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Abstract

Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than 

measuring only the two-dimensional spatial distribution of light, as in conventional photography, 

multidimensional optical imaging captures light in up to nine dimensions, providing 

unprecedented information about incident photons’ spatial coordinates, emittance angles, 

wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either 

by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition—

also dubbed snapshot imaging—has a prominent advantage in maximizing optical throughput, 

particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot 

multidimensional imagers based on their acquisition and image reconstruction strategies, then 

highlight the snapshot advantage in the context of optical throughput, and finally we discuss their 

state-of-the-art implementations and applications.

1. Introduction to multidimensional imaging

When performing optical measurement with a limited photon budget, it is important to 

assure that each detected photon provides as much information as possible. Conventional 

optical imaging systems generally capture light with just two characteristics (x,y), measuring 

its intensity in a 2D (x,y) lattice. However, this throws away much of the information content 

actually carried by a photon. This information can be written in nine dimensions as 

(x,y,z,θ,φ,λ,t,ψ,χ): the spatial coordinates (x,y,z), the propagation polar angles (θ,φ), the 

wavelength (λ), emission time (t), and polarization orientation and ellipticity angles (ψ,χ). 

Neglecting coherence effects, a photon thus carries with it nine tags. In order to explore this 

wealth of information, an imaging system should be able to characterize measured photons 

in 9D, rather than in 2D.

Correspondence: Liang Gao, gaol@illinois.edu Lihong V. Wang, lhwang@wustl.edu. 

HHS Public Access
Author manuscript
Phys Rep. Author manuscript; available in PMC 2017 February 28.

Published in final edited form as:
Phys Rep. 2016 February 29; 616: 1–37. doi:10.1016/j.physrep.2015.12.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To accomplish multidimensional imaging, most systems today rely on scanning, varying one 

parameter at a time and recording the resultant light intensities at the detector. However, this 

introduces a trade-off between light throughput and the number of elements in a high-

dimensional dataset. For example, to measure a hyperspectral datacube (x,y,λ) with Nx × Ny 

× Nλ voxels, a scanning-based spectral imaging system sacrifices light throughput by a 

factor of Nx × Ny when conducting point scanning in the spatial domain [1], by a factor of 

Nx when conducting line scanning in the spatial (x) domain [2], or by a factor of Nλ when 

conducting wavelength scanning in the spectral domain [3]. This scanning-induced 

throughput loss escalates into a more serious problem when measuring a dataset with even 

higher dimensions because light is allocated into more bins and only a small number of them 

can be measured at a time. To mitigate this trade-off, the most effective approach is to 

measure multiple photon tags simultaneously, maximizing the information content acquired 

from a single camera exposure. Such a parallel acquisition of a high dimensional dataset is 

referred to as snapshot multidimensional imaging.

In the past decade, the field of snapshot multidimensional imaging has experienced rapid 

growth. The emergence of a variety of snapshot imagers is a result of the convergence of 

three major technical advancements. The first contributor is the development of large format 

2D focal plane arrays (FPA). For example, current scientific-grade charge-coupled device 

(CCD) or complementary metal–oxide–semiconductor (CMOS) cameras can have as many 

as 50 megapixels [4], enabling parallel acquisition of datasets with remarkable information 

content. The second contributor is the development of new computational techniques and 

algorithms and their applications in imaging science [5, 6]. In particular, efforts to leverage 

compressed sensing in optical imaging have broken the bandwidth limit of a conventional 

camera in both spatial and temporal domains, thereby opening a new area of investigation, 

dubbed compressed optical imaging [7, 8]. The last but not the least contributor is the 

development of high-precision micro- or nano-scale fabrication techniques and their 

availability to the research community [9, 10]. For example, microelectromechanical-

systems(MEMS)-based instruments, such as the digital micro-mirror device (DMD), enable 

rapid spatial encoding at a repetition rate up to 20 kHz, a process that is essential to several 

snapshot multidimensional imagers, such as coded aperture snapshot spectral imaging [11, 

12] (discussed in Section 3.1) and programmable pixel compressive camera [13] (discussed 

in Section 3.4). Another example is the availability of nano-precision optical fabrication 

lathes, such as the Nanotech four-axis lathe 250UPL [14], that facilitate the custom 

fabrication of high-quality optics, such as a multi-facet mapping mirror, a core component in 

image mapping spectrometry [15–17] (discussed in Section 3.1).

In this review, we first introduce the general acquisition schemes of snapshot 

multidimensional imaging according to their acquisition strategies and computational 

strategies. Then we discuss the advantages of parallel acquisition compared with scanning-

based measurement in the context of light throughput. Although a variety of metrics have 

been established to compare snapshot implementations, such as compactness, information 

density, and efficiency of utilizing an FPA [18, 19], herein we adopt light throughput as the 

major criterion because it becomes a dominating factor when acquiring datacubes of high 

dimensions. The subsequent section focuses on the state-of-the-art implementations of 

snapshot multidimensional imaging instruments and their applications, particularly in 
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remote sensing and biomedicine. Finally, the field is summarized and future directions are 

discussed.

2. General acquisition schemes and advantages of parallel measurement in 

multidimensional imaging

To acquire a multidimensional datacube, a system must be able to differentiate photons with 

different characteristics. The most intuitive approach is to successively apply a variety of 

filters to the incident light and let photons with only desired characteristics pass through at 

each stage (Fig. 1a). Unfortunately, this results in a severe loss in optical throughput. By 

contrast, if an approach directs, rather than filters, photons with different tags towards 

distinct pixels on an FPA, the optical throughput will be maximized (Fig. 1b). However, the 

difficulty of this ideal photon-to-pixel mapping increases dramatically with the number of 

desired dimensions, especially when cost and compactness also pose constraints. Because of 

this limitation, most current snapshot multidimensional imagers normally acquire just three 

to five dimensions of information simultaneously.

In this review, we categorize multidimensional optical imaging techniques using the 

conceptual architecture shown in Fig. 2. The general strategies are direct measurement and 

computation. In the direct-measurement category, the techniques are further grouped into 

three sub-categories—image division, aperture division, and optical path division—

according to their acquisition strategies. In the computation category, the techniques are 

either grouped into two sub-categories—direct image reconstruction and iterative image 

reconstruction—based on their reconstruction strategies, or grouped into four sub-categories

—image division, aperture division, optical path division, and frequency domain division—

based on their acquisition strategies. The terminology used in Fig. 2 is defined in Section 

2.1.

2.1 Definitions

Snapshot multidimensional imaging refers to the quantification of multiple light 

characteristics using a 2D FPA within a single camera exposure.

Direct measurement refers to a general strategy that directly quantifies each voxel in a 

multidimensional datacube using FPA pixels. At the condition of Nyquist sampling, each 

datacube voxel is represented by at least 2 × 2 consecutive FPA pixels. Therefore, the 

number of datacube voxels cannot be greater than the number of FPA pixels divided by four.

Computation refers to a general strategy that computes the values of datacube voxels based 

on indirect measurements. Different from direct measurement, the number of calculated 

datacube voxels can be larger than the number of FPA pixels divided by four provided that 

the scene can be considered sparse in a given domain.

Image-division refers to an acquisition strategy that spatially splits an image, followed by 

dispersing or filtering the resultant elements in other domains, such as wavelength, 

polarization, or propagation angles.
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Aperture-division describes an acquisition strategy that splits the system’s aperture, followed 

by dispersing or filtering the resultant sub-pupils in other domains, such as wavelength and 

polarization.

Optical-path-division refers to an acquisition strategy that splits the system’s optical path 

and directs photons with different characteristics in different directions.

Frequency-domain-division refers to an acquisition strategy that multiplexes photons with 

different characteristics in the spatial or spectral domain, followed by splitting the resultant 

signals in the corresponding frequency domains.

Direct image reconstruction is a reconstruction strategy that directly applies linear operators, 

e.g., the inverse Fourier transformation or the wavelet transformation, to the captured data to 

recover a multidimensional datacube.

Iterative image reconstruction is a reconstruction strategy that iteratively calculates a 

multidimensional datacube while minimizing an object function. The reconstruction process 

normally starts with an initial estimate of the datacube, computes the corresponding 

measurement data, compares it with the actual measurement, and makes suitable 

adjustments to the datacube. Compared with direct image reconstruction, the computational 

cost of iterative image reconstruction is generally higher.

2.2 The snapshot advantage in multidimensional imaging

Akin to the Jacquinot advantage in Fourier transform spectrometry [20], snapshot 

multidimensional imaging has a much higher optical throughput than its scanning-based 

counterparts. This throughput improvement due to parallel acquisition has been referred to 

as the snapshot advantage [21] and has been considered as an important criterion to evaluate 

the performance of a multidimensional imager. Before proceeding to detailed discussions, 

we first define the optical throughput of a multidimensional optical imaging system as the 

ratio of the photons measured at an FPA to the incident photons collected by the entrance 

pupil of the system and within a unit time interval (i.e., a single camera exposure). For easy 

comparison, we also assume that the incident photons have an equal distribution across all 

characteristic bins.

When acquiring a datacube with the number of voxels of ΠNk (k=x,y,z,θ,φ,λ,t,ψ,χ), snapshot 

imagers, which eliminate the need for scanning, can potentially improve the optical 

throughput by a factor of ΠNk (k=x,y,z,θ,φ,λ,t,ψ,χ) over with their scanning-based 

counterparts. This throughput improvement becomes more significant when measuring a 

datacube of multiple dimensions. For example, in volumetric spectral (4D) imaging, when 

acquiring a 500 × 500 × 30 × 3 (x,y,z,λ) datacube, the snapshot advantage is a remarkable 

factor of 2.25 × 107. Although scanning-based techniques can compensate for their low light 

throughput to some extent by increasing the illumination intensity, i.e., increasing the photon 

flux at the system’s entrance pupil, this approach fails if (i) employing active illumination is 

not an opinion, as in passive remote sensing [22], (ii) the maximum illumination intensity 

has been limited for safety [23], or if (iii) the objects have already been boosted to their 
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saturation state, a condition in which further increasing the illumination intensity contributes 

little to emitting photons [24].

However, not every snapshot imager takes advantage of this potential throughput 

improvement. When a snapshot imager utilizes filters, e.g., wavelength filters and 

polarization filters, to acquire a multidimensional datacube, it sacrifices throughput by the 

same factor as a scanning-based counterpart. By contrast, “full-throughput” snapshot 

imagers differentiate photons by using filterless geometries. For example, image mapping 

spectrometry (IMS) [15–17] and imaging spectrometry using a light field architecture (IS-

LFA) [25] are both snapshot spectral imagers (discussed in Section 3.1). However, IMS 

utilizes a prism to disperse light into its spectrum, while IS-LFA employs a filter array. 

When measuring Nλ spectral bands, the throughput of IMS thus surpasses that of IS-LFA by 

a factor of Nλ.

