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11 Abstract

12 *Seq techniques (e.g. RNA-Seq) generate compositional datasets, i.e. the number of fragments sequenced is 

13 not proportional to the sample’s total RNA content. Thus, datasets carry only relative information, even though 

14 absolute RNA copy numbers are of interest. Current normalization methods assume most features do not 

15 change, which can lead to misleading conclusions when there are many changes. Furthermore, there are few 

16 real datasets and no simulation protocols currently available that can directly benchmark methods when many 

17 changes occur.

18

19 We present absSimSeq, an R package that simulates compositional data in the form of RNA-Seq reads. We 

20 compared absSimSeq with several existing tools used for RNA-Seq differential analysis: sleuth, DESeq2, 

21 edgeR, limma, sleuth and ALDEx2 (which explicitly takes a compositional approach). We compared the 

22 standard normalization of these tools to either “compositional normalization”, which uses log-ratios to anchor 

23 the data on a set of negative control features, or RUVSeq, another tool that directly uses negative control 

24 features.

25

26 Our analysis shows that common normalizations result in reduced performance with current methods when 

27 there is a large change in the total RNA per cell. Performance improves when spike-ins are included and used 

28 with a compositional approach, even if the spike-ins have substantial variation. In contrast, RUVSeq, which 

29 normalizes count data rather than compositional data, has poor performance. Further, we show that previous 

30 criticisms of spike-ins did not take into consideration the compositional nature of the data. We demonstrate 

31 that absSimSeq can generate more representative datasets for testing performance, and that spike-ins should 

32 be more frequently used in a compositional manner to minimize misleading conclusions in differential 

33 analyses.

34
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35 Author Summary

36 A critical question in biomedical research is “Is there any change in the RNA transcript abundance when 

37 cellular conditions change?” RNA Sequencing (RNA-Seq) is a powerful tool that can help answer this 

38 question, but two critical parts of obtaining accurate measurements are (A) understanding the kind of data that 

39 RNA-Seq produces, and (B) “normalizing” the data between samples to allow for a fair comparison. Most tools 

40 assume that RNA-Seq data is count data, but in reality it is “compositional” data, meaning only 

41 percentages/proportions are available, which cannot directly answer the critical question. This leads to 

42 distorted results when attempting to simulate or analyze data that has a large global change.

43

44 To address this problem, we designed a new simulation protocol called absSimSeq that can more accurately 

45 represent RNA-Seq data when there are large changes. We also proposed a “compositional normalization” 

46 method that can utilize “negative control” features that are known to not change between conditions to anchor 

47 the data. When there are many features changing, this approach improves performance over commonly used 

48 normalization methods across multiple tools. This work highlights the importance of having negative controls 

49 features available and of treating RNA-Seq data as compositional.
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50 Introduction

51 High-throughput methods, including RNA-Seq, are frequently used to determine what features—genes, 

52 transcripts, protein isoforms—change in abundance between different conditions [1]. Importantly, though, 

53 researchers ultimately care about the absolute abundance of RNA transcripts. In other words, is there a change 

54 in the number of RNA molecules in a cell when the conditions change? However, current techniques are limited 

55 to reporting relative abundances of RNA molecules: the proportion of fragments generated by a sequencer that 

56 contain a given sequence [2-5]. This means that RNA-Seq is inherently compositional data, where relative 

57 proportions are the only information available, yet those are being used to draw conclusions about the absolute 

58 abundance of features [2-5] (see Note 1 in Supporting Information). Several studies have raised the alarm on 

59 ways in which interpretation of the results can be distorted if RNA-Seq data are not properly treated as 

60 compositional [2-6].

61 The first statistical problem in an RNA-Seq analysis lies in determining the origin of the fragments generated. 

62 There are two classes of tools available to solve this problem: (1) tools that use traditional alignments to 

63 determine the exact genomic location (tophat2, bwa, STAR, HISAT2, etc.) (reviewed in [7]); there are other 

64 tools that take these traditional alignments and estimate exon-, transcript-, or gene-level expression levels 

65 (reviewed in [8]); (2) tools that probabilistically estimate transcript sets that are compatible with producing the 

66 corresponding fragments using pseudoalignment and quantify the levels of transcript expression (kallisto, 

67 salmon, sailfish) [9-11].

68 The second statistical problem, the focus of this paper, is to compare the differences in samples collected under 

69 different experimental conditions (e.g. comparing cancer cells with control cells; comparing wild-type cells with 

70 mutant cells). We will refer to this second step as “differential analysis.” A number of tools are available for 

71 differential analyses (DESeq2, edgeR, limma-voom, etc), using continuous or count data (reviewed in [1,12]). 

72 One recently developed tool, sleuth, utilizes the bootstraps produced by the quasi-mapping tools to estimate 

73 the technical variation introduced by the inferential procedure [13].
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74 It is a recognized need to normalize and transform the data before conducting differential analyses. Multiple 

75 strategies have been developed to meet this need, including quantile normalization [14], the trimmed mean of 

76 M-values (TMM) method used by edgeR [15], the median ratio method used by DESeq and DESeq2 [16], and 

77 the voom transformation used by limma [17]. In addition, multiple units are used when modeling and reporting 

78 RNA-Seq results [18], including counts [16,19], CPM [17], FPKM [20], and TPM [21]. Importantly, all of these 

79 strategies, even those that are focused just on the counts for each feature, utilize units that are really proportions, 

80 which belies the fact that RNA-Seq data are compositional [5,22] (see Note 1 in Supporting Information). 

81 Furthermore, all of these normalization strategies assume that the total RNA content does not change 

82 substantially across the samples (see [23] for a review). This assumption allows users to leap from the inherently 

83 relative information contained in the dataset to the RNA copy number changes in the population under study 

84 without quantifying the actual RNA copy numbers. However, there are biological contexts where this assumption 

85 is not true [4,24,25], and it is unclear how much change can occur before distorting results when the datasets 

86 are not considered as compositional during analyses.

87 If information is available about negative controls (e.g. spike-ins, validated reference genes), then such 

88 information could be used to anchor the data. This has been done in several studies, where the use of spike-ins 

89 led to a radically different interpretation of the data compared to the standard pipeline [4,24,26]. In one study, 

90 the RUVg approach was designed to use this reference information to normalize RNA-Seq data, as part of the 

91 RUVSeq R package [27]. There have been recommendations to include spike-ins as part of the standard 

92 protocol [22,24,28]. However, Risso et al. observed significant variation in the percentage of reads mapping to 

93 spike-ins, as well as discordant global behavior between spike-ins and genes [27]. While spike-ins are often 

94 used in single-cell RNA-seq applications, they are not routinely used in bulk RNA-Seq experiments.

95 John Aitchison developed an approach to compositional data with the insight that ratios (or log-transformed 

96 ratios, called “log-ratios”) capture the relative information contained in compositional data [29]. There are three 

97 requirements for any analytical approach to compositional data: scale invariance, subcompositional coherence, 

98 and permutation invariance (see Note 2 in Supporting Information) [30]. It was recently demonstrated that 

99 correlation, a widely used measure of association in RNA-Seq analysis, is subcompositionally incoherent and 
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100 may lead to meaningless results, and an alternative called “proportionality” was proposed [4]. A tool was 

101 previously developed to apply compositional data analysis to differential analysis, called ALDEx2 [3]. However, 

102 ALDEx2 is not well-suited for utilizing the bootstraps generated by the pseudoalignment tools and is unable to 

103 detect any differentially expressed features when there are less than five replicates [31]. Therefore, it is 

104 necessary to develop a compositional approach for other tools.

105 Two tools are commonly used to simulate RNA-Seq: polyester and RSEM-sim [21,32]. These tools require the 

106 input of estimated counts per transcript and the expected fold changes between groups. However, without 

107 considering the data as compositional, protocols used to simulate RNA-Seq data result in the total read counts 

108 being confounded with the condition, such that one condition will have on average a greater depth compared to 

109 the other condition (for example, see Supplementary Table S2 of [13]). A protocol that simulates many changing 

110 features and at the same time yields similar sequencing depth per sample, is lacking, but could be done using 

111 principles from compositional data analysis. This challenge, along with the one above, both motivated the 

112 present work.

