C(p) is given by:

C(p) = 1 + (1− p) logq(1− p) + p logq(p)− p logq(q − 1)

We are now ready to de ne the � operator which we will
use to compare different λ’s. The de nition of � in C ≡ [0, 1]
is quite obvious: it is just the standard ≤ operator. It is not
clear if we can order the members of Λ in a similar manner.
First, let us make a statement that is true regardless of the

exact representation of λ. If we let λ1 = β(e1) and λ2 =
β(e2), then in B, the operator � is de ned as follows:

λ1 � λ2 iff C(λ1) � C(λ2). (3)

The above de nition simply orders the channels based on their
Shannon capacity. Consequently, given the source node s and
the destination node d, we de ne the best path π∗ as the path
with the highest Shannon capacity.
However, since λ’s are just p’s, and for a xed q, the

capacity Cq(p) is a monotonically increasing function of p
with a peak at p = q−1

q
. Therefore, the de nition of � for Λ

boils down to the standard ≤ operator on [0, 1]. The coupling
of the B algebra with the � operator induces a metric which
we shall call the B metric.
In the next sections, we will show that elements of the pa-

rameter space Λ and the corresponding B algebra are suitable
as inputs to a modi ed version of the Dijkstra’s Algorithm,
which is known to have a time-complexity of O(V 2) [19].

III. GENERALIZED DIJKSTRA’S ALGORITHM
The problem of nding the optimal path with minimum

length (measured in the metric of choice — in our paper the
B metric) in a network represented by a graphG can be solved
using the Generalized Dijkstra’s Algorithm (GDA) below [12]:
1: procedure GDA (G, m, s)
2: for all v ∈ V do
3: l[v]←∞
4: π[v] ← NIL

5: Q← V
6: l[s]← 0
7: while Q 
= ∅ do
8: u ← MIN(Q)
9: for all node v ∈ N(u) do
10: if l[v] � l [u]⊕m (u, v) then
11: l[v]← l [u]⊕m (u, v)
12: π[v] ← u

The GDA is practically identical to the Dijkstra’s Algorithm
(DA) except for the relaxation step, where ⊕ and � operators
act on a general metric space M (instead of the equivalent
step in DA, where + and ≤ operators act on R).
On line 9, N(u) denotes the set of all nodes adjacent

to u. The argument m is the edge lengths in G each of
which is an element in M, and m (u, v) is the length of
〈u, v〉. Lines 10–12 perform the relaxation step of the GDA.

This step depends on the de nitions of M, ⊕, and �. If
the GDA (in)correctly returns the path in G with minimum
length measured in M, then (M,⊕) and � are said to be
(in)compatible with the GDA. The following is the required
properties for compatibility:

PROPOSITION 1 An algebra A = (M,⊕) and a total order
� is compatible with the GDA if and only if it satis es all
the properties in the set denoted by P below:
P1 is a commutative monoid, that is, for a, b, c ∈M :

• M is closed under ⊕ : a⊕ b ∈ M ;
• ⊕ is associative : a⊕ (b⊕ c) = (a⊕ b)⊕ c ;
• 0 is the identity : a⊕ 0 = 0⊕ a = a ;
• ⊕ is commutative : a⊕ b = b⊕ a.

P2 There exists ∞ ∈M | a⊕∞ =∞⊕ a =∞.
P3 � is a total order onM, i.e., � is :

• re exive: a � a;
• anti-symmetric: if a � b and b � a then a = b ;
• transitive: if a � b and b � c then a � c ;
• total: for every a, b ∈M either a � b or b � a.

P4 There exists the least element 0 that satis es 0 � a .
P5 a⊕ c ≺ b⊕ c if a ≺ b and c ∈ M− {∞}.

PROOF: Refer to [12] for a complete proof. �

THEOREM 2 The algebra B = (Λ,⊕) and � satisfy all the
properties in P, and thus compatible with the GDA.

PROOF: In the following derivation, let a, b, and c be the
channel parameters of three BICs associated with the edges
e1, e2, e3 ∈ E, and ∞ denotes the lack of connection.

a⊕ b = 1− (1− a)(1− b)− (ab) / (q − 1) (4)

P1 Except for closure, the monoid properties can be proven
with algebraic manipulation of equation (4). Recall that P =
[0, 1] ∪ ∞. Closure is obvious if a, b ∈ [0, 1]. If a = ∞ or
b = ∞, then by the de nition of ∞ as a special designation
for the absence of connection between two nodes, then we
must have a⊕ b = ∞.
P2 The proof is derived from closure on ∞.
P3 The proof follows the de nition of P .
P4 Same as above.
P5 The proof is obvious if b = ∞. However, if b 
= ∞, then
by substituting a, b, and c into (4) we obtain the two values
a⊕ c and b⊕ c ∈ [0, 1] given by:

a⊕ c = 1− (1− a) (1− c)− a c/ (q − 1)

b⊕ c = 1− (1− b) (1− c)− b c/ (q − 1).

Since both are in [0, 1], the order ≺ is just <, and the
expression a ⊕ c ≺ b ⊕ c is equivalent to the inequality
(a⊕ c)− (b⊕ c) < 0, which can be simpli ed into:

(1− c q/ (q − 1)) (a− b) < 0

If c ≤ q−1

q
, then 0 < (1− c q/ (q − 1)) ≤ 1, and (a− b) < 0

(because a ≺ b and b 
= ∞). Thus, the above inequality is
true, and we have proven all the properties in P. �

CORROLARY 3 The function C(p) is a non-decreasing
function of p, which means that the path with minimum p
(from the GDA) is also the path with minimum C(p).

PROOF: The proof follows from our de nition for �:
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IV. CONCLUSION AND DISCUSSION
The preceding results provide us with a practical method

to nd the best path that maximize Shannon capacity in a
network of binary Block Interference channels. The method is
based on the Generalized Dijkstra’s Algorithm (GDA), which
requires the edge metric to obey a certain set of necessary
and suf cient conditions. The Shannon capacity of each path
is computed and compared against other paths.
Our approach characterizes each edge (and the correspond-

ing BIC) by its error parameters, which are themselves proba-
bilistic density parameters. Using these density parameters as
edge lengths, we compute any path lengths by an appropriate
combination of edge lengths according to the laws of proba-
bility. This approach fully preserves the stochastic nature of
the problem (instead of simply reducing the stochastic edge
weights to proxy deterministic values such as their averages).
Future work includes simulating or experimentally verifying
the theoretical results presented herein, and considering the
other examples presented in [10].
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