In addition, not every snapshot imager’s acquisition capability can be scaled up to “full” 

dimensions. When a snapshot imager sacrifices data in one dimension in order to measure 

another dimension, it ceases to be a “full-dimension” snapshot imager because the resultant 

conflict prevents the imager from measuring these two photon characteristics in parallel. By 

contrast, if a snapshot imager measures one photon characteristic without affecting the 

others, it can be potentially modified to acquire datacubes of even higher dimensions. For 

example, sequentially timed all-optical mapping photography (STAMP) [26] and 

compressed ultrafast photography (CUP) [27] are both snapshot temporal imagers 

(discussed in Section 3.4). However, because STAMP trades spectral information (λ) for 

temporal information (t), it cannot measure a 4D (x,y,λ,t) datacube. By contrast, data 

acquisition by CUP is not sensitive to optical wavelengths. Therefore, its functionality has 

been readily expanded to the realm of 4D (x,y,λ,t) imaging.

3. Snapshot multidimensional imaging implementations and applications

3.1 Snapshot spectral imaging (x, y, λ)

Rather than simply capturing two-dimensional intensity images like a monochromatic 

camera or measuring spectra like a spectrometer, a spectral imager acquires entire 3D 

datacubes (x, y, λ) for multivariate analysis, providing structural, molecular, and functional 

information about the sample with unprecedented detail [28, 29]. Using the conceptual 

framework in Fig. 2, snapshot spectral imagers can be divided into two categories. In the 

direct-measurement category, representative techniques are image mapping spectrometry 

[15–17], imaging spectrometry using hyperpixels [30–32], imaging spectrometry using a 

fiber bundle [33], imaging spectrometry using a filter stack [34], imaging spectrometry using 

a light field architecture [25], and image-replicating imaging spectrometry [35]. In the 

computation category, representative techniques are snapshot hyperspectral imaging Fourier 

transform spectrometry [36, 37], multispectral Sagnac interferometry [38], computed 

tomography imaging spectrometry [39, 40], and coded aperture snapshot spectral imaging 

[11, 12].

Image mapping spectrometry (IMS) is an image-division direct-measurement technique [15–

17]. Based on the concept of image slicing from astronomy [41, 42], IMS utilizes a custom-

Gao and Wang Page 5

Phys Rep. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fabricated spatial mapping unit, referred to as an image mapper, to slice the input image and 

redirect the resultant image stripes onto different parts of a CCD, thereby creating blank 

spaces for spectral dispersion. The optical setup of IMS is shown in Fig. 3a. The input image 

is relayed to the image mapper through an 4f imaging system. The image mapper (Fig. 3b) 

consists of hundreds of mirror facets. Each mirror facet is about 70 microns wide and 25 mm 

long, and has a two-dimensional tilt angle [43, 44]. On the image mapper, the mirror facets 

are grouped into periodic blocks, and in each block, the mirror facets are fabricated with 

different tilt angles. The light reflected from these mirror facets is collected by a lens and 

enters the corresponding pupils at the collecting lens’s back aperture. The light is spectrally 

dispersed by a prism array and reimaged by a lenslet array to a CCD. By using this method, 

each (x,y,λ) voxel is mapped to a unique (x′,y′) position at the CCD. By using a simple 

image remapping algorithm, the original (x,y,λ) datacube can be accurately measured. 

Because the datacube voxel is directly mapped to the CCD’s pixels, the datacube that an 

IMS can measure is fundamentally limited by the number of CCD pixels. With a large-

format CCD, a current state-of-the-art IMS can measure a 350 × 350 × 48 (x,y,λ) datacube 

[45] within a single camera snapshot. The IMS has been demonstrated in combination with a 

variety of imaging modalities, such as microscopy [16, 24, 46–48], endoscopy [45], fundus 

photography [49], and macroscopy [50, 51], and has been employed for imaging both in the 

visible [45, 46] and infra-red spectral ranges [51].

Integral field imaging using hyperpixels [30–32] is also an image-division direct-

measurement technique. Based on a concept that was initially proposed in astronomy [52, 

53], integral field imaging using hyperpixels first images the input scene onto a lenslet array, 

then filters the sub-pupils at the back focal plane with a pinhole array. The filtered sub-pupil 

images are spectrally dispersed by a prism and reimaged onto an FPA. Because of spatial 

filtering by the pinhole array, void spaces are created between adjacent pinhole images for 

spectral dispersion (Fig. 4a). The spectral dispersion direction of the prism is arranged at an 

angle with respect to the lenslet array, resulting in a pattern that the detector pixels can be 

fully used (Fig. 4b). However, due to spatial filtering by the pinhole array, integral field 

imaging using hyperpixels suffers from a significant loss of optical throughput. In addition, 

this approach requires that the input scenes have a uniform irradiance distribution at 

different view angles, a condition that does not hold for cases such as specular reflection.

Imaging spectrometry using a fiber bundle (IS-FB) is yet another image-division direct-

measurement technique [33, 54–56]. The concept was initially proposed in astronomy, 

where researchers used individual fibers to selectively sample areas where stars are located 

rather than sampling the entire FOV [57]. This concept was not further developed until the 

invention of maneuverable coherence fiber bundles, which can transform a 2D image at the 

input end to 1D signals at the output end (Fig. 5). IS-FB takes advantage of this image 

reformatting by spectrally dispersing the resultant 1D signals with a slit spectrometer and 

measuring the spectrograph with an FPA. The deployment of the maneuverable fiber bundle 

thus allows spectral imaging of a 2D scene within a snapshot, avoiding the spatio-spectral 

crosstalk seen when a 2D image is directly dispersed by a prism or diffractive grating. A 

state-of-the-art IS-FB instrument can measure 44 × 40 × 300 (x,y,λ) datacubes in real time 

[56]. However, because of the difficulty of manufacturing such a fiber bundle, IS-FB suffers 

from breakage of image pixels, as seen at the fiber input end in Fig. 5. In addition, due to the 
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low optical coupling efficiency from air to fiber, IS-FB normally has a low optical 

throughput compared with other spectral imaging modalities working in free space.

Imaging spectrometry using a filter stack (IS-FS) [34, 58] is an optical-path-division direct-

measurement technique. As shown in Fig. 6, to separate the input beam in the spectrum, 

ISFS utilizes a filter stack to reflect different wavelengths in different directions. The 

reflected light is collected by a lens and forms spectral images on different parts of an FPA. 

Because the angles between adjacent filters are small, the introduced optical path differences 

between different wavelengths are negligible. This condition assures that each spectral 

channel image can be in focus simultaneously. State-of-the-art IS-FS can capture 12 spectral 

channels within a single camera snapshot [59]. However, it is difficult to further increase the 

number of spectral channels for IS-FS because of the limited tilt angle range that can be 

accommodated in a filter stack.

Imaging spectrometry using a light field architecture (IS-LF) [60] is an aperture-division 

direct-measurement technique. First proposed by Levoy et al. [25], IS-LF places an array of 

filters with different spectral transmission bands at the aperture of an imaging system, then 

reimages this filtered aperture on to a detector with a pinhole array (Fig. 7). Because 

different parts of the aperture have different transmission wavelengths, the FPA pixels 

associated with each pupil image measure the spectrum emanating from a specific spatial 

location at the object plane. Variants of Levoy’s design include replacing the pinhole array 

with a lenslet array [61] and replacing the filter array with a linear variable filter [62]. 

Despite easy implementation on a light-field camera, the drawbacks of IS-LF are parallax 

effects associated with multi-view imaging, the Lambertian reflectance assumption, and loss 

of optical throughput by a factor of Nλ, the number of filters in the filter array in the case of 

continuous and uniform spectral sampling.

Image-replicating imaging spectrometry (IRIS) [35, 63] is an optical-path-division direct-

measurement technique. Based on the concept of Lyot spectral filtering, IRIS utilizes a 

cascade of birefringent interferometers to separate the input light in the spectrum and 

redirect the components of different wavelengths in different directions. Each birefringent 

interferometer consists of a retarder and a Wollaston prism. The operating principle of IRIS 

is illustrated by a simplified model with two cascaded birefringent interferometers (Fig. 8a). 

The input light is linearly-polarized filtered by a polarizer and passed to a retarder, where the 

fast axis of the wave plate is aligned at 45° with respect to the optic axis of the polarizer. An 

OPD difference, bt1, is introduced between the ordinary and extraordinary polarization 

components, where b is the birefringence and t1 is the thickness of the retarder, respectively. 

The transmittance of these two polarization components through the retarder is wavelength-

dependent, as described by the function

(1)
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where k is the wavenumber. These two polarization components are separated by the 

Wollaston prism and directed in different directions. Then the two divergent beams pass 

through the second birefringent interferometer and yield four divergent output rays, each 

associated with a distinct spectral band. The number of spectral bands is thus determined by 

the number of cascaded birefringent interferometers in the system. In an IRIS prototype 

(Fig. 8b), Gorman et al. demonstrated the acquisition of eight spectral bands within a single 

camera snapshot by using four cascaded birefringent interferometers [35]. The drawbacks of 

IRIS are a loss of half of the optical throughput when imaging unpolarized scenes, the 

difficulty of measuring a large number of spectral bands because of the need for a large-

format Wollaston prism with sufficient birefringence, and the difficulty of correcting 

polarization-dependent chromatic aberrations.

Snapshot hyperspectral imaging Fourier transform spectrometry (SHIFT) [64] is an aperture-

division computational technique using direct image reconstruction. Conceptually, SHIFT is 

based on multiple-image Fourier transform spectrometry, which was first demonstrated by 

Hirai et al. [65]. In Hirai’s original design, the modulation of optical path difference is 

achieved by tilting a mirror along two axes in a Michelson interferometer. However, this 

setup is sensitive to environmental vibration because the input signals traverse two different 

optical paths before they interfere at the detector. SHIFT solves this problem by using a 

birefringent polarization interferometer. As shown in Fig. 9a, the object is first imaged by a 

lenslet array. The formed N × M subimages are passed to the birefringent polarization 

interferometer, which consists of two Nomarski prims. Rotating the prisms by a small angle 

with respect to the detector results in different optical path differences (OPDs) for different 

subimages. The spectrum at each spatial position can be recovered by Fourier transforming 

the intensity signals along the OPD axis in the 3D interferogram (Fig 9b). Compared with 

Hirai’s approach, SHIFT is more compact and less affected by vibration due to its common 

optical path design. However, SHIFT suffers from the parallax effect inherent in multi-view 

imaging. In addition, because of the dependence on the birefringence effect, the optical 

throughput of SHIFT is limited to 50% when imaging unpolarized scenes.