113 Here, we present absSimSeq, a protocol to simulate RNA-Seq data using concepts from compositional data 

114 analysis. This protocol allows us to directly model large global shifts in RNA content while still maintaining 

115 equivalent sequencing depths per sample. Further, we developed a normalization approach that uses negative 

116 control features (e.g. spike-ins) with log-ratios, which we call “compositional normalization”. We created an 

117 extension of sleuth, called sleuth-ALR, to use compositional normalization, both to predict candidate reference 

118 genes and to normalize the data. We also adapted already available methods to implement compositional 

119 normalization for other differential analysis tools. We then used absSimSeq to benchmark performance of 

120 differential analysis tools in the setting of either a small or large change to the total RNA content. Within each 

121 setting, we compared the current normalization approaches versus either compositional normalization or the 

122 RUVg approach with spike-ins.

123 When there was only a small change in total RNA content, all tested tools had similar performance on simulated 

124 data, whereas sleuth, sleuth-ALR and limma had the best performance on real data. However, when there was 
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125 a large change in the RNA content, either up or down, all tools had much better performance if compositional 

126 normalization with spike-ins was used. When analyzing a well-characterized real dataset which had a large 

127 change in total RNA content per cell [4,26], only compositional normalization with a validated reference gene 

128 was able to capture the overall decrease in RNA transcription. Surprisingly, RUVg had poor performance, and 

129 the choice of normalization approach had a greater impact on performance than the choice of tool. Furthermore, 

130 both of the concerns about spike-ins raised by Risso and colleagues [27] are actually the expected 

131 consequences of how compositional data behaves between samples, though they do raise concerns about the 

132 proper protocol for including spike-ins.

133 In summary, we provide absSimSeq as a resource to generate simulated RNA-Seq datasets that more 

134 accurately reflect the behavior of real datasets. This will help future development of RNA-Seq analysis when 

135 testing performance. Furthermore, our work suggests that using compositional normalization with spike-ins or 

136 validated reference genes is essential for differential analyses of RNA-seq data. When such information is 

137 missing, it raises major concerns about the limitations of drawing conclusions from the inherently compositional 

138 data of RNA-Seq and other “omics” techniques.

139

140 Results

141 Simulation of RNA transcript copy numbers, normalization, and performance of different tools

142 To test how changes in the total RNA content can affect performance of differential analysis tools, we developed 

143 absSimSeq to simulate RNA-Seq data (Fig 1). Because the experimental step of generating a library from 

144 samples in a real RNA-Seq experiment generates a compositional dataset, this protocol directly simulates that 

145 step, producing simulated compositional data. Using this protocol, we carried out three simulation studies, each 

146 having five experiments. In each study, current normalization methods were compared to compositional 

147 normalization and RUVg. A set of highly expressed spike-ins was used as the set of negative control features 

148 for compositional normalization and RUVg (see methods for details).
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149 Fig 1. AbsSimSeq, A novel simulation protocol to model compositional RNA-Seq data. All RNA-Seq 

150 experiments convert copy numbers per cell to relative abundances because of the selection step and because 

151 the depth of sequencing is arbitrary with respect to the total RNA present (top panel; see Note 1 in Supporting 

152 Information). The absSimSeq protocol simulates that conversion process (bottom diagram), with the key, novel 

153 steps highlighted in red. It takes the mean empirical relative abundances (in TPM units) from any dataset. It then 

154 makes a conceptual leap by assuming those values are copy numbers per cell. Then, the fold changes are 

155 simulated on these copy numbers for the experimental condition. After that, in the crucial step of the protocol, 

156 the copy numbers are re-normalized back to relative abundances to simulate what happens in the RNA-Seq 

157 experiment. From there, the expected reads per transcripts are calculated using relative abundances and the 

158 median of the estimated effective lengths from the original dataset. These are then submitted to the polyester R 

159 package for a negative binomial simulation.

160 In the first study (“small”), only a small fraction of features were changed (5% of all transcripts), and the total 

161 RNA content was similar between experimental groups (<2% change) (S1 Table and S2 Table). This study was 

162 intended to simulate an experiment that fulfills the assumption of the current normalization methods. Under these 

163 conditions, all tools tested performed similarly whether using their current normalization approaches or using 

164 compositional normalization (Fig 2A; S2 Fig, panel A).

165 Fig 2. Compositional normalization markedly improves performance when there is a large 

166 compositional change. The copy numbers were modeled using the estimated average abundances from the 

167 GEUVADIS Finnish women samples (N = 58). Each of the three studies consists of five simulations under 

168 specified global conditions: (A) the “small” group has 5% of the transcriptome (~10K transcripts) simulated as 

169 differentially expressed, with the total average copy numbers per cell in each group roughly equal, (B) the 

170 “down” group has 20% of the transcriptome (~40K transcripts) simulated as differentially expressed, with 90% 

171 of the transcripts down-regulated, and (C) the ”up” group has the same number of transcripts changing as the 

172 “down” group, but 90% of the transcripts are up-regulated. The compositional normalization methods (solid 

173 lines) used a set of highly expressed spike-ins to illustrate, especially in the “down” and “up” groups, what 

174 happens to the performance of tools when there is a large shift in the global copy numbers per cell. Average 
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175 false discovery rate across the simulations within each group (n = 5) is shown on the x-axis, and average 

176 sensitivity is shown on the y-axis. The FDR range between 0 and 0.25 is shown. Note that edgeR+RUVg is not 

177 shown because it always had an FDR above 0.25. See S2 Fig for the full range.

178 In the second set of studies (“down” and “up”), many features were differentially expressed (20% of all 

179 transcripts), resulting in a large change in the composition, with the total RNA content decreased by ~33% or 

180 increased ~2.8-fold, respectively (S1 Table and S2 Table). Under such conditions, compositional normalization 

181 led to greatly improved performance for all tools compared to these tools using their current normalization 

182 methods (Fig 2B-C; S2 Fig, panels B-C). In contrast to current normalization methods and compositional 

183 normalization, the RUVg approach from RUVSeq resulted in the worst performance for edgeR and DESeq2 in 

184 all three studies (Fig 2), even though it used the same set of spike-ins as compositional normalization.

185 It is worth noting that, among the tools tested, sleuth and ALDEx2 performed the best when there were large 

186 compositional changes in the data (Fig 2B-C); ALDEx2 uses the IQLR transformation, which is a compositional 

187 approach designed to be robust in the presence of large changes to the composition. We also observed that for 

188 each transformation used by ALDEx2, it performed almost identically regardless of statistical test used (S3 Fig). 

189 Finally, sleuth-ALR had similar performance whether TPMs or estimated counts were modeled, or if the Wald 

190 test or the likelihood ratio test was used (S4 Fig).

191

192 Performance is not degraded by significant variation in individual spike-ins

193 A previous study reported that spike-ins had significant variation [27], raising a concern about their utility for 

194 normalization. In particular, they observed significant variation both between and within groups. In our simulated 

195 data, spike-ins were modeled similarly as other features, with over-dispersed variation, drawing from a negative 

196 binomial distribution. When estimating the percentage of transcript fragments mapping to spike-ins per sample, 

197 we also detected significant variation across samples (Fig 3). Importantly, in the “up” and “down” studies, there 

198 were systematic differences between groups, similar to what was observed in the MAQC-III study and in the 

199 zebrafish study previously analyzed [27]. These systematic differences between groups are expected given the 
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200 compositional nature of the data (see Note 3 in Supporting Information and Discussion). We further observed 

201 a large spectrum of estimated fold changes across individual spike-ins, with a systematic asymmetry in the 

202 distribution of fold changes in the experiments from the “up” and “down” studies (S5 Fig). Despite the significant 

203 variation of spike-ins, individually and collectively, spike-ins led to greatly improved performance when used for 

204 normalization (Fig 2). Consistent with previous work [33,34], our results suggest that the ratio information 

205 contained in spike-ins are collectively robust to variation, and that spike-ins can be used for sample-wise 

206 normalization.

207 Fig 3. Spike-ins have significant within-group and between-group variation, despite improved 

208 performance when used for normalization. Previous work expressed a concern about variation observed in 

209 spike-ins between samples. In each experiment, the 92 ERCC spike-ins from Mix 1 were simulated to have no 

210 change in copy numbers between the two conditions, as well as to have over-dispersed variation between 

211 samples, drawing from a negative binomial distribution. Plotted here is the percentage of all fragments that 

212 map to spike-ins, compared to the total number of fragments from the sample, in (A) the “small” study, with 

213 <2% change in the total RNA in each condition; (B) the “down” study, with a ~33% decrease in total RNA in 

214 the experimental condition; and (C) the “up” study, with a ~2.8-fold increase in total RNA in the experimental 

215 condition. The dotted line represents the expected percentage of fragments mapping to spike-ins in the control 

216 group. Across all experiments, there is significant within-group variation; in the “down” and “up” studies, there 

217 is also significant between-group variation. The latter is to be expected given the compositional nature of the 

218 data (see Note 3 in Supporting Information).

219

220 Sleuth-ALR has best self-consistency and negative control performance among compositional normalization 

221 methods

222 To confirm that compositional normalization performs similarly to current methods in the context of real data, we 

223 repeated the analyses using data from the original study on sleuth [13]. The first test was the “self-consistency” 

224 test using data from [35]. We reasoned that a tool should provide consistent results from an experiment, whether 
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225 a few samples per group are sequenced (in this case, n = 3 per group), or more samples per group are used (n 

226 = 7-8), as measured by the “true positive rate” (TPR) and “false discovery rate” (FDR). In this experiment, true 

227 positives were defined as hits identified in both the smaller and larger datasets, and false positives were defined 

228 as hits identified by the smaller dataset but not by the larger dataset. Among all tools using compositional 

229 normalization, sleuth and sleuth-ALR with Wald test showed the best balance between the TPR and FDR (Fig 

230 4; S6 Fig). Limma-voom and sleuth/sleuth-ALR with the likelihood ratio test had the lowest FDR at the cost of a 

231 lower TPR. DESeq2 and edgeR both had higher FDR, and on average slightly lower TPR compared to sleuth-

232 ALR. In contrast, the Welch and Wilcoxon statistics in ALDEx2 were unable to identify any hits in any of the 

233 “training” datasets, consistent with a recent benchmarking study [31] (data not shown), suggesting that they 

234 have greatly reduced power with less data (N = 3 samples per group). ALDEx2’s “overlap” statistic was able to 

235 identify hits, but this led to the worst consistency (i.e. highest false discovery rate) among the tools tested. Finally, 

236 while DESeq2 with RUVg had similar performance to DESeq2 with compositional normalization, edgeR with 

237 RUVg had among the worst consistency.

238 Fig 4. sleuth-ALR Wald has best balance of self-consistency between less and more data from same 

239 dataset. Depicted is the Bottomly et al self-consistency test at the isoform level, with (A) the false discovery rate 

240 at three specified levels, and (B) the relative sensitivity as compared to sleuth-ALR with the Wald test. This 

241 extends the test from the original sleuth paper [13]. A large dataset is split into a small ”training” dataset (3 

242 samples per group), and larger “validation” datasets. A “false discovery” in this test is defined as a hit identified 

243 in the “training” dataset but not in the larger “validation” dataset at the given FDR level, and a “true positive” in 

244 this test is a hit identified in both datasets at that FDR level. A tool performs well in this test if it can identify the 

245 same hits with less data, as well as control the “false discovery rate” at the specified FDR level. The full dataset 

246 was split twenty times. Note that the number above each tool in panel A is the number of “training” datasets out 

247 of twenty that identified at least one hit at the specified FDR level. See S6 Fig for the results at the FDR levels 

248 of 0.01 and 0.05.

249 Next, we tested the performance of compositional normalization on a negative control dataset, where there are 

250 no expected differentially expressed features. We repeated the null resampling experiment from the sleuth paper 
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251 [13] using the GEUVADIS Finnish women dataset (n = 58) [36]. Six samples were randomly selected (stratified 

252 by lab to minimize technical variation) and split into two groups, with the expectation of finding no hits. We found 

253 that sleuth-ALR with the likelihood ratio test performed similarly to sleuth and limma-voom (median number of 

254 false positives < 5) (Fig 5), and sleuth-ALR with the Wald test also showed good false positive control (median 

255 number of false positives = 10). In contrast, DESeq2 and edgeR with compositional normalization showed higher 

256 numbers of false positives (median of 71 and 66, respectively), and the “overlap” statistic for ALDEx2 showed 

257 the highest number of false positives (median of >5000 at the 0.1 FDR level).

258 Fig 5. sleuth-ALR and limma perform best on the GEUVADIS null dataset. Depicted is the null experiment 

259 at the isoform level (A). This also extends the test from the original sleuth paper [13]. The data were from the 

260 lymphoblastoid cells of 58 Finnish women, a relatively homogeneous population, taken from the GEUVADIS 

261 project [36]. Data from six women were resampled from the larger dataset, stratifying by lab to minimize technical 

262 variation, and then randomly split into two groups to simulate a “null experiment”. The number of false positives, 

263 defined as any hits, are reported here based on twenty rounds of resamplings. A tool performs well in this 

264 experiment by minimizing the number of hits reported. ALDEx2 used the IQLR transformation; all “C.N.” methods 

265 and sleuth-ALR used compositional normalization; all “RUVg” methods used RUVg for normalization.

266

267 Performance of compositional normalization on a dataset with a global decrease in transcription 

268 To compare different tools in a real dataset with a large compositional change, we used the “yeast starvation 

269 dataset” [26]. In this dataset, yeast cells were starved of a nitrogen source, inducing them to enter a reversible 

270 quiescent state without active cell division [37]. Absolute copy numbers per cell were estimated for each mRNA 

271 by being normalized to a collection of 49 mRNAs that were quantified using NanoString nCounter [38]. Our re-

272 analysis clearly shows a large global decrease in RNA content (Fig 6A), with ~95% of genes decreasing in copy 

273 numbers per cell in the starvation group versus control, confirming that the dataset has a large compositional 

274 change (Fig 6B). On the contrary, analyses using previously developed methods failed to identify this pattern of 
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275 changes in gene expression, only reporting equivalent numbers of hits up- and down-regulated transcripts 

276 (Table 1). 

277 Fig 6. A yeast starvation study shows a large global decrease in RNAs. (A) A violin plot showing the 

278 distribution of absolute counts in control yeast cells (pink) and yeast cells starved of their nitrogen source for 24 

279 hours (green). The data were from Marguerat et al [26]. The absolute counts were estimated by normalizing 

280 RNA-Seq data to a panel of reference genes whose copy numbers were quantified using the NanoString 

281 nCounter assay. As can be observed, there is a global decrease in the RNA present. (B) a comparison of log2 

282 fold changes calculated using a standard RNA-Seq pipeline (the example shown here in gray is kallisto + sleuth), 

283 and the log2 fold changes calculated using compositional normalization (sleuth-ALR, shown in purple) or directly 

284 from the estimated absolute counts (in blue). As shown, the vast majority of genes were observed to be 

285 downregulated when estimating from the absolute counts. The standard RNA-Seq approach misses this global 

286 shift, but compositional normalization is able to identify it.

287 Next, we examined the importance of using negative control features with compositional normalization. We first 

288 analyzed the data using the gene with the most constant proportion across all samples (as measured by 

289 coefficient of variation), rqc1 (Pombase: SPAC1142.01). In this context, compositional normalization missed the 

290 global pattern of down-regulation; instead, it reported a similar numbers of hits compared to other tools using 

291 current normalization methods, both up-regulated and down-regulated (Table 1). We then selected a gene with 

292 approximately constant expression (opt3, Pombase: SPCC1840.12) as the denominator for compositional 

293 normalization. Compared to current methods, compositional normalization using a validated reference gene was 

294 able to identify the global decrease in transcription observed by previous analyses of the data [4,26] (Table 1). 

295 All tools tested (ALDEx2, DESeq2, edgeR, limma-voom, and sleuth-ALR) were able to identify a similar number 

296 of hits when using compositional normalization. In contrast, while RUVg was also given the same validated 

297 reference gene, surprisingly it had greatly reduced power and was unable to capture the global pattern of down-

298 regulation.

299
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Tool Up-Regulated 
Genes

Down-Regulated 
Genes

ALDEx2 ALR overlap 719 4496
ALDEx2 IQLR overlap 2716 2677

DESeq2 2424 2415
DESeq2 + C.N. 632 4344

DESeq2 + RUVg 698 1001
edgeR 2621 2536

edgeR + C.N. 582 4290
edgeR + RUVg 109 90

limma 2603 2527
limma + C.N. 573 4332

sleuth 2529 2554
sleuth-ALR (trend) 2692 2225

sleuth-ALR 614 4356
Absolute Counts 522 5751

300 Table 1. Only compositional normalization (C.N.) accurately reflects global decrease in the yeast 

301 starvation study. This table shows the number of hits identified by each tool using default settings and 

302 kallisto-calculated estimated counts and abundances. “Sleuth-ALR trend” used rqc1 (Pombase: 

303 SPAC1142.01) as a denominator; this gene had the most consistent abundance (TPM value) across all 

304 samples. The compositional normalization methods (all tools in red: “ALDEx2 ALR overlap”; “sleuth-ALR”; all 

305 “+C.N.” tools) used opt3 (Pombase: SPCC1840.12) as a denominator; this gene was considered a “validated 

306 reference gene”. “RUVg” for edgeR and DESeq2 (in blue) also used opt3 as a negative control gene. Only 

307 compositional normalization methods, using opt3, were able to accurately reflect the severe global decrease 

308 observed in the data, as shown by the number of genes showing down-regulation of the absolute counts. Note 

309 that ALDEx2 Welch and Wilcoxon statistics yielded <5 significant hits.