Multispectral Sagnac interferometry (MSI) [38] is a frequency-domain-division 

computational technique using direct image reconstruction. Based on the concept of 

channeled imaging polarimetry [66], MSI utilizes two multi-order blazed gratings to 

introduce different OPDs for different wavelengths in a modified Sagnac interferometer 

(Fig. 10). The modulated OPDs are manifested in the interference fringes at the detector, 

adding carrier frequencies to the object’s native spatial frequency band. The object’s spatial 

frequency band is shifted by these wavelength-dependent carrier frequencies, thereby 

creating a mosaic of spectral channels in the spatial frequency domain. By windowing these 

spectral channels in the spatial frequency domain, then applying inverse Fourier 

transforming, Kudenov et al. demonstrated that spectral scenes can be recovered from the 

coincident interference field measured at the detector [38]. However, this approach can 

image only a few selected wavelengths because the spectral channels must correspond to the 

blazed wavelengths of the gratings’ diffraction orders. In addition, the optical throughput is 

halved due to the linear polarization input.
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Computed tomography imaging spectrometry (CTIS) [67, 68] is an aperture-division 

computational technique using iterative image reconstruction. As shown in Fig. 11a, a 

computer-generated-holograph (CGH) is placed at the conjugate plane of the aperture stop 

of an imaging system. Different from a conventional diffractive grating which disperses light 

along only one dimension, a CGH can disperse light along two dimensions, forming 

different combinations of diffraction-order images at the camera (Fig. 11b). Each 

diffraction-order image is the result of two successive operations applied to the object’s 

datacube—shearing the wavelength axis towards the direction associated with the image’s 

diffraction order, followed by summing the intensities along the wavelength axis. A 

multiplicative algebraic reconstruction algorithm [69] allows the object’s datacube to be 

reasonably estimated. Due to its compactness, CTIS has been used in combination with a 

variety of imaging modalities, such as microscopy [39, 40], macroscopy [70, 71], and 

ophthalmoscopy [72, 73]. However, CTIS is essentially a limited-view instrument—each 

voxel of the object’s datacube is viewed through a limited set of angles, which correspond to 

the limited number of projected images at the camera. Because of its limited detector area 

and low diffraction efficiency at high diffraction orders, CTIS suffers from two missing 

cones in the spatio-spectral frequency domain [68, 74]. Therefore, it is difficult to image 

objects with flat spatial features and sharp spectral transitions. A recent work compensates, 

to some extent, for this missing cone problem by incorporating prior knowledge about the 

discreteness of spectra into the image formation framework through a parametric model 

[75].

Coded aperture snapshot spectral imaging (CASSI) [11, 12, 77] is an optical-path-division 

computational technique using iterative image reconstruction. Based on the concept of 

compressed imaging, CASSI encodes the input image with a random binary pattern using an 

absorption mask, then disperses the encoded image with a prism. The spatio-spectrally 

multiplexed image is measured by an FPA. The image reconstruction is the solution of the 

inverse problem of the image formation process. By employing an algorithm such as 

gradient projection for sparse reconstruction [78], or a two-step iterative shrinkage/

thresholding algorithm [79], Wagadarikar et al. demonstrated that a (x,y,λ) datacube can be 

reconstructed from such a measurement. However, because CASSI is built upon the 

compressed sensing paradigm, it requires the input scene to be sparse in the gradient domain 

in order to work properly. To improve CASSI’s reconstruction quality, recent efforts 

encompass utilizing multiple camera shots with a varying mask [80–82], a higher-order 

image reconstruction model [83], an optimized coded aperture [84, 85], and a hybrid design 

employing two cameras [86].

Snapshot spectral imaging modalities are compared in Table 1. The spatial resolutions of 

IMS, IS-FS, SHIFT, IRIS, and MSI are all diffraction limited. By contrast, the spatial 

resolutions of other modalities are poorer than the diffraction limit because of various trade-

offs. In integral field imaging using hyperpixels, because a micro-lens array (MLA) is used 

to divide the image, the spatial resolution is limited by the number of lenslets on the MLA. 

This limitation also constrains IS-LFA, which utilizes an MLA to divide the aperture. In IS-

FB, because the image is transmitted through a fiber bundle, the spatial resolution is limited 

by the fiber bundle’s pitch. In CTIS, the spatial resolution is object-dependent and 

practically limited by the number of projected views of the (x,y,λ) datacube on the camera 
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for a fixed FPA. In addition, because of the missing cone in the spatiospectral frequency 

domain, even with as many projections as desired, the recovered spatial bandwidth at a given 

spectral modulation frequency is still limited—the higher the spectral modulation frequency, 

the lower the spatial frequency bandwidth. In CASSI, the spatial resolution is worse than 

imposed by the diffraction limit, mainly because of the introduced spatio-spectral 

multiplexing along the spectral dispersion direction. In addition, the reconstruction process, 

which encourages sparsity in the spatial gradient domain, further smoothes the high-

frequency spatial features.

The spectral resolutions of snapshot spectral imaging modalities vary and are restricted by 

different factors. In IMS, given a desired spectral range, the spectral resolution is limited by 

the number of mirror facets in a periodic group at the image mapper. In integral field 

imaging using hyperpixels, because the sub-pupil image associated with each lenslet acts as 

the point-spread-function, its FWHM determines the system’s spectral resolution. In IS-FB, 

because each fiber is an independent source for the spectrometer, the spectral resolution is 

diffraction limited by the optics inside the spectrometer. In IS-FS, the spectral resolution is 

determined by the interval of the cut-on wavelengths of adjacent filters, and is practically 

limited by the number of dichroic filters that can be fitted into a stack. In IS-LFA, because 

the aperture is divided and filtered with different color filters, the spectral resolution is 

determined by the bandwidth of each individual filter. However, the maximal resolvable 

spectral bands are fundamentally limited by the number of resolvable spatial pixels 

associated with each lenslet. In SHIFT, an MLA divides the aperture and introduces different 

OPDs for each sub-image. Given a desired spectral range (OPD sampling interval), the 

number of lenslets on the MLA thus determines the OPD range and thereby the spectral 

resolution. In IRIS, the spectral bandwidth is approximately halved after the light passes 

through a birefringent interferometer (Eq. 1). The final spectral bandwidth of a spectral 

channel is thus limited by the number of cascaded birefringent interferometers in use. In 

MSI, the spectral resolution is determined by the diffraction efficiency of a multi-order 

blazed grating and dependent on its diffraction order. In general, at a lower diffraction order 

(i.e., shorter blazed wavelengths), the spectral resolution is higher. In CTIS and CASSI, the 

spectral resolutions are limited by the same factors that restrict their spatial resolutions, as 

previously discussed.

Measured by optical throughput, IMS, IS-FS, and CTIS have the best performances, all 

maintaining 100% light throughput. The light throughput of IS-FB is limited by the light 

coupling efficiency, fill factor, and transmittance loss of the fiber bundle. The light 

throughput of integral imaging using hyperpixels is limited by the pinhole filtering. The light 

throughputs of SHIFT, IRIS, and MSI are ~50% when imaging a natural scene because all 

these modalities require a linear polarization input. The light throughput of CASSI is also 

~50% because an absorption mask is employed to encode the input image. IS-LFA has an 

optical throughput of 1/Nλ when imaging Nλ spectral bands, and thus it is not suitable for 

hyperspectral imaging applications when many wavelengths are collected.
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3.2 Snapshot plenoptic imaging (x, y, θ, φ)

Plenoptic imaging, also referred to as light field or integral imaging, can capture a 4D light 

field (x, y, θ, φ) within a single exposure [87]. First proposed by Lippmann in 1908 [88], 

plenoptic imaging has found numerous applications in photography [89, 90], stereoscopy 

[91, 92], otoscopy [61], ophthalmoscopy[93], and microscopy [25, 94, 95]. Conventional 

plenoptic imaging captures varied perspectives of a scene using an array of independent 

cameras [96, 97]. This array complicates experimental setup, calibration, and 

synchronization. As an alternative, a light field can be measured by scanning a single camera 

from different viewpoints [98]. This method, however, cannot be used to image dynamic 

scenes because of low temporal resolution. To overcome this limitation, a variety of snapshot 

plenoptic imaging methods have been developed in the past decade, allowing a 4D light field 

to be captured with a single image sensor and within a single camera exposure.

Currently there are three major approaches to implement snapshot plenoptic imaging. The 

first approach, referred to as near-field integral imaging, directly images the scene through a 

lenslet array, creating multiple images at varied view angles (Fig. 12a). Each perspective 

image from a lenslet is referred to as an elemental image (EI), and the entire collection of 

these EIs is referred to as the integral image of the scene. To effectively sample the angular 

information, this approach requires the object to be close to the imaging system, covering by 

the lenslets a relatively large angular extension of emanated light rays.

By contrast, the second approach, referred to as far-field integral imaging, first images a 

distant scene onto the lenslet array using a camera lens, also called a depth-control lens (Fig. 

12b). Then each lenslet spatially samples this intermediate image and creates a pupil image, 

which provides the angular distribution of radiance at the corresponding point on the object. 

To create necessary parallax, the depth-control lens must have a relatively large aperture. 

The angular resolution is determined by the number of detector pixels associated with a 

pupil image, and the spatial resolution is determined by the total number of pupil images 

(i.e., the number of lenslets). Because of this pixel allocation, the resultant image’s spatial 

resolution is generally worse than the diffraction limit. For example, with a 16-megapixel 

image (4000 × 4000) sensor, a system implementing this design has a spatial resolution of 

only 300 × 300 [89]. To improve the spatial resolution, the most intuitive method is to use a 

denser lenslet array, trading in angular resolution for spatial resolution. However, simply 

reducing the size of each lenslet cannot effectively remedy this problem because the 

information measured by pixels at the pupil image’s boundary is either entirely lost or noisy 

[99]. More effective solutions include using focused plenoptic cameras [100, 101] and using 

an array of negative lenslets and prisms [99]. These designs allow high spatial sampling at 

the expense of reduced angular resolution. Nevertheless, because information along the 

spatial dimension is generally considered to have more variation than that along the angular 

dimension [98], previous studies showed that, even with a limited number of angular 

samplings, a 4D light field can be reasonably estimated [99, 100].

The third approach, referred to as dappled photography or heterodyne light field imaging 

[102–104], resembles a traditional camera setup. However, to modulate the 4D light field it 

places an absorbing mask with a broadband code, e.g., a sum-of-sinusoids pattern, between 

the camera lens’s aperture stop and the image sensor (Fig. 12c). These patterns are designed 
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to map high-frequency angular information to the spatial frequency domain. The light field 

can be recovered by assembling the tiles of the 2D Fourier transform of the captured image 

into a 4D datacube and computing the inverse Fourier transform. Given a large-format 

camera, dappled photography retains full spatial resolution for the in-focus image. However, 

the light throughput is halved due by the absorbing mask. Xu et al. improved this technique 

by introducing dual attenuation masks to modulate the light field: one with a random code 

placed at the lens’s aperture stop, and another, with a broadband code, placed at a plane 

between the lens’s aperture and sensor [105]. Compared with single-mask-based dappled 

photography, Xu’s method utilizes the camera’s spatial frequency bandwidth more 

efficiently and therefore achieves higher spatial resolution, at the expense of more severe 

throughput loss (> 95%).