310

311 Discussion

312 Compositional normalization performed similarly to current normalization methods when there was only a small 

313 change to total RNA (Fig 2A; Fig 4; Fig 5). This similarity is expected because, in this scenario, it is valid to 

314 assume that most features are not changing. However, when there was a large change in global RNA, 
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315 compositional normalization using negative control features (spike-ins) had much better performance compared 

316 to the current normalization methods, for both simulated data (Fig 2B-2C) and real data (Table 1). In this case, 

317 the assumption held by the current methods is violated, and this is likely what greatly reduced their performance. 

318 Further, although the IQLR transformation in ALDEx2 was designed to be robust to large changes in global RNA, 

319 it only modestly improved performance. This indicates that at least some of the features it selected and assumed 

320 to be unchanging were indeed changing, in both the simulated data and the real data.

321 The worse performance of current normalization methods is likely related to how fold changes behave in the 

322 absolute case versus the relative case. Current normalization methods assume that most features are not 

323 changing; one could equivalently assume that the total RNA per cell is unchanged [23]. Thus, if the total RNA 

324 content changes, current methods will anchor the data on whatever this global change is. This results in a shift 

325 in the observed distribution of fold changes (see Supplementary Figure S16 of [4]). Extreme changes will still be 

326 observed to have the same direction, but there will be a group of features that are changing less dramatically 

327 than the global change that will be observed to have the wrong sign, and many unchanged features will appear 

328 to be changing.

329 Interestingly, the choice of normalization method had a much greater impact on performance than the choice of 

330 differential analysis tool, validating a finding from an older study [14]. This was true both for the simulated data 

331 (Fig 2B-2C) and for the yeast dataset (Table 1). In both cases, compositional normalization clearly outperformed 

332 current methods when analyzing a dataset with substantial changes to the total RNA content, whether simulated 

333 or real. However, this was only true when negative control features were used (Table 1). This indicates that the 

334 choice of tool is much less important than the choice of normalization and the availability of negative control 

335 features (spike-ins, validated reference gene) to properly anchor the data. 

336 Surprisingly, RUVg had poor performance in both the simulated data and the experimental yeast dataset. It is 

337 unclear why this occurred, other than the likely possibility that it treats the data as count data rather than 

338 compositional data. More work would need to be done to see if RUVg could be modified to more accurately 

339 capture the global trend in the data from negative control features.
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340 In our simulations, the total RNA content was either decreased by 33% or tripled, respectively. The overall 

341 change in the “up” study was less extreme than what was observed after c-Myc overexpression [24,39]. In that 

342 context, the researchers found a general transcriptional activation that was not captured by the traditional 

343 analysis of the RNA-Seq data, and required cell number normalization using spike-ins to see the overall trend 

344 of increasing gene expression; the total RNA content increase observed by RNA-Seq was ~5.5-fold (see Table 

345 S2 of [24]). The overall change in the “down” group was less extreme than that observed after the Marguerat et 

346 al dataset, which observed an 88% decrease total RNA content when using normalized RNA-Seq data. How 

347 often large shifts occur in real datasets is unclear because of how infrequently spike-ins or validated reference 

348 genes are used when generating data. Future work should determine more carefully how drastic composition 

349 changes need to be before performance starts to degrade for methods which assume that most features are not 

350 changing.

351 Results from Bottomly et al. self-consistency test and GEUVADIS null experiment

352 Sleuth-ALR had the best self-consistency (Fig 5), and sleuth-ALR and limma had the best performance in the 

353 negative control dataset (Fig 6). ALDEx2 was unable to identify any hits using three samples per group with the 

354 standard statistical methods (Wilcoxon and Welch), and its “overlap” statistic showed a very high FDR, indicating 

355 that its results were inconsistent between the “training” and larger “validation” datasets. This indicates that 

356 ALDEx2 may not perform well when there are few replicates per group. While this manuscript was in preparation, 

357 a recent benchmarking study came to the same conclusion [31]. This behavior is likely due to the fact that the 

358 algorithm of ALDEx2 does not include any shrinkage of the variance. Variance shrinkage has been demonstrated 

359 to improve performance when there are few replicates [17,40,41]. Interestingly, though, all three statistics used 

360 by ALDEx2 had similar performance on the simulated data (S3 Fig), and the “overlap” statistic identified a similar 

361 set of hits in the real dataset as other compositional normalization methods (Table 1), suggesting that the 

362 “overlap” statistic may have utility in small datasets despite poor self-consistency or poor control of false positives 

363 in a negative control dataset. Future work could explore how to improve ALDEx2 performance for smaller 

364 datasets.
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365

366 The lack of real datasets with verified global changes

367 It was difficult to identify an example of a real dataset, with clear-cut evidence of substantial changes to the total 

368 RNA content, that was also amenable to re-analysis using our pipeline. We were unable to re-analyze the 

369 previous data measuring the impact of c-Myc overexpression [24] because the RNA-Seq dataset did not have 

370 technical or biological replicates. We were also unable to re-analyze the selective growth assay used in the 

371 ALDEx2 paper [3] because the raw data, which is necessary for our pipeline, was not publicly available. Other 

372 datasets have used spike-ins, but had no other confirmatory data on the absolute copy numbers to confirm if the 

373 spike-ins accurately captured the global trend or not. This dearth of bulk RNA-Seq datasets with verified global 

374 changes speaks to how much the problem of neglecting to treat bulk RNA-Seq as compositional data has gone 

375 unrecognized in the community.

376

377 How to choose a denominator for compositional normalization and interpret the results

378 When using compositional normalization, regardless of which denominator is chosen, the interpretation of 

379 differential expression and fold-changes is "the change of feature X with respect to the denominator". Although 

380 all transformations are permutation invariant and therefore any chosen denominator will produce mathematically 

381 equivalent results [29], the choice of denominator has important implications for the interpretation of the results 

382 and for the downstream validation experiments.

383 If an experimenter has information about absolute copy numbers per cell in their experiment, they can readily 

384 use that information with compositional normalization. For example, if spike-ins are included proportional to the 

385 number of cells, as recommended in the c-Myc study [24], those spike-ins can be used as the denominator. If 

386 one or more reference genes are validated, as was done with the Yeast Starvation study [26], then a reference 

387 gene known to be approximately constant under the experimental conditions can be used. In principle, if qPCR 

388 is used to validate differential analysis results in this scenario, a predicted reference gene after using spike-ins 
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389 or the validated reference gene used for compositional normalization would be the best choice for a reference 

390 gene.

391 What about experiments that do not have spike-ins or validated reference genes? Spike-ins have only slowly 

392 been adopted as a part of *Seq protocols [28]. It has further been extensively documented that reference genes 

393 are frequently not properly validated [42], and that expression of commonly used reference genes could change 

394 dramatically under certain circumstances [43,44]. There have been several techniques to identify reference 

395 genes using RNA-Seq data [45-47]. Importantly, these techniques all find a feature that has an approximately 

396 constant proportion throughout all of the samples. However, researchers are usually attempting to identify a 

397 reference gene with approximately constant absolute copy numbers per cell throughout. In order to draw this 

398 conclusion, the techniques must make the same assumption that standard RNA-Seq analysis tools make, i.e. 

399 that the global RNA content remains constant in all samples, or that only a few features are differentially 

400 expressed. If many features are changes, features identified by these tools will only reflect the global change 

401 (up or down), rather than being approximately constant in absolute copy numbers per cell.

402 None of the compositional normalization methods solve this problem (for an example, see sleuth-ALR with the 

403 “trend” feature compared to the other methods in Table 1), because no tool can in principle solve this problem 

404 without access to external information. As described in a recent review article [5], no approach can formally 

405 recapitulate the absolute data, and only approaches that are using truly constant features can adequately anchor 

406 the data to accurately estimate the true changes in the absolute data. In most datasets without spike-ins or 

407 validated reference genes, it is unknown if there is a significant change in the total RNA per cell. Thus, all that 

408 is left is how one feature behaves relative to another feature.