All above strategies have a common trade-off between the spatial and angular resolution: 

that is, the total number of reconstructed light field elements cannot surpass the number of 

sensor pixels. To overcome this limitation, compressed sensing architectures have been 

introduced into light field imaging [106, 107]. The initial goal is to reduce the number of 

measurements compared with their non-compressed counterparts [108] by leveraging the 

light field’s intrinsic angular or spatial correlations. However, these techniques still require 

multiple camera exposures and thus are not suitable for imaging dynamic scenes. Marwah et 

al. recently constructed a single-shot, high-resolution light field camera using a compressed 

imaging architecture [109]. Similar to the original dappled photography, a coded mask is 

placed between the lens aperture and sensor to modulate the light field. However, rather than 

using a broadband or random code, Marwah optimized the code pattern by minimizing the 

mutual coherence between the measurement matrix and dictionary matrix [110]. The 

resultant method provides higher reconstruction quality than dappled photography while 

maintaining a reasonable optical throughput (~50%).

We compare the snapshot plenoptic imaging strategies in Table 2. In near-field integral 

imaging, the spatial resolution is limited by the number of camera pixels associated with 

each lenslet, while the angular resolution is limited by the number of lenslets. By contrast, in 

far-field integral imaging these two limiting factors are switched. In general, near-field and 

far-field integral imaging are favored in spatial-resolution-priority and angular-resolution-

priority imaging, respectively. In dappled photography, there is a trade-off between spatial 

resolution and angular resolution because high angular frequency components are mapped to 

the spatial frequency domain and occupy the same axes as spatial frequency components. 

Due to the linear reconstruction, i.e., mosaicking in the frequency domain, the number of 

reconstructed spatial and angular light field elements cannot surpass the total number of 

camera pixels. Compressed integral imaging mitigates this limitation by leveraging the 

intrinsic sparsity of a natural scene and reconstructs the light field using an iterative 

algorithm, i.e., gradually minimizing the difference between the estimated values and the 

measurement in the form of the L2 norm. However, if the sparsity requirement is not met, 

the reconstruction process yields artifacts. Measured by optical throughput, near-field and 

far-field integral imaging perform better because they maintain all light rays emitted from 

the object. On the other hand, because of the usage of absorption masks, both dappled 

photography and compressed integral imaging suffer from at least 50% throughput loss. 
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However, these mask-based methods are easier to implement than microlens-array-based 

methods.

3.3 Snapshot volumetric imaging (x, y, z)

Volumetric imaging, one of the earliest embodiments of multidimensional imaging, has been 

long pursued because the world around us is in 3D. In this section, we review the main 

snapshot volumetric imaging techniques that allow us to see a 3D scene in the ballistic or 

quasi-ballistic regime. For snapshot 3D surface imaging techniques, such as using structured 

illumination or parallel light detection and ranging (LIDAR), we refer the readers to more 

specific articles, [111] and [112] respectively.

When imaging a 3D scene, a conventional 2D imager integrates light intensities along the 

depth axis. For direct volumetric measurement, devices using a 2D FPA thus face three 

major challenges. The first challenge is to remap different depth layers to different areas of 

the FPA. The second challenge is to compensate for defocusing in these remapped depth 

layers. The third challenge is to suppress the out-of-focus light and improve the axial 

resolution. Compared with the first two challenges, suppressing the out-of-focus light from a 

depth layer is relatively easy. It can be achieved either numerically during post-processing, 

such as through 3D deconvolution [113], or physically during data acquisition, such as by 

employing parallel light-sheet illumination [114]. However, it is noteworthy that 3D 

deconvolution is effective only for specimens in which the ratio of background to in-focus 

signals is no greater than 20:1 [115], thereby posing a practical limitation on the applicable 

objects. Additionally, removing out-of-focus light by 3D deconvolution is achieved at the 

expense of a decreased signal-to-noise ratio and may also introduce structural artifacts [116]. 

In the following discussion, we focus on techniques that can tackle the first two challenges, 

referred to as depth remapping and defocus compensation.

A simple solution to these two challenges is to split the optical path at the image side and 

introduce corresponding OPDs for the target depth layers. This optical-path-division concept 

was first demonstrated using a dual-camera setup as shown in Fig. 13 [117, 118]. A 50:50 

beam splitter is inserted into the optical path of a standard microscope and splits the light 

into two beams. Each beam is focused by a tube lens and forms an image at a detector. The 

two detectors are placed at different distances from the tube lens, measuring two distinct 

depth layers at the same time. Geissbuehler et al. further developed this technology and 

simultaneously captured eight depth layers by introducing additional beam splitters and 

mirrors [119].

Alternatively, depth remapping and defocus compensation can also be achieved by 

wavefront engineering techniques, such as volume holographic imaging [120–123] or 

multifocus microscopy using a distorted grating [124–127] or a liquid crystal spatial light 

modulator [128, 129].

First proposed by Liu, et al [130], volume holographic imaging (VHI) is an optical-path-

division direct-measurement technique. It utilizes a volume hologram’s wavefront selection 

properties to simultaneously image multiple object depths [131–135]. Figure 14 shows a 

representative experimental setup. A volume hologram is placed at the aperture stop of an 
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imaging lens, acting as a Bragg filter and allowing photons with only specific propagation 

angles and wavelengths to pass through [120, 136]. To enable simultaneous imaging of 

multiple planes, the volume hologram can be produced in a multiplexed manner—

superimposed by holographic gratings with different frequency patterns. Each multiplexed 

grating is Bragg matched to a different depth in the sample and diffracts the light to a 

different central angle. After passing through the volume hologram, the diffracted light is 

collected by a lens and imaged by an FPA. VHI has been implemented in applications such 

as endoscopy [137, 138] and microscopy [139, 140]. Despite the snapshot advantage, the 

number of depth layers that can be simultaneously imaged by VHI is extremely restricted 

(≤5) [133].

In VHI, the lateral FOV at each depth layer arises from the Bragg degenerate properties of a 

volume hologram. For a volume hologram recoded with a plane wavefront, degenerate 

diffraction occurs when (i) either combined changes are applied to the incident light’s 

wavelength and angle, or (ii) the incident beam pivots around the direction that is aligned 

with the orientation of the volume hologram’s fringes (the y axis in Fig. 14) [131]. Under 

monochromatic illumination, the VHI’s FOV is a line, due to type-ii degenerate diffraction. 

To complete the entire 3D volumetric acquisition, scanning is required along the x axis. By 

contrast, under broadband illumination, VHI has a broader FOV along the x axis because of 

type-i degenerate diffraction, at the expense of decreased depth resolution [132]. To mitigate 

this limitation, Sun et al. proposed a new form of VHI with rainbow illumination [141]. 

Basically, rather than shining a uniform broadband light onto the object, the authors pre-

disperse the light using a grating and project the resultant color strips onto different parts of 

the surface. By carefully choosing the grating period and matching it to the diffracted beam 

angle, depth-selective images can be simultaneously obtained over the entire illuminated 

area, with each color Bragg matched to an x position. However, accurate matching between 

the external grating and hologram is challenging. Additionally, misalignment between the 

illumination plane and object plane can significantly reduce the lateral FOV [142]. Two 

follow-up works have been carried out since the invention of rainbow VHI. Castro et al. 

eliminated the stringent grating-hologram matching requirement by using the volume 

hologram as both the illumination disperser and angular-spectral filter [142]. Leon et al. 

improved depth resolution by a factor of 30 by optimizing the original dual-grating design 

[143].

As an alternative, depth remapping and defocus compensation can be achieved by using a 

distorted phase grating [125]. First proposed by Blanchard et al. [124], a distorted phase 

grating can introduce different levels of defocus in the wavefront and diffract them into 

different orders. Therefore, when a distorted grating is placed close to a lens, it effectively 

modifies the focal length of the lens in non-zero diffraction orders, playing the role of a 

defocus compensator. Additionally, the diffraction angles enable depth remapping.

The effect of a distorted phase grating on an imaging system is illustrated in Fig. 15. The 

combination of a distorted grating and a lens images a single object onto different image 

planes in each different diffraction order (Fig. 15a). Alternatively, if multiple objects are 

located at the preset depths, the system can simultaneously image them onto the same plane. 
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In Fig. 15b, the three in-focus images correspond to the objects A, B, C associated with the 

+1, 0, and −1 diffraction orders, respectively.

The first demonstration of this system worked only with narrow-band or laser illumination 

because the diffraction angle and defocusing power of a distorted grating are sensitive to 

wavelength [127]. Blanchard et al. alleviated this limitation by first dispersing the incident 

light using a pair of blazed gratings, then shining the resultant spectral components onto 

different positions of a distorted grating [127]. This spectral pre-dispersion compensates for 

the intrinsic spectral dispersion of the distorted grating, thereby allowing simultaneous 

broadband imaging of multiple planes. However, this scheme cannot be readily implemented 

in a microscopic setup because high-numerical microscopic objective normally corrects for 

aberration at only one depth layer. To solve this problem and extend the depth of focus, 

Abrahamsson et al. adopted an aberration-free refocusing scheme [144], utilizing a 

combination of chromatic correction gratings and prisms to compensate for the intrinsic 

spectral dispersion of the distorted grating [126]. In this way, the authors demonstrated the 

parallel acquisition of a volumetric image with up to nine focal planes [126]. In a recent 

work, Hajj et al. applied this technique to stochastic optical reconstruction microscopy 

(STORM) and demonstrated snapshot 3D superresolution imaging of a living cell [145]. In 

another follow-up work, Yu et al. demonstrated that the number of depth layers for 

simultaneous imaging can be dramatically increased to ~50 by introducing Dammann phase-

encoding into the original distorted grating [146].

Functionally equivalent to a distorted grating, a liquid crystal spatial light modulator (SLM) 

can also be used for depth demultiplexing [128, 129]. In a demonstration, an SLM was 

placed at the aperture stop of a microscope objective and programmed to display a phase 

pattern simulating a set of superposed multi-focal off-axis Fresnel lenses, which remap 

different depths to different lateral positions of an FPA. Using this setup, nine focal planes 

were captured simultaneously. Because the SLM is sensitive to both wavelength and 

polarization, the major drawback of this method is the lack of color and polarization imaging 

capabilities.

Beyond these direct-measurement techniques, a 3D scene snapshot can also be acquired by 

computational approaches. Representative techniques in this category are 3D integral 

imaging [147], single-shot digital holography [148], and snapshot 3D optical coherence 

tomography [149].

3D integral imaging reconstructs the depth information from a 4D light field (that is, 2D 

spatial information and 2D light ray angular information). The light field acquisition 

methods have been discussed in Section 3.2. If the reflectance from a scene is Lambertian, 

the 3D reconstruction from a light field can be carried out by simulating the optical back-

projections of multiple 2D elemental images according to either ray optics [150–153] or 

wave optics [154]. The depth-of-field is inversely proportional to the angular resolution of 

the captured light field, while the depth resolution is determined by the NA of the front 

optics as well as the angular resolution of the light field [25]. Due to its easy 

implementation, 3D integral imaging has been widely used in various applications, such as 

imaging objects in turbid media [155], photon counting and photon-starved 3D visualization 
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[156–160], imaging occluded objects [161], 3D microscopy [94, 95, 162–164], and 3D 

endoscopy [165]. For example, in a recent implementation, Prevedel et al. demonstrated 

high-speed, large-scale 3D imaging of neuron dynamics in volumes of ~700 µm ×700 µm 

×200 µm using a light field microscope [95].