409 When one feature is used, there is a clear advantage to compositional normalization versus current methods 

410 because there is a clear interpretation of the results (i.e. how features are behaving relative to this feature), and 

411 because there would be a clear choice of reference gene for any qPCR validation downstream (for example, 

412 spp1 would be used in the yeast starvation study). Any other choice for qPCR reference gene would likely yield 

413 discordant results. Importantly, though, identifying a feature with approximately constant proportion, in the 
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414 absence of information about the overall changes in RNA content, can still help experimenters identify important 

415 biology. This is analogous to the approach taken by Gene Set Enrichment Analysis (GSEA) [48]. Its “competitive" 

416 null hypothesis leads to the identification of gene sets or pathways that are behaving differently with respect to 

417 the general trend of expression changes across the whole genome [49]. GSEA’s approach has led to uncovering 

418 interesting biology in the past, as demonstrated by how frequently it has been used and cited.

419 In the context of RNA-Seq differential analysis, most datasets will be restricted to this option, and thus 

420 experiments will be forced to sacrifice knowledge about the absolute copy numbers for an interpretation of the 

421 data anchored to whatever the global change is. This should alarm researchers conducting these experiments 

422 to recognize the limitations of the current methodologies. This should also push the community to call for 

423 technical innovation and standardization that will make more widespread both the use of spike-ins for 

424 normalization, and the validation of reference genes specific to the experiment at hand. Furthermore, this issue 

425 regarding the compositional nature of the data is not limited to RNA-Seq, but to many if not all high-throughput 

426 (“omics”) techniques (see Note 4 in Supporting Information).

427

428 Concerns about the utility of spike-ins

429 The authors of RUVg [27] made two observations that raised concerns about the utility of spike-ins. However, 

430 when interpreting the spike-in abundances through the lens of compositional data analysis, the observed 

431 behavior of spike-ins is precisely what would be expected (See Note 3 in Supporting Information). In particular, 

432 systematic variation between conditions in the spike-in abundances is expected if there is a global change (Fig 

433 3; S5 Fig; S4 Table). This was observed in the yeast dataset, with the validated reference gene have a greatly 

434 increased abundance in the nitrogen starved cells versus control cells.

435 However, their other observation raises valid concerns about the current protocol for using spike-ins. They 

436 observed a global discrepancy between spike-ins and the rest of the genes when comparing two control libraries 

437 to each other (see Figure 4d of [27]). This could be partially explained by dropout effects, but is most likely due 

438 to differences in non-poly-adenylated RNA expression (especially rRNA) between the samples. The way that 
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439 the spike-ins were added in their experiment (adding an equal amount to approximately equal aliquots of the 

440 total RNA) causes the spike-ins to also be subject to compositional changes (S5 Table). For bulk RNA-Seq 

441 experiments, the standard protocol adds spike-ins to equal amounts of RNA after isolation and selection (poly-

442 A selection or rRNA-depletion), but if there are changes in the excluded RNAs, this protocol impedes the ability 

443 of the spike-ins to accurately capture the true fold changes of the RNAs under consideration. In contrast, the 

444 approach advocated by Lovén et al [24] was to add spike-ins before RNA isolation, in proportion to the number 

445 of cells. With this approach, the spike-ins can, in principle, accurately capture the behavior of the genes, even 

446 when there are non-poly-adenylated RNA changes (S6 Table). There are challenges with using spike-ins in 

447 complex tissues [23], and there may be technical biases that affect spike-ins differently from endogenous RNAs, 

448 but further work must clarify this. What is certain is that future work with spike-ins absolutely must keep in mind 

449 the compositional nature of the data being generated, and protocols for bulk RNA-Seq may need to be revised 

450 to improve the chance of spike-ins accurately anchoring the data to copy numbers.

451

452 Conclusions

453 In summary, simulating RNA-Seq data using a compositional approach more closely aligns with the kind of data 

454 being generated in RNA-Seq. Compositional normalization using negative control features yields a significant 

455 improvement over previous methods, in that it performs best in experimental contexts where the composition 

456 changes substantially. Importantly, this method can still be safely used in contexts where the compositional 

457 changes are unknown. There is much potential to extend the principles of compositional data analysis to other 

458 “omics” approaches, since they all generate compositional data; one intriguing possibility is a normalization free 

459 method that examines “differential proportionality” [50]. However, our results from simulation and from real 

460 datasets demonstrate that, without access to spike-ins or to validated reference features, a researcher is limited 

461 in what conclusions can be drawn from *Seq data because of the compositional nature of the data. This work 

462 also makes a strong case for there to be more effort to improve and standardize the use of spike-in controls and 

463 validated reference features in all “omics” experiments.

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/564955doi: bioRxiv preprint first posted online Mar. 2, 2019; 

http://dx.doi.org/10.1101/564955
http://creativecommons.org/licenses/by/4.0/


464

465 Materials and methods

466 absSimSeq approach to simulating RNA-Seq data

467 See Fig 1 for a summary diagram of our protocol for absSimSeq. When generating RNA-Seq data, the key 

468 experimental step which requires a compositional approach is when the actual changes in the RNA content are 

469 sampled using an equal but arbitrary amount of RNA by the library preparation process, resulting in a dataset of 

470 proportions. To simulate this shift from count data to compositional data, the absSimSeq protocol starts with a 

471 set of transcripts and their TPMs, either defined by the user or estimated from real data. It then conceptually 

472 shifts from considering transcripts per million (a proportion) to considering copy numbers per cell, i.e. the number 

473 of transcripts present in each cell (the absolute count unit of interest). It then simulates the fold changes expected 

474 to occur between groups directly on the copy numbers, which may or may not result in a substantial change in 

475 the total RNA per cell. The next key step is then converting these new expected copy numbers back to TPMs to 

476 represent the expected proportion of each transcript that would be present in an equal aliquot taken from each 

477 group. These new TPMs are then converted to expected counts per transcript based on their lengths and the 

478 desired library sequencing depth, and those expected counts, along with user-defined or estimated parameters 

479 for variance within each group, are then submitted to the R package polyester to simulate an RNA-Seq 

480 experiment.

481 AbsSimSeq also has the option to add spike-ins to the simulated experiment. In our studies, the ERCC ExFold 

482 Spike-in mixes are used to define which sequences are included and in what proportions. The user can define 

483 what percentage of the transcripts should be coming from spike-ins and which mix to use.

484 Simulation of copy numbers for this study

485 To model a simulated dataset after real data, we took an approach modified from Patro et al [10] and Pimentel 

486 et al [13]. To estimate the mean and variance for the control group for our simulation, we wished to use a 

487 population without expected biological changes within the group. We thus used as a proxy the largest 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/564955doi: bioRxiv preprint first posted online Mar. 2, 2019; 

http://dx.doi.org/10.1101/564955
http://creativecommons.org/licenses/by/4.0/


488 homogeneous population in the GEUVADIS data set, a set of 58 lymphoblastoid cell lines taken from Finnish 

489 women. We estimated transcript abundances using kallisto and human Gencode v. 25 transcripts (Ensembl v. 

490 87), and then estimated negative binomial parameters (the Cox-Reid dispersion parameter) using DESeq2. We 

491 next took the mean TPMs from this dataset, for input into absSimSeq.

492 Three simulation studies were performed, with five simulation experiments in each study. The “small” study was 

493 intended to simulate experiments where there was no substantial change in the copy numbers per cell per group. 

494 The “down” and “up” studies were designed to simulate experiments where there was a large compositional 

495 shift, with the total copy numbers either decreasing or increasing.

496 To simulate differential expression, we first applied a filter where the transcript had to have a TPM value of at 

497 least 1. We then randomly and independently assigned each filtered transcript as either not changing (i.e. fold-

498 change of 1) or differentially expressed, using a Bernoulli trial with varying probability of success (5% of all 

499 transcripts for the “small” study; 20% for the “down” and “up” studies). For each differentially expressed 

500 transcript, a truncated normal distribution was used to simulate the fold change, with a mean of 2-fold, a standard 

501 deviation of 2, and a floor of 1.5-fold. A Bernoulli trial was then used to choose either up-regulation or down-

502 regulation with varying probability of success (70% down for the “small” study, chosen to produce roughly equal 

503 total RNA in each group; 90% down for the “down” study; 90% up for the “up” study).

504 The estimated null distribution and the simulated fold changes thus defined the mean copy numbers per cell for 

505 the control group and the experimental group, respectively. These copy numbers were then converted back to 

506 TPM. Because TPM is proportional to the estimated counts divided by effective length [13], the TPMs were 

507 multiplied by the effective lengths and then normalized by the sum to get the expected proportion of reads per 

508 transcript per condition. This was then multiplied by a library size of 30 million reads to get the expected reads 

509 per transcript per condition. This matrix of expected reads and the Cox-Reid dispersion parameters estimated 

510 from the GEUVADIS dataset were used as input for the polyester package [32] to simulate 5 samples in each 

511 group, with a random variation of about 2-3% introduced into the exact sequencing depth used. The dispersion 
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512 parameters for the spike-ins was set to the median dispersion of all transcript that had a mean TPM within 5% 

513 of the TPM for the spike-in.

514 S1 Table summarizes the simulation parameters and the number of transcripts that are differentially expressed, 

515 and S2 Table shows the average global copy numbers per cell per condition for each of the fifteen runs. Note 

516 that the experimental group in the “up” study had a ~2.8-fold increase, on average, in the total RNA copy 

517 numbers per cell. This is less than the 5.5-fold increase in total mRNA observed after over-expressing the 

518 oncogene c-Myc (See the normalized data in Table S2 in Lovén et al., 2012)). The experimental group in the 

519 “down” study had a ~33% decrease in the total RNA copy numbers per cell. This is less than the decrease in 

520 total RNA observed in the yeast dataset (See Supplementary Table S2 from [26]).

521

522 Implementing a compositional approach for differential analysis tools: the Log-ratio transformation

523 To allow tools to use negative control features, like spike-ins or validated reference genes, in a compositional 

524 manner, we present a method that uses what is called the “additive log-ratio” (ALR) transformation. This was 

525 proposed by John Aitchison to address problems analyzing compositional data. He demonstrated that any 

526 meaningful function of compositions must use ratios [29]. Further, he proposed the use of log-ratios to avoid the 

527 statistical difficulty arising from using raw ratios. ALR is the simplest of the transformations proposed by Aitchison 

528 and others in the field of Compositional Data Analysis. In ALR, if there are D components in a composition, then 

529 the D-th component is used as the denominator for all of the other D-1 components.

530 Formally, if  is a set of  transcripts, then  defines the relative abundance of the -th transcript in T D x = {xt}t ⊂ T t

531 the composition, with , where  is some arbitrary constant (e.g. 1 million for TPMs). These relative 
D
∑

t = 1
x𝑡 = C C

532 abundances are proportional to the units commonly used in RNA-Seq (RPKM, TPM, etc) [18]. The ALR 

533 transformation takes a component to be used as the denominator, analogous to the "reference gene" used in 

534 qPCR experiments (see "How to interpret the results" below). This forms a new set of  transformed log-D ‒ 1

535 ratios,
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536 log2
x1

xD
,log2

x2

xD
,…,log2

xD ‒ 1

xD

537

538 that can then be used for downstream statistical analyses. If one wishes to use a collection of features (e.g. a 

539 panel of validated reference genes; a pool of spike-ins), then the geometric mean, , of those multiple g(x)

540 features can be used on all  components:D

541 log2
x1

g(x),log2
x2

g(x),…,log2
xD

g(x)

542 If this is a subset of features, this is called the “multi-additive log-ratio” (malr) [31]. If the geometric mean of all 

543 of the features are used, this is the "centered log-ratio" (CLR) transformation introduced by Aitchison and is used 

544 in the default mode of ALDEx2 [3]. These are all options available for use in sleuth-ALR.

545 Log-ratio transformations are undefined if either the numerator or denominator is zero. Sleuth-ALR has 

546 implemented an imputation procedure for handling zeros that minimizes any distortions on the dependencies 

547 within the composition. See Note 5 of Supporting Information for more details. 

548

549 How to choose a denominator for compositional normalization and how to interpret the results

550 The proposed interpretation of the results generated by sleuth-ALR is simple: whatever the denominator is, the 

551 results show how all the other features change relative to that feature or features. For example, if GAPDH is 

552 selected as the reference feature, the results show how every other gene is changing relative to GAPDH.

553 Thus, if there are one or more features which are known a priori to be negative controls—a validated reference 

554 gene, a pool of spike-ins—these are natural choices for use as a denominator in sleuth-ALR, either using a 

555 single feature, or using the geometric mean of multiple features. Since the copy numbers of these features are 

556 expected to be constant between samples, there is now an anchor for the relative proportions between samples. 
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557 If negative controls are unavailable, we propose identifying one or more features that have the most consistent 

558 proportion across all samples. For sleuth-ALR, we chose the coefficient of variation as the metric to measure 

559 consistency in proportion. Without external information, though, it is unknown if this “consistent feature” is indeed 

560 also consistent in copy numbers. If there is a global change in RNA content, this feature would represent the 

561 average change. All current normalization methods assume there is no such change, and so make corrections 

562 to the data to remove any perceived change; they are therefore mathematically equivalent to this proposed 

563 approach (see [5] for a full mathematical proof). However, this approach has the advantage of making explicit 

564 the implicit and necessary interpretation (how are features changing relative to the selected reference 

565 feature(s)?). It also provides a feature or set of features that can be used as a reference gene for follow-up 

566 validation.

567

568 How sleuth-ALR fits into the current sleuth pipeline

569 See S1 Fig for the pipeline and how it compares to the current pipeline. In the current sleuth pipeline, estimated 

570 counts of transcripts from kallisto or salmon are first normalized by the DESeq2 median-of-ratios method [16], 

571 and then transformed on the natural log scale with a 0.5-fragment offset to prevent taking the logarithm of zero 

572 and to reduce the variability of low-abundance transcripts [13,17]. With the additive log-ratio transformation, the 

573 size factor is replaced by the estimated expression of the chosen denominator, and the offset is replaced by the 

574 imputation procedure. Once a denominator is chosen, zero values are imputed, the ratios between each feature 

575 and the denominator is calculated, and the data is then transformed on a log scale, which can then be used 

576 directly in the sleuth model. Our implementation simply replaces the current normalization and transformation 

577 functions with the function provided by the sleuth-ALR package. For ease of interpretation, the modeling can 

578 be done on TPMs directly (using the which_var argument for sleuth_fit), though the previous choice of modeling 

579 the estimated counts can also be used.

580

581 Compositional approach for the other tools
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582 ALDEx2 has an explicitly compositional approach, and it solves the imputation problem by simulating bootstraps 

583 on the data using the Dirichlet-multinomial distribution, which will never yield zero values. It then calculates 

584 estimated statistics by examining the differences between groups within each bootstrap. Its default option is to 

585 use the CLR transformation, but it has several options for other choices of denominator. A recent paper 

586 examined ALDEx2’s performance using these different options [31]; and its results suggested that the IQLR 

587 (“interquartile range log-ratio transformation”) provided the best balance of performance across real and 

588 simulated datasets, with respect to accuracy and computer time. This transformation uses the subset of all 

589 features that, after using the CLR transformation, have a sample-wise variance in the interquartile range. 

590 Theoretically, this transformation is robust to many features changing either up or down. This and the CLR 

591 transformation were used as the normalization methods tested in our study. It can also take a predefined subset 

592 of features and uses the geometric mean of those features within each sample; this was the approach taken 

593 when utilizing spike-ins for compositional normalization.

594 DESeq2 uses the median-of-ratios method [16]. If one wishes to calculate a single size factor to normalize each 

595 sample, it is calculated by the estimateSizeFactors function. This function has a controlGenes option, which 

596 allows the user to define a set of features that are expected to have constant expression across all samples. A 

597 recent review demonstrated that the DESeq2 size factor is mathematically equivalent to the compositional log-

598 ratio proposed by Aitchison [5]. If a dataset has known negative control features (e.g. spike-ins), these can be 

599 used to calculate a DESeq2 size factor similar to what is calculated by sleuth-ALR or ALDEx2. For DESeq2, 

600 edgeR, and limma, we calculated DESeq2 size factors using the estimateSizeFactors function with designated 

601 negative control features (spike-ins for the simulated data; a validated reference gene for the yeast starvation 

602 dataset).

603

604 Pipeline to analyze simulations

605 The simulated data (FASTA files) were analyzed by kallisto for downstream use by all of the tools tested. Spike-

606 ins from ERCC Spike-in Mix 1 were included for the simulations (2% of the total RNA), and so were used as the 
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607 set of features known to have constant expression between samples. Previous studies observed that only highly 

608 expressed spike-ins had consistent ratios across samples [33,34]. Thus, we selected spike-ins that had an 

609 average log2 concentration of at least 3 between both mixes. This filter results in a set of 47 spike-ins that were 

610 used for compositional normalization and for RUVg from RUVSeq. RUVg was used with DESeq2 and edgeR 

611 to test its ability to use spike-in information using its own approach.