Single-shot digital holography is a computational technique using direct image 

reconstruction [148, 166–168]. The incident light’s wavefront is recorded by interfering it 

with a reference beam and forming an interferogram at an FPA. The phase distribution of the 

complex wavefront contains the 3D information of the original object. By Fresnel 

transformation, the 3D scene thus can be reconstructed by numerical propagation of the 

complex wavefront to the image plane [169, 170]. Single-shot digital holography can be 

implemented in either an off-axis configuration [148, 166, 167, 171] or a parallel phase-

shifting in-line configuration [168, 172–175]. Because of the reliance on coherent 

illumination, digital holography suffers from speckle artifacts in general.

The major challenge in digital holography is to suppress the zero-order and twin images 

during image reconstruction [176]. Off-axis single-shot digital holography has an intrinsic 

advantage because the real image (+1 diffraction order), the zero-order image, and the twin 

image (−1 diffraction order) are diffracted in different directions. Therefore, provided that 

the incident angle of the reference beam is larger than the diffraction angle associated with 

the object’s maximal spatial frequency, these three images can be separated in the spatial 

frequency domain [176]. However, the maximal allowable incident angle of the reference 

beam is limited by the Nyquist sampling of fringes at the FPA. This trade-off results in either 

an overlap of different diffraction order images or degradation in the resolution of 

reconstructed scenes [166].

By contrast, parallel phase-shifting digital holography employs an in-line configuration—the 

reference beam and object beam are incident on the image plane in parallel, resulting in a 

complete overlap of different diffraction order images. To remove the undesired zero-order 

and twin images, Awatsuji et al. used a phase-shifting array to encode adjacent 2 × 2 camera 

pixels with additional 0,π/2,π,and 3π/2 phases[168]. Given a slowly varying object’s 

wavefront, the camera pixels associated with these additive phases can be extracted, 

constituting corresponding phase-step images. By employing an algorithm similar to that in 

conventional sequential-acquisition phase-shifting digital holography [177], zero-order and 

twin images can be numerically eliminated. A similar four-step phase encoding method was 

also independently invented by Millerd et al. [173, 174]. Since the first demonstration, the 

number of required phase steps to recover the complex wavefront has been reduced first to 

three [178] and then to two [179–182] in several follow-up works. However, the difficulty of 

fabricating such a phase-shifting array still poses a practical limitation on the application of 

this technique.

In another parallel phase-shifting digital holography implementation [172], Hettwer et al. 

utilized a Michelson interferometer with a polarization beam splitter to generate an object 

wave and reference wave with orthogonal polarizations (Fig. 16). The combined object and 

reference waves are diffracted by a grating into three beams with equal intensities. Two 

quarter-wave-plates are inserted into the optical paths associated with ±1 diffraction orders. 
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The fast axes of the two wave plates are respectively aligned with the object wave’s and 

reference wave’s polarization directions, introducing ±π/2 phase differences between these 

two waves. After passing through an analyzer, the object and reference waves interfere, 

forming three phase-shifted interferograms at a CCD. The object’s complex wavefront can 

be recovered by employing a three-step phase-shifting reconstruction algorithm. However, 

due to the utilization of a non-common-path Michelson interferometer, this technique is 

sensitive to environmental vibration.

Alternatively, parallel phase-shifting digital holography can be accomplished by the 

fractional Talbot effect [175], which is called the self-imaging phenomenon when a grating 

is illuminated by a coherent laser beam [183]. An image of the grating is formed at integer 

multiples of the Talbot distance Zt=2d2/λ, where d is the grating period and λ is the 

wavelength. At fractional Talbot distances, the light distribution also produces a 

superposition of shifted replicas of the grating that are weighted by different phase factors, 

referred to as a Fresnel image (Fig. 17a) [184]. Martinez-Leon et al. utilized a grid 

amplitude grating to produce a fractional Talbot pattern at a distance of Zt/4, where three 

adjacent aperture squares are encoded with additive phases , and π, respectively (Fig. 

17b). The complex object wavefront can be recovered by employing a three-step phase-

shifting reconstruction algorithm. Araiza-Esquivel et al. further advanced this technology 

and enabled color reproduction by illuminating the object with three color lasers and 

detecting the resultant holograms with three FPAs [185]. However, due to the introduction of 

an amplitude grating, the optical throughput of the reference beam is halved.

Besides the aforementioned techniques, it is worth mentioning several other 

implementations for parallel phase-shifting digital holography. Nomura et al. demonstrated 

that the object’s wavefront can be recovered by interference with a random-phase reference 

wave [186–188]. However, the phase of the reference wave must be measured a priori. Lin et 

al. utilized a phased spatial light modulator for parallel phase encoding of adjacent camera 

pixels [189]. Although similar to [168] in concept, this approach does not require a pixelated 

retarder array and therefore is relatively easy to implement. Still, this approach requires 

stringent pixel-to-pixel alignment between the spatial light modulator and the camera.

At the expense of sacrificing color reproducing capability, snapshot volumetric imaging can 

also be accomplished by spectrally encoding depth. A representative technique is snapshot 

3D optical coherence tomography (OCT) [149]. In spectral-domain OCT, the photons 

scattered from different depth layers exhibit different modulation frequencies in the 

spectrum [190]. Therefore, no scanning along the depth axis is required when acquiring a 

volumetric image. However, conventional spectral-domain OCT systems normally utilize 

point-scanning or pushbroom imaging to measure spectra, resulting in a considerable loss of 

optical throughput. To enable snapshot 3D OCT, Nguyen et al. utilized a hyperspectral 

imager, IMS, to capture all the spectra in parallel [149]. Because the depth range is 

determined by the number of channels sampling the spectrum, the authors employed a large-

format CCD sensor to accommodate the required datacube size, and the sensor’s relatively 

slow data readout limits the volumetric frame rate. Using their proof-of-concept system, 

Nguyen demonstrated volumetric imaging with a 400 µm depth range, 13.4 µm lateral 
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resolution, and 16.0 µm axial resolution. Based on the same principle, similar wavelength 

encoding techniques, such as chromatic slit-scan confocal microscopy [191], single-shot 

computed tomography by spectral multiplexing [192], and self-interference fluorescence 

microscopy [193], can be potentially combined with a snapshot spectral imager to achieve 

snapshot 3D volumetric imaging as well.

We compare the snapshot volumetric imaging modalities in Table 3. The lateral resolutions 

of the direct-measurement techniques are all diffraction limited. For various reasons, the 

lateral resolutions of the computational techniques are worse than the diffraction limit. In 3D 

integral imaging, because depths are derived from a light field, the original compromise 

between lateral resolution and angular resolution in plenoptic imaging is translated to 3D 

integral imaging, resulting in a new trade-off between lateral resolution and depth resolution. 

In snapshot digital holography, because the complex wavefront is measured by a digital 

detector array, the lateral resolution is mainly limited by the camera’s finite pixel size and 

sampling rate, and the finite extent of camera face itself [194–196]. For 3D snapshot OCT, 

although the lateral resolution of the current proof-of-concept system is limited by the 

spatial sampling of its spectral imager, in theory, this method can achieve diffraction-limited 

performance.

Akin to a conventional camera, the depth resolutions of modalities that divide the optical 

path using beam splitters, distorted-gratings, and SLMs are mainly limited by the NA of the 

front optics. For 3D integral imaging, the depth resolution is limited by two factors—mainly 

by the NA of the front optics (the lack of parallax angles yields poor depth resolution), and 

also by the aforementioned trade-off between lateral resolution and depth resolution. For 

volume holographic imaging and 3D snapshot OCT, the depth resolutions are determined by 

the bandwidth of the illumination source, but in opposite ways. A broadband illumination 

source improves the depth resolution of 3D snapshot OCT, but degrades that of volume 

holographic imaging. In snapshot digital holography, the depth resolution is limited by the 

same factors that affect the lateral resolution—the finite extents of the camera’s pixel size 

and sampling rate, and the finite extent of camera face itself.

Measured by optical throughput, volume holographic imaging, 3D integral imaging, single-

shot digital holography, and 3D snapshot OCT have an edge. By contrast, optical-path-

division using beam splitters, distorted-gratings, and SLMs maintain only 1/Nz(Nz, number 

of depth layers) of optical throughput, because the amplitude of the wavefront is divided into 

Nz portions during depth remapping.

3.4 Snapshot temporal imaging (x, y, t)

To acquire an event datacube (x,y,t), conventional imaging devices measure the temporal 

information either at a spatial point using a device such as a photomultiplier tube, or at a slit 

using a device such as a streak camera, or at a plane using a device such as a CCD or 

CMOS. To acquire (x,y) spatial information, point or slit detectors rely on scanning, which 

limits on the applicable objects because the event must be exactly repeated at each scanning 

position. By contrast, plane detectors can capture an (x,y) scene within a single snapshot. 

However, because the temporal resolution of plane detectors is provided by a mechanical or 

electrical shutter, the imaging speed is limited to 200 million fps [197]. Within the camera 
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exposure, the incident photons accumulate on the detector, and their time-of-arrival 

information is therefore completely lost. Further increasing the frame rate of a plane detector 

is restricted by data readout speed and on-chip storage capacity [198].

Snapshot temporal imaging, also called temporal super-resolution imaging, can temporally 

resolve a dynamic event within a single camera exposure and thus avoids the limitation 

imposed by the camera’s readout speed. Depending on the requirement on the active 

illumination, snapshot temporal imaging generally uses two strategies. The first strategy 

utilizes active pulse illumination to provide temporal resolution. Representative techniques 

include sequentially timed all-optical mapping photography (STAMP) [26] and frequency-

domain streak tomography [199]. The second strategy is based on passive imaging and 

therefore does not need a specialized light source. Within this category, representative 

techniques are parallel streak imaging using a tilted lenslet array [200], temporal pixel 

multiplexing [201], compressed ultrafast photography [27], coded aperture compressive 

temporal imaging [202], programmable pixel compressive imaging [13], and smart pixel 

imaging with computational-imaging arrays [203, 204].