612 Filtering is an important issue for managing the accuracy of estimation. Different pipelines make different 

613 decisions about what features to filter. To allow the tools to be compared fairly, the same set of filtered transcripts 

614 were tested in all tools, defined by those transcripts that passed the standard sleuth filter of having at least 5 

615 estimated counts in at least half of the samples. DESeq2’s default functionality to use independent filtering and 

616 Cooks’ outlier filtering did not significantly impact its performance on the simulated data (data not shown), so 

617 these were left on.

618

619 Experiments from the original sleuth paper

620 To see if compositional normalization would produce similar results with fewer replicates, we repeated the self-

621 consistency experiment as described in the sleuth paper [13]. Briefly, we used the Bottomly et al dataset [35], 

622 randomly split the 21 samples into a small training dataset consisting of 3 samples in each condition, and a large 

623 validation dataset consisting of remaining samples. The “truth” set of features was defined by the hits identified 

624 in the larger validation dataset. This was repeated 20 times. At each of three FDR levels (0.01, 0.05, 0.1), we 

625 compared the smaller dataset against the larger dataset, and plotted the estimated FDR and sensitivity relative 

626 to sleuth-ALR. Since spike-ins were not used in this experiment, and it is unknown if there was any significant 

627 change in the total RNA between the groups, the denominator for compositional normalization was chosen 

628 based on which feature had the lowest coefficient of variation across the whole dataset. Zfp106-201 

629 (ENSMUST00000055241.12 in Ensembl v. 87) was used as the denominator for sleuth-ALR in all datasets. 

630 This was also used for RUVg. The IQLR transformation was used for ALDEx2, and otherwise the current 

631 normalization methods from the original sleuth paper were used.
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632 To test the performance of compositional normalization when analyzing a negative control dataset, we also 

633 repeated the null resampling experiment as described in the sleuth paper [13]. Briefly, we used the Finnish 

634 samples from the GEUVADIS dataset, and randomly subsampled the data into twenty null experiments with 3 

635 samples in two groups. This subsampling was stratified by lab to minimize technical variability that may have 

636 occurred between labs. Because of the homogeneous population and minimized technical variation, the 

637 expectation is that there would be zero differentially expressed features. The null experiments were analyzed, 

638 and the number of false positives was plotted at the transcript-level and gene-level. The same denominator was 

639 used for compositional normalization in sleuth-ALR across all twenty of the null experiments: SRSF4-201 

640 (ENST00000373795.6) for the transcript-level and SRSF4 (ENSG00000116350) for the gene-level. This 

641 transcript and gene were determined to have the respective lowest coefficient of variation across all of the 

642 samples used for this experiment.

643

644 Pipeline to analyze yeast dataset

645 To test the different tools and normalization approaches on a real dataset, we chose a well-characterized “yeast 

646 starvation” dataset [26]. In this dataset, yeast were cultured in two conditions: (1) freely proliferating using 

647 Edinburgh Minimal Medium; (2) the same medium without a nitrogen source (NH4Cl), resulting in the cells 

648 reversibly arresting into a quiescent state. Two samples from each condition were processed for poly-A selected 

649 RNA-Seq or for total RNA (no selection or depletion step). A collection of 49 mRNAs were selected for absolute 

650 quantification using the Nanostring nCounter, which uses a fluorescent tagging protocol to digitally count mRNA 

651 molecules without the need for RNA purification. The results were normalized to external RNA controls to 

652 estimate copy numbers per cell of each mRNA. We used the absolute counts summarized in Supplementary 

653 Table S2 of [26] as a basis for selecting opt3 (Pombase: SPCC1840.12.1) as the gene with the smallest 

654 coefficient of variation for estimated absolute counts among all samples. This can be considered a validated 

655 reference gene. Thus, it was used with methods utilizing negative control features (sleuth-ALR, RUVg, and 

656 other tools using DESeq2’s estimateSizeFactors with controlGenes argument) to normalize the data. Sleuth-
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657 ALR was also tested using rqc1 (Pombase: SPAC1142.01.1), which was selected as having the smallest 

658 coefficient of variation for raw abundances (TPM values) across all the samples. This gene represents the 

659 “average global trend” or “average global change” in the data, as discussed in “How to choose a denominator” 

660 section above.

661 To re-analyze the RNA-Seq data, we downloaded the Schizosaccharomyces pombe genome cDNA FASTA file 

662 from ftp.ensemblgenomes.org (Fungi release 37). This was used as the reference for generating the kallisto 

663 index. Each tool was then run using default settings.

664

665 Declarations

666 Availability of data and code

667 The yeast starvation dataset was taken from Marguerat et al [26] from ArrayExpress at accession E-MTAB-

668 1154, and the absolute counts were taken from Supplementary Table S2 from [26]. The GEUVADIS Finnish 

669 data can be found at ArrayExpress using accession E-GEUV-1, using the samples with the population code 

670 “FIN” and sex “female”. The Bottomly et al data [35] can be found on the Sequence Read Archive (SRA) using 

671 the accession SRP004777. Human annotations were taken from Gencode v. 25 and Ensembl v. 87, mouse 

672 annotations were taken from Gencode v. M12 and Ensembl v. 87, and yeast annotations were taken from 

673 Ensembl Genomes Fungi release 37. The code and vignette for absSimSeq can be found on GitHub at 

674 www.github.com/warrenmcg/absSimSeq, the code and vignette for using sleuth-ALR can be found at 

675 www.github.com/warrenmcg/sleuth-ALR, and the full code to reproduce the analyses in this paper can be found 

676 at www.github.com/warrenmcg/sleuthALR_paper_analysis. Here are the versions of each of the software used: 

677 kallisto v. 0.44.0, limma v. 3.34.9, edgeR v. 3.20.9, RUVSeq 1.12.0, and DESeq2 1.18.1; the version of 

678 polyester used is a forked branch that modified version 1.14.1 with significant speed improvements (found here: 

679 www.github.com/warrenmcg/polyester); the version of sleuth used is a forked branch that modified version 

680 0.29.0 with speed improvements and modifications to allow for sleuth-ALR (found here: 

681 www.github.com/warrenmcg/sleuth/tree/speedy_fit); the version of ALDEx2 used is a forked branch that 
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682 modified version 1.10.0 to make some speed improvements and to fix a bug that prevented getting effects if the 

683 ALR transformation with one feature was used (found here: www.github.com/warrenmcg/ALDEx2). All R code 

684 was run using R version 3.4.4, and the full pipeline was run using snakemake.
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835 Supplemental Information Captions

836 Supplemental Notes

837 Supporting Information. Contains Supplementary Notes 1-5. Note 1 argues that *Seq datasets are 

838 compositional datasets. Note 2 discusses the three requirements of techniques for analyzing compositional 

839 data. Note 3 discusses RUVg and the Compositional Behavior of Spike-ins. Note 4 discusses extending the 

840 compositional approach to other high-throughput methods. Note 5 discusses how sleuth-ALR handles zeros.

841 Supplemental Figure Legends

842 S1 Fig. The sleuth-ALR approach for compositional normalization. Under the sleuth model, an 

843 observation is modeled as having some error associated with it that is due to the inferential procedure. The 

844 true value is modeled as a linear combination of covariates and biological noise. In the original sleuth model 

845 (shown in the bottom left), the estimate for the noisy observation was the estimated counts for feature i in 

846 sample j, normalized by the DESeq2 size factor. This and other current normalization methods attempt to 

847 translate purely relative information to inferences about absolute changes, but only by assuming no change to 

848 the total RNA content. The proposed sleuth-ALR estimate (shown on the bottom right) is an example of how to 

849 use compositional normalization. It first focuses on abundances (TPMs) rather than estimated counts, and 

850 second normalizes the abundances by a “reference feature”. This avoids having to assume only a few features 

851 change, but at the cost of not translating to inferences about absolute changes unless the chosen feature is a 

852 validated reference gene or spike-in.