STAMP’s illumination system consists of a pulse stretcher and a pulse shaper (Fig. 18). The 

pulse stretcher temporally stretches an ultra-short optical probe pulse using a temporal 

disperser, such as a glass rod, a prism pair, or a fiber. The pulse shaper splits the resulting 

pulse into a series of discrete daughter pulses with different spectral wavelengths, followed 

by shining these pulses onto the sample as successive “flashes” for stroboscopic image 

acquisition. The temporal information of an event is thus encoded in the probe light’s 

spectrum, and the temporal resolution is determined by the duration of the corresponding 

daughter pulses. Based on their wavelengths, these daughter pulses are separated by a spatial 

mapping unit—a combination of a diffraction grating, a cylindrical mirror, and an array of 

periscopes. In the spatial mapping unit, the daughter pulses propagate over the same optical 

path length but exit at different heights. Thus the daughter pulses are directed towards 

different areas of an image sensor and can be simultaneously imaged in focus. By using 

STAMP, Nakagawa et al. have demonstrated an imaging speed of 4.4 trillion frames per 

second with 450 × 450 pixels resolution [26]. However, because of the difficulty of 

populating the periscope array, the temporal sequence depth of STAMP is currently limited 

to six frames, resulting in a very short observation time window (1.8 ps at 4.4 trillion fps).

Frequency-domain tomography (FDT) is an interferometry-based ultrafast imaging 

technique [199] that shares the concept of frequency-domain holography [205] and 

frequency-domain streak photography [206], which were previously developed by the same 

research group. FDT generates multiple probe pulses in a cascaded four-wave mixing 

process and then illuminates the object (a 3 mm thick glass) with these pulses at five 

different incident angles (Fig. 19). The pump-laser-induced refractive index changes are 

imprinted onto probe pulses and appear as phase “streaks”. Finally, these probe pulses 

interfere with a reference pulse inside a spectrometer, creating a 2D spectral domain 

hologram on a CCD at the spectrometer’s detection plane. A tomographic movie of 

refractive index changes Δn(z,x,t) can be reconstructed at a selected y0 position using a 

conventional tomographic algorithm such as an algebraic reconstruction technique [207, 

208]. Because the spectral information is traded for spatial information, FDT cannot 
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reproduce colors. Additionally, this technique suffers from a shallow temporal sequence 

depth (five frames).

Although they acquire snapshots, both STAMP and FDT require active pulse illumination. 

They cannot image objects that are self-illuminated through processes such as fluorescence 

or bioluminescence. By contrast, passive snapshot temporal imaging methods [200, 202, 

209] are receive-only and thus capable of imaging transient events without specialized 

illumination. More importantly, because temporal resolution is provided by the instrument 

itself, passive temporal imaging can potentially reproduce colors, resulting in a four 

dimensional (x,y,t,λ) datacube.

Depending on whether the (x,y,t) datacube is directly acquired or computationally estimated, 

passive snapshot temporal imaging is further divided into two sub-categories. Two 

representative direct-measurement techniques are parallel streak imaging using a tilted 

lenslet array [200] and temporal pixel multiplexing [201]. Akin to a plenoptic camera, 

parallel streak imaging uses a lenslet array to acquire multiple elemental images of the 

objects (Fig. 20). Because the lenslet array is tilted, the elemental images are located at 

different vertical positions. These elemental images are relayed to the entrance slit of a 

streak camera, a one-dimensional imaging device that can transform an event’s temporal 

information into spatial information along the vertical axis (y axis) [210]. The entrance slit 

of the streak camera samples the elemental images at different heights, thereby allowing 

parallel streak imaging of multiple spatial lines. This method advantageously enables 2D 

ultrafast imaging while maintaining the streak camera’s native temporal resolution and 

temporal sequence depth. However, because each elemental image occupies only a part of 

the streak camera’s entrance slit, this method trades off the number of spatial samplings 

along the y axis against that along the x axis. In addition, because a narrow entrance slit is 

required to maintain high temporal resolution in the streak camera, the light throughput is 

significantly sacrificed.

Temporal pixel multiplexing utilizes a DMD as an active shutter to increase the frame rate of 

a low-speed camera without increasing bandwidth requirements [201]. As shown in Fig. 21a, 

an object is imaged either by a microscope or a camera lens (L3), and an intermediate image 

is formed on the DMD. The DMD’s micro-mirrors are organized into m exposure groups, 

each consisting of n micro-mirrors labeled with different tags (e.g., 1–4 in Fig. 21b). The 

micro-mirrors with the same tag in all exposure groups are turned “on” at the same time and 

stay at this position for a duration of t/n, where t is the camera’s single exposure time (Fig. 

21c). This temporally-modulated image is relayed to the image plane and measured by a 

high resolution camera. Because the pixels of the DMD’s micro-mirrors and the camera are 

spatially registered, the temporal modulation introduced at the DMD’s micro-mirrors is 

transferred to the exposure modulation at the camera’s pixels. By reorganizing the captured 

image’s pixels (Fig. 21d), a high-speed image sequence can be recovered at a reduced spatial 

resolution. Additionally, because there is no spatiotemporal mixing at the camera, a full-

resolution image can be simultaneously acquired at the camera’s native frame rate. The 

drawback of this approach is that the light throughput is sacrificed by a factor of n, posing 

challenges for low-light imaging applications. This concept has also been demonstrated in a 

similar implementation which utilizes a pinhole array to create exposure groups [211].
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Based on the concept of compressed sensing [212], compressed ultrafast photography (CUP) 

is a computational technique using iterative image reconstruction. CUP can transform a 

conventional one-dimensional streak camera into a two-dimensional snapshot temporal 

imaging device. As shown in Fig. 22, CUP first images an object through a camera lens and 

then relays the intermediate image to a spatial encoding device—a DMD, where a pseudo-

random pattern is displayed. The light reflected from only the “on” micro-mirrors is 

collected by a microscope objective and reimaged on the entrance slit of a streak camera. 

Here the entrance slit is fully opened, allowing the formation of a 2D image on the streak 

camera’s photocathode. Inside the streak camera, this image is temporally sheared along the 

vertical axis by a varying voltage. At a given voltage ramp rate, the amount of shearing is 

determined by the incident photons’ time of arrival. The final image is measured by a CCD 

within a single exposure.

The CUP image formation process can be described by three operators which are 

successively applied to an event I(x, y, t):

(2)

where E(m, n) is the light energy measured at pixel (m, n) on the CCD, C is the spatial 

encoding operator describing the function of the DMD, S is the temporal shearing operator 

describing the function of the streak camera, and T is the spatial-temporal integration 

operator describing the detection process at the CCD. The CUP image reconstruction 

process is the solution of the inverse problem of Eq. 2. Provided spatio-temporal sparsity, the 

original event datacube can be reasonably estimated by adopting a two-step iterative 

shrinkage/thresholding (TwIST) algorithm, which minimizes the difference between the 

measurement, E, and the expected E corresponding to the estimated datacube, I, in the form 

of L2 norm [79].

The CUP frame rate is determined by the temporal shearing velocity of the streak camera—a 

faster shearing velocity results in a higher frame rate. However, in this case, because photons 

are spread over more CCD pixels, the signal level per pixel is reduced, which may cause 

potential reconstruction artifacts when the incident light is insufficiently strong. The size of 

the CUP-reconstructed datacube is 150 × 150 × 350 (x, y, t), which is limited by the 

acceptance NA of the collecting objective, photon shot noise, the sensitivity of the 

photocathode, and the number of binned CCD pixels. Additionally, because of the temporal 

shearing operation and sparsity constraint, CUP’s spatial resolution is slightly anisotropic 

and degraded approximately two times from the diffraction limit.

Similar to CUP, coded aperture compressive temporal imaging (CACTI) [202] first spatially 

encodes the input image with a pseudo-random binary pattern by using an absorption mask, 

then relays the resultant image to a CCD where photons are spatiotemporally integrated. 

However, different from CUP, CACTI mechanically translated the mask along the vertical 

axis by a piezo element, temporally shearing the mask image—rather than the encoded 

object image—at the detector plane. The image formation of CACTI thus can be described 

by
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(3)

Here E (m, n) is the light energy measured at the pixel (m, n) at the CCD, I (x, y, t) is the 

input event, C (y − Vt) is the spatial encoding operator depicting the function and movement 

of the mask, and T is the spatiotemporal integration operator depicting the detection process 

at the CCD. It is worth noting that in Eq. 3 only the operator C is time variant because only 

the mask image is sheared in CACTI. By contrast, in CUP, both the mask and object image 

are sheared (Eq. 2).

The image reconstruction process of CACTI is the solution of the inverse problem of Eq. 3. 

Llull et al. adapted both a generalized alternating projection (GAP) algorithm [213] and 

TwIST algorithm [79] to estimate the event datacube. Compared with TwIST, which 

performs best with a scene that can be considered sparse in the gradient domain, GAP 

requires no prior knowledge of the object and can use one of several bases, such as wavelets 

or discrete cosine transform, to represent a sparse signal. However, in cases where TwIST 

can be applied, experimental results show that TwIST-reconstructed videos generally provide 

greater visual quality [202]. The frame rate of the reconstructed video is determined by the 

moving speed of the mask and the CCD’s pixel size. Currently, CACTI’s maximum imaging 

speed approximates 4,500 fps.

The programmable pixel compressive camera (P2C2) is a computational imaging instrument 

replying on per-pixel modulation [13, 214]. As shown in Fig. 23, a liquid crystal on silicon 

(LCOS) encodes the input scene with a random binary pattern, and then relays the resultant 

image to a CCD. The LCOS’s pixels are one-to-one mapped to the CCD’s pixels, acting as 

per-pixel shutters. Therefore, the light intensity measured at each CCD pixel is an 

integration of the incident light modulated by its own shutter. During acquisition, the 

LCOS’s pixels are modulated at a rate higher than the CCD’s frame rate. The image 

formation process can be described by

(4)

where E (m, n) is the light energy measured at pixel (m, n) at the CCD, I (x, y, t) is the input 

event, C (x, y, t) is the time-varying spatial encoding operator depicting the LCOS’s 

modulation, and T is the spatiotemporal integration operator depicting the detection process 

at the CCD. Given the constraint of spatiotemporal sparsity, the inverse problem of Eq. 4 can 

be solved by using a compressed sensing algorithm based on fixed point continuation [215]. 

The spatial resolution of P2C2 is generally worse than the diffraction limit because of the 

spatio-temporal multiplexing at the CCD and sparsity constraint on the input scene during 

image reconstruction. On the other hand, the imaging speed of a P2C2 is fundamentally 

limited by the modulation rate of the LCOS. It is worth noting that, compared with the 

global-shutter coding architecture employed in a flutter shutter video camera [216], the per-

pixel coding architecture leveraged in a P2C2 results in a less ill-conditioned measurement 

matrix and therefore higher reconstruction quality.

CUP, CACTI, and P2C2 share a common thread in that the spatial encoding is accomplished 

by an optical architecture. By contrast, smart pixel imaging (SPI) with computational-
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imaging arrays [203, 204] transfers this encoding process to the digital domain by using a 

digital-pixel focal plane array, thereby minimizing the signal-to-noise loss caused by 

physical encoding elements, such as the DMD in CUP and P2C2, and the absorption mask in 

CACTI. In SPI, each detector pixel can be modulated by a time-varying, pseudo-random, 

and dual-binary signal (−1,1 or 1,0) at a rate up to 100 MHz. The image formation model 

using such a digital-pixel focal plane array can also be described by Eq. 4. However, in SPI 

the time-varying spatial encoding C (t) is introduced in the digital domain, rather than in the 

real image domain as in P2C2. Fernandez-Cull et al. demonstrated that by employing 

algorithms such as TwIST, the event datacube I (x,y,t) can be reasonably estimated [203].

To compare the reconstruction reliabilities of CUP, CACTI, P2C2, and SPI, we simulated the 

image formation processes based on Eqs. 2–4. We constructed the input event with a 

spinning “Siemens star” under constant wave illumination, rotating 10 degrees within time 

interval Δ (Fig. 24). We simulated two illumination conditions: In case 1, the illumination is 

turned on at t=0 and turned off at t=10Δ; in case 2, the illumination is turned on at t=0, but 

turned off at t=500Δ. Given a 1/Δ reconstructed frame rate, the targeted movie sequence 

depths are 10 and 500 frames for cases 1 and 2, respectively. By using the TwIST algorithm, 

we reconstructed the corresponding movies with these two sequence depths and show 

representative time-resolved images in Fig. 24a and 24b, respectively. In Fig. 24a, the CUP-, 

CACTI-, and P2C2- and SPI-reconstructed images have similar reconstruction quality. 

However, in Fig. 24b, CUP performs better than the other modalities because only in CUP 

the encoded image itself is sheared. This reduces the spatiotemporal crosstalk per CCD pixel 

and therefore eases the solution of the inverse problem. This advantage becomes significant 

when we reconstruct a movie with a substantial number of frames, as shown in simulation 

case 2.

We compare snapshot temporal imaging modalities in Table. 4. The spatial resolutions of 

STAMP and parallel streak imaging using a tilted lenslet array are diffraction limited. Akin 

to Fourier-domain OCT, the spatial resolutions in FDT are limited by different factors along 

the two axes. Along the axis into the sample (z), the resolution is determined by the probe 

pulse’s spectral bandwidth—a broader bandwidth leads to a higher spatial resolution. By 

contrast, along the transverse axis (x), the resolution is diffraction limited. In temporal pixel 

multiplexing, because the FPA is divided into exposure groups, the spatial resolution is 

worse than the diffraction limit and determined by the size of each exposure group. For the 

compressed-sensing-based techniques—CUP, CACTI, P2C2, and SPI—because of the 

introduced spatial-temporal multiplexing at the FPA and the requirement of the input scene’s 

sparsity in a specific domain, the spatial resolutions are object-dependent and generally 

worse than the diffraction limit.

Due to its reliance on active illumination, the temporal resolution of STAMP is determined 

by the illumination daughter pulses’ duration and can be varied by adjusting the settings of a 

temporal mapping unit. In FDT, the temporal PSF is determined by the object’s size. 

Therefore, it can temporally resolve only those changes occurring over propagation 

distances larger than the object’s dimensions. Additionally, the number of resolvable 

temporal frames is limited by the object’s size relative to the length of the reconstructed 

phase streak. Parallel streak imaging using a tilted lenslet array and temporal pixel 
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multiplexing maintain the same temporal resolutions as their temporal modulation devices, 

limited by the streak camera’s native temporal resolution and the DMD’s refresh rate, 

respectively. For CUP, CACTI, P2C2, and SPI, similar to their spatial resolutions, their 

temporal resolutions are also object-dependent and degraded from ideal cases by spatio-

temporal multiplexing at the FPA and sparsity constraints.

Measured by optical throughput, STAMP and FDT top the class, maintaining 100% light 

throughput. CACTI, P2C2, and SPI have 50% optical throughput because they employ an 

absorption mask or a DMD as the spatial encoding element. CUP loses light both at the 

beam splitter and spatial encoding DMD, and currently has 12.5% light throughput. The 

optical throughput of parallel streak imaging using a tilted lenslet array is inversely 

proportionally to the spatial resolution along the axis perpendicular to the streak camera’s 

entrance slit; the throughput of temporal pixel multiplexing is inversely proportional to the 

number of exposure groups at the FPA. Therefore, they are not suitable for applications 

which require high spatial resolution.

3.5 Snapshot polarization imaging (x, y, ψ, λ) and spectropolarimetric imaging (x, y, λ, ψ, 
λ)

The polarization state of a single monochromatic wave of unit amplitude can be fully 

described by the polarization orientation angle, ψ, and the ellipticity angle, χ. In practice, it 

is more useful to depict the state of polarization of light using a Stokes vector, particularly 

when the light is incoherent or partially polarized. The Stokes vector consists of four 

parameters which have a relation with ψ and χ:

(5)

where I is the light intensity, and p is the degree of polarization. To image all four Stokes 

parameters, a series of measurements is normally required using a combination of different 

retarders and linear polarizers [217]. However, this time-sequential acquisition mode is not 

suitable for imaging dynamic scenes.

To achieve snapshot polarization imaging, a variety of strategies have been proposed [22]. 

Particularly, if circular polarization is not expected from the scene (that is, S3=0), the 

parallel measurement of S1,S2 and S3 becomes much simpler. Representative techniques in 

this category include imaging polarimetry using a wedged double Wollaston prism [218], 
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imaging polarimetry using a polarization filter array [219, 220], and imaging polarimetry 

using a light field architecture [221].

Imaging polarimetry using a wedged double Wollaston prism [218] is an aperture-division 

direct measurement technique. By inserting a combination of two Wollaston prims at the 

aperture stop, this approach can simultaneously measure polarized light components at 

angles 0, 45°, 90°, and 135° (Fig. 25). The first three Stokes parameters can be determined 

from the data by

(6)

where I (0°), I (45°), I (90°), and I (135°) are the light intensities measured at the 

corresponding polarization angles. Because no polarization filters are used, this approach 

advantageously attains full optical throughput. However, because polarization separation by 

a Wollaston prism is sensitive to wavelength, a narrow band optical filter is required to filter 

the incident light, reducing the SNR and thereby resulting in a longer camera exposure. Mu 

et al. later improved this technique by further dividing the aperture stop and adding another 

Wollaston prism and a quarter wave plate to enable circular polarization measurement [222]. 

Mu also proposed a variant of this approach by replacing the Wollaston prism with a 

combination of four-quadrant retarders, a uniform polarizer, and a pyramid prism [222].

Similarly, imaging polarimetry using a pixel-matched polarizer array [219, 220, 223] is an 

image-division direct measurement technique. The concept was first proposed by Chun et al. 

in 1994 [224]. With advances in microlithography, it is now possible to fabricate micro-

polarizers with sub-wavelength periodic structures. Snapshot imaging polarimetry can be 

realized by directly placing an array of such polarization filters just in front of an FPA. Due 

to the difficulty of fabricating sub-wavelength structures, previous studies were confined to 

the infrared region [223, 224]. Recently, this technology has been extended to the visible 

light range, owing to the rapid progress in nanofabrication techniques. Gruev et al. built a 

polarization camera working in the visible light range by covering a high-resolution CCD 

with pixel-matched nanowire optical filters [219, 220]. The nanowire optical filter array was 

fabricated by photolithography and has a period of 140 nm. On the CCD, each superpixel 

consists of 2 × 2 camera pixels covered by nanowire filters with four different orientations 

offset by 45°, simultaneously measuring four linear polarization components. By using this 

camera, Gruev et al. achieved a SNR of 45 dB at 40 fps [219]. A similar implementation was 

also demonstrated by Neal Brock almost at the same time [225]. However, these polarization 

imagers suffer from a common drawback in their low extinction ratios (~ 44 at 515 nm in 

[219], ~ 50 at 550 nm in [225]), compared with a conventional prism-based polarizers 

(~105).
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Imaging polarimetry using a light field architecture [221] is a aperture-division direct-

measurement technique. This approach inserts an array of polarization filters at the aperture 

of a light field camera. At the detector plane, each sub-pupil image consists of light rays of 

different polarization states. By reorganizing the image pixels, the images associated with 

different polarization orientations can be reconstructed. Compared with polarimeters using a 

wedged double Wollaston prism or using a pixel-matched polarizer array, this method can be 

used for broadband light input, and it is much easier to implement. However, because 

different polarization images actually come from different views, this method suffers from 

the parallax effect commonly seen in multi-view imaging. Traditionally, this method is used 

to measure only linear polarization components. It is noteworthy that recent works have 

implemented this light field architecture in measuring all four Stokes parameters by inserting 

a combination of four-quadrant retarders and polarizers at the aperture stop of the main lens 

[226, 227].

Compared with the aforementioned incomplete polarization imagers, a complete 

polarization imager—an instrument which can simultaneously measure all four Stoke 

parameters—normally requires a more complicated system setup. A common strategy is to 

encode different state-of-polarization (SOP) with different spatial carrier frequencies by 

using an interferometric setup. Oka et al. demonstrated an implementation using a set of 

birefringent wedge prisms placed just in front of a CCD [66], as shown in Fig 26. The 

polarimetric device consists of four wedged birefringent prisms and an analyzer. The fast 

axes of the four prisms are oriented at 0°, 90°, 45°, and −45° with respect to the x axis, 

respectively, and the transmission axis of the analyzer is along the x axis. Using Muller 

matrix calculus, we can derive the analytical expression for the intensity pattern formed at 

the CCD:

(7)

Here S23(x, y) = S2(x, y) + iS3(x, y), and U = 2B tan α /λ, where B denotes the birefringence 

of the prism and α is the inclination angle of the plane of contact between the prisms. 

Equation 7 implies that the interferogram consists of a low-frequency component and three 

quasi-cosinusoidal components which appear as fringe patterns. Because these fringes have 

different frequencies (1/U and ), they serve as carriers and shift the corresponding 

Stokes parameter frequencies in the spatial frequency domain. By properly selecting the 

inclination angle of the wedge prims, these Stokes parameter frequencies can be 

satisfactorily separated and recovered by using a standard Fourier transform technique [228]. 

Despite its compactness, this implementation suffers from the common drawback of a 

monochromatic wave requirement, as also seen in other birefringence-based imaging 

polarimeters.

Based on a similar principle, Oka et al. invented an alternative method by replacing the 

birefringent wedge prisms at the image plane with Savart plates (SP) at the pupil plane 
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[229]. The optical setup, shown in Fig. 27, consists of a first lens, L1; a first Savart plate, 

SP1; a half wave plate, HWP; a second Savart plate, SP2; an analyzer; and a second lens, L2. 

A Savart plate consists of two uniaxial birefringent crystals with equal thickness. The optic 

axis of each crystal is at 45° to the surface normal and is rotated 90° with respect to the other 

crystal. After passing through the first crystal, the incident light is divided into ordinary (o) 

and extraordinary (e) lights, and a lateral displacement, d, is introduced only for the e light 

(Fig. 27a). Upon entering the second crystal, the o light in the first crystal becomes the e 
light and experiences a vertical displacement. Therefore, after the first SP, the incident light 

is split into two parallel light beams whose polarizations are orthogonal and separated by a 

distance of  (Fig. 27b). Then the HWP rotates the polarization coordinates by 45°. The 

second SP further splits the input light into four beams, and the analyzer extracts the 

polarization components along the x axis. The four beams interfere with each other, forming 

fringes at a camera (Fig. 27c). The light intensity distribution in the interferogram can also 

be expressed by Eq. 7. By using a similar image reconstruction method [66], Stokes 

parameters can be calculated from this measured interferogram.

In Oka’s original design [229], the system is built upon a 4f imaging system, where 

polarization-dependent shearing occurs in the spatial frequency domain. Luo et al. 

demonstrated that this design can be further simplified by removing the first lens L1, thereby 

making the system more compact [230]. Later, the same group coupled this modified 

imaging polarimeter to a fundus camera, and demonstrated an application in retinal imaging 

[231]. Despite its compactness and snapshot capability, imaging polarimeters using SPs are 

limited by their reliance on interference effects. Because the visibility of the interference 

fringes is inversely proportional to the incident light’s spectral bandwidth, forming an 

interference fringe with high contrast requires a narrow spectral bandwidth input, a 

constraint that significantly decreases the SNR. Additionally, the limited availability of large 

birefringent crystals, particularly in the infrared region, limits further development of this 

technology.

The above two types of complete imaging polarimeters [66, 229] require monochromatic 

light input, limiting their applications in imaging natural scenes which normally reflect or 

emit broadband spectra. To remove this restriction, Kudenov et al. developed a white-light 

channeled imaging polarimeter [232]. Based on Oka’s design [229], Kudenov replaced each 

Savart plate with a pair of polarization gratings [233, 234], each of which acts as a 

polarization angular beam splitter (Fig. 28). However, rather than splitting the incident light 

into two linear eigen-polarizations as a Wollaston prism does, a polarization grating 

separates light into two circular eigen-polarization components [235]. The advantage of 

using polarization gratings is that in the final interferogram the carrier’s frequencies are 

independent of wavelength, thereby allowing the Stokes parameters to be encoded into 

spectrally broadband interference fringes. Based on this technology, Kudenov recently built 

a snapshot imaging Mueller matrix polarizer by adding an illumination module which is 

essentially a mirror-reflection version of detection polarization optics, as shown in Fig. 28 

[236].

We compare the snapshot polarization imaging modalities in Table 5. The spatial resolutions 

of imaging polarimetry using a wedged double Wollaston prism, and of channeled imaging 
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polarimetry using birefringent wedge prisms, Savart plates, and polarization gratings are all 

diffraction limited. By contrast, because imaging polarimeters using a pixel-matched 

polarizer array or a light field architecture are both based on the image-division strategy, 

their spatial resolutions are limited by the dimensions of a superpixel at the FPA and a 

lenslet, respectively.

All of the aforementioned snapshot polarization imagers can measure the linear Stokes 

components (S0, S1, and S2). The three variants of channeled imaging polarimetry, and 

recent versions of imaging polarimetry using a wedged double Wollaston prism or a light 

field architecture, can measure the complete Stokes components (S0, S1, S2, and S3). 

However, only imaging polarimetry using a light field architecture and complete channeled 

imaging polarimetry using polarization gratings allow broadband spectral input. The other 

modalities work only when the input scene is monochromatic or narrow banded, because 

birefringent materials are sensitive to light wavelength.

Among all these snapshot polarization imaging modalities, only that using a wedged double 

Wollaston prism maintains 100% optical throughput. All others lose 50% of the light 

because they use analyzers either to pick up the linear polarization components or force 

interference at the FPA.

A snapshot imaging spectropolarimeter [237] can simultaneously measure a 3D 

spatiospectral (x,y,λ) datacube for each of the Stokes parameters. Conventionally, such a 

measurement requires scanning in specific domains, such as the spatial domain in channeled 

spectropolarimetry [238], the OPD in Fourier transform imaging spectropolarimetry [239, 

240], or polarization in Stokes imaging spectropolarimetry [241]. Recent efforts to eliminate 

the scanning requirement include combining channeled spectropolarimetry with CTIS, also 

referred to as computed tomographic imaging channeled spectropolarimetry (CTICS) [242–

244], combining channeled spectropolarimetry with IMS [245], combining integral field 

spectrometry with division-of-aperture imaging polarimetry [222], and utilizing polarization 

gratings [246, 247].

The marriage between channeled spectropolarimetry and snapshot spectral imagers, such as 

CTIS and IMS, becomes possible because both CTIS and IMS are insensitive to the incident 

light’s polarization. In other words, the spectral reconstruction and polarization 

reconstruction can be carried out independently. Compared with a standard CTIS setup, the 

CTICS implementation [242–244] adds three additional polarization elements—two 

retarders and a polarizer—at the aperture stop. These additional polarization elements 

introduce spectral modulation in each of CTIS’s diffraction orders. The reconstruction 

process has two steps. The first step is spectral reconstruction, using the same tomographic 

technique as in CTIS. The second step is polarization reconstruction, using the Fourier 

transform technique (as in channeled spectropolarimetry) across the recovered spectra at 

each spatial location from step one. In combining channeled spectropolarimetry with IMS 

[245], the polarization modulation module and spectral imaging module also work 

independently. However, different from CTICS, only one reconstruction process, namely 

polarization reconstruction, is required because the spectrum can be directly measured by 

IMS. Therefore, the combination of channeled spectropolarimetry with IMS is expected to 
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yield better image quality than CTICS, although an experimental demonstration is still 

absent.

In [222], Mu proposes a snapshot imaging spectropolarimetry design that combines integral 

field spectrometry with aperture-division imaging polarimetry. The basic idea is to reformat 

the input 2D FOV into a 1D array by using an integral field unit, such as a coherent fiber 

bundle [33], followed by polarization separation using a polarization array at the aperture 

and spectral separation using a prim. This strategy is conceptually similar to combining 

channeled spectropolarimetry with IMS, as previously mentioned. However, no 

computational reconstruction is involved because both the spectrum and polarization are 

directly measured. Therefore, this method can potentially avoid reconstruction artifacts and 

high computational cost. A disadvantage is the loss of optical throughput due to the 

introduction of polarization filters.

In [246, 247], Kim et al. demonstrated a snapshot polarization grating imaging 

spectropolarimeter (PGIS). As previously mentioned, given a monochromatic wave input, a 

polarization grating can produce three diffraction orders—the polarization-independent 

zeroth order and two polarization-sensitive first-orders [235]. In cases where the incident 

light is chromatic, a polarization grating will separate the different polarizations as well as 

the wavelengths, thereby allowing simultaneous measurement of polarization and the 

spectrum with a single instrument. PGIS employs a quarter-wave plate sandwiched between 

two orthogonally-arranged polarization gratings as a unified polarization and spectral 

dispersion unit, and it places this unit at the aperture stop, projecting complete polarization 

and spectral information onto 2D dispersion patterns at an FPA. Image reconstruction can be 

done by applying an iterative tomographic algorithm similar to that in CTIS. Because the 

polarization components are directly measured, PGIS requires less post-computation than 

CTICS. However, because only three diffraction orders can be generated using a single 

polarization grating, to achieve a spatiospectral response similar to that in CTICS (that is, to 

generate a similar number of spatiospectral projections at an FPA), a stack of polarization 

gratings and wave plates are normally required, which may lead to a bulky setup.

4. Discussions and outlook

In this review, we categorized snapshot multidimensional imagers based on their acquisition 

strategies and reconstruction strategies, and we discussed their state-of-the-art 

implementations in spectral imaging, plenoptic imaging, volumetric imaging, temporal 

imaging, and polarization imaging. Compared with their scanning-based counterparts, 

snapshot imagers have a remarkable advantage in optical throughput. The more datacube 

dimensions a snapshot imager measures, the greater the advantage in comparison to 

alternative scanning-based methods.

As previously mentioned, a snapshot imager can capture an entire set of photon tags only if 

its measurement does not sacrifice one acquisition for another. A current state-of-the-art 

snapshot imager, such as the spectropolarimetric imager discussed in Section 3.5, can 

capture up to five photon tags. Because of the “no-sacrifice” principle, we are still a fair 

Gao and Wang Page 29

Phys Rep. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distance away from developing an ultimate snapshot imager that can acquire all nine photon 

tags in parallel.

The dimensions of a datacube are fundamentally limited by the number of pixels at FPA. For 

techniques using direct measurement strategies, at Nyquist sampling condition, the maximal 

number of resolvable datacube voxels that can be measured within a single camera snapshot 

is limited to MxMy/4, where Mx, My are number of FPA pixels along x and y axis, 

respectively. For example, when using a 50 Megapixels CCD sensor [4], an IMS can 

measure a datacube with resolvable voxels up to 500 × 500 × 50 (x,y,λ) in a spatial-

resolution-priory mode or 250 × 250 × 200 (x,y,λ) in a spectral-resolution-priory mode. 

When measuring a high-dimensional datacube, this trade-off among resolutions along 

different dimensions becomes more significant because the FPA pixels have to be assigned 

to more photon characteristic bins.

To break this limitation, an effective approach is to integrate compressed sensing (CS) into 

the multidimensional imaging framework [248, 249]. Techniques that have taken this 

advantage encompass CASSI (discussed in Section 4.1), compressed integral imaging 

(discussed in Section 4.2), CUP, P2C2, CTICS, and SPI (discussed in Section 3.4). While 

CASSI and compressed integral imaging utilize CS to overcome the spatial bandwidth 

limitation of an FPA, the latter four techniques leverage the same framework to circumvent 

the FPA’s temporal bandwidth limit. However, CS-based imaging highly relies on signals’ 

sparsity in certain domains, therefore posing a practical restriction on the applicable objects.

The noises in multidimensional optical imaging are mainly contributed by two sources—

photon noise and detector noise. In cases where detector noises dominate, similar to the 

Felgett advantage [250] in Fourier transform spectrometry, multiplexing-based snapshot 

imagers have an edge over their direct-measurement counterparts in achieving a higher 

signal to noise ratio (SNR). Techniques that utilize this advantage include MSI (discussed in 

Section 3.1), dappled photography (discussed in Section 3.2), FDT (discussed in Section 

3.4), and complete channeled imaging polarimetry using birefringent wedge prisms, Savart 

plates, and polarization gratings (discussed in Section 3.5). However, along with the ongoing 

development of FPA technology, detector noises have been steadily reduced to a negligible 

level compared with photon noise, from the ultraviolet to mid-wave infrared. This 

multiplexing advantage has now become less important because it no longer provides the 

SNR improvement it once did.

The advancement of snapshot multidimensional imagers has gradually shifted its focus from 

technological development towards application. Besides the imagers’ traditional 

employment in remote sensing, recent applications in biomedical imaging have prominently 

emerged. For example, the snapshot spectral imager, IMS, has been demonstrated for both 

live cell imaging [46] and in-vivo tissue imaging [50], providing unprecedented details about 

the spectral signatures of both exogenous and endogenous chromophores. In another 

example, 3D integral imaging has recently been employed in both microscopy [95] and 

otoscopy [61], enabling the first 3D real time imaging of neuron cells and