853 S2 Fig. A full-range view of the simulation results, accompanying Fig 2. This shows the full range of FDR 

854 and sensitivity for the three simulation studies: (A) “small” (5% DE; roughly equal copy numbers in each group); 

855 (B) “down” (20% DE; ~33% decrease in copy numbers in the experimental group); and (C) “up” (20% DE; ~2.8-

856 fold increase in copy numbers in the experimental group). This shows that (1) compositional normalization has 

857 similar or superior performance throughout the full range of sensitivities and FDR, and (2) RUVg has poor 

858 performance, especially when combined with edgeR.
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859 S3 Fig. ALDEx2 performs similarly in simulations regardless of which statistical method is used. With 

860 the same simulation studies described in Fig 2, the performance of ALDEx2 was compared using the Welch t-

861 test (the recommended statistic by the developers), the non-parametric Wilcoxon test, or the reported “overlap” 

862 statistic. The overlap statistic is the posterior probability of the effect size being 0 or the opposite direction as 

863 what is reported, given the Dirichlet bootstrap samples observed. These three statistics perform approximately 

864 similarly no matter which transformation is used: CLR, IQLR, or “denom” (aka ALR, the same as used in sleuth-

865 ALR). This remains true across all three studies: (A) “small” (5% DE; roughly equal copy numbers in each group); 

866 (B) “down” (20% DE; 33% decrease in copy numbers in the experimental group); and (C) “up” (20% DE; 2.8-

867 fold increase in copy numbers in the experimental group). This is important because the Welch and Wilcoxon 

868 statistics were the ones recommended by the developers but have poor performance when there are few 

869 samples.

870 S4 Fig. sleuth and sleuth-ALR perform similarly regardless of which statistical method or data unit is 

871 used. With the same simulation studies described in Fig 2, the performance of sleuth and sleuth-ALR was 

872 compared when using the Wald test or the likelihood ratio test (LRT), as well as when using TPMs or 

873 estimated counts for modeling. All combinations perform similarly within each tool across all three studies: (A) 

874 “small” (5% DE; roughly equal copy numbers in each group); (B) “down” (20% DE; 33% decrease in copy 

875 numbers in the experimental group); and (C) “up” (20% DE; 2.8-fold increase in copy numbers in the 

876 experimental group).

877 S5 Fig. Spike-ins show a broad range of fold changes and systematic differences in studies with large 

878 shifts, accompanying Fig 3. Using the “ground truth” counts from polyester, the log2 fold change was 

879 calculated for all spike-ins, and then separated by their concentration in the ERCC Mixes, with “high” 

880 expression spike-ins having an average log2 concentration of at least 3 attomoles between both mixes (N = 47 

881 out of 92). These were the spike-ins used for normalization in Fig 2. Shown are boxplots of the spike-in fold 

882 changes in each experiment across the three studies: (A) “small” (approximately constant total RNA); (B) 

883 “down” (~33 decrease in total RNA); and (C) “up” (~2.8-fold increase in total RNA). Low-expression spike-ins 

884 tend to have a broad range of fold changes, and the high-expression spike-ins tend to have a systematic bias 
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885 in fold changes in the “down” and “up” studies. For reference, the red dotted line in each run indicates the 

886 “ideal” fold change for a spike-in, if it precisely matches the reciprocal of the change in copy numbers between 

887 the control and experimental conditions; the blue and gold dotted lines indicate the fold change between 

888 conditions of the DESeq2 median-of-ratios and the sleuth-ALR geometric mean of high-expression spike-ins, 

889 respectively, suggesting that both are generally good approximations of the “ideal” fold change, and thus are 

890 good denominators for normalization.

891 S6 Fig. The False Discovery Rate and Relative sensitivity for the Bottomly self-consistency test at 

892 additional FDR levels. This accompanies Fig 4 in the main text. Shown here are the (A) False Discovery 

893 Rate, and (B) relative sensitivity (% change) at the FDR levels of 0.01 and 0.05.

894 S7 Fig. Effect of imputation value on bootstrap variation. This depicts the summary of bootstraps variation 

895 for AAGAB-207 (ENST00000561452.5) within each sample of run #6. The true fold change for AAGAB-207 copy 

896 numbers is an 82% decrease. The recommended strategy in Compositional Data Analysis for imputing zero 

897 values is to choose a value smaller than the smallest observed value; however, because of the extremely small 

898 estimated abundances, this results in a very large variation in the bootstraps within each sample (A). This occurs 

899 when at least one bootstrap reports an estimated abundance of zero. Our recommendation is to follow the 

900 strategy of previous tools, and choose a larger value to impute. Panel (B) shows the reduction in bootstrap 

901 variation after choosing 0.01 for the imputation. The wide variation observed in (A) resulted in a non-significant 

902 q-value (0.450), whereas the stabilized variation observed in (B) resulted in a significant q-value (0.047).

903 S8 Fig. Effect of imputation on overall simulation performance. This depicts the full sensitivity versus false 

904 discovery rate curve for different choices of imputation value, as compared to standard sleuth as well as the 

905 recommended strategy of choosing a value smaller than the smallest observed value (here depicted as “sleuth-

906 ALR counts” for A-C and “sleuth-ALR TPM” for D-F). (A) and (D) show the results for the “small” simulation 

907 group (5% DE; <2% change in copy numbers per cell); (B) and (E) show the results for the “down” simulation 

908 group (20% DE; 33% decrease in overall copy numbers per cell); (C) and (F) show the results for the “up” 

909 simulation group (20% DE; 2.8-fold increase in overall copy numbers per cell). There is improved performance 
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910 of using imputation versus no imputation, and there are only minor differences in performance in all three studies 

911 among any of the choices for imputation values except 0.1 TPM impute value, which is very high (roughly 

912 equivalent to a count imputation of 3), in the “up” study.

913

914 Supplemental Tables Legends

915 S1 Table. Summary of Parameters for Simulation Studies. For each of the fifteen simulation runs, shown are 

916 the parameters to establish the number of differentially expressed (DE) transcripts, as well as the number that 

917 are up-regulated versus down-regulated. Only transcripts with a TPM of at least 1 were used to simulated 

918 differential expression, but the probability of differential expression was determined by the total number of 

919 transcripts (~200K). The proportion of up-regulated transcripts for the “small” study was tuned to result in similar 

920 total RNA content in both conditions. The random number generator seed was chosen solely on the basis of 

921 yielding consistency in total RNA content across each run within a study. Also shown are the actual number of 

922 DE transcripts present in the set of filtered transcripts used by all tools for each run.

923

924 S2 Table. Total RNA Content Per Cell Per Condition for all Simulation Runs. For each of the fifteen 

925 simulation runs, shown are the total RNA copy numbers per cell for each condition. Also reported are the average 

926 change in copy numbers between the two conditions for each study.

927

928 S3 Table. Doubling the copy numbers per cell results in the same composition. Depicted is a toy example 

929 of a simple cell with five genes of varying abundances. After an experimental manipulation, each gene has 

930 exactly double the copy numbers per cell compared to the control condition. This results in the same relative 

931 abundances, and therefore the same composition.

932

933 S4 Table. Spike-in abundances change with large compositional shifts but still accurately capture fold 

934 changes. Depicted is another toy example using the same cell with five genes. In this case, there are large 

935 changes in the mRNA genes, but no change in the rRNA gene. Spike-ins added in equal amounts both before 
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936 and after RNA isolation, show changes in their abundances, and therefore would have changes in the 

937 percentage of reads mapping to them. Despite this change in their abundance, spike-ins accurately capture 

938 the true fold changes.

939

940 S5 Table. Spike-in abundances change discordantly when non-poly-adenylated RNA changes. Depicted 

941 is another toy example using the same cell with five genes. In this experiment, there is a small change in the 

942 rRNA, but no changes to the mRNA genes. Spike-ins were added in equal amounts after RNA isolation, to 

943 simulate the protocol used in the zebrafish dataset. Because of the unobserved rRNA change, the spike-ins 

944 are affected by the compositional change and show discordant fold changes when compared to the mRNA 

945 genes. Normalizing the mRNA genes to the spike-ins results in artefactually elevated fold changes. Thus, the 

946 discrepancy observed in the zebrafish dataset can be explained by unobserved changes in the rRNA.

947

948 S6 Table. Spike-ins must be added before RNA isolation to accurately capture true fold changes. 

949 Depicted is a final toy example using the same cell with five genes. In this experiment, there are large and 

950 varying changes to both the rRNA and mRNA genes. Spike-ins were added in equal amounts both before and 

951 after RNA isolation. Only the spike-in added before RNA isolation can accurately capture the fold changes of 

952 the mRNA genes; the spike-in added after is itself affected by the compositional shift of the simultaneous 

953 changes in both the rRNA and mRNA genes.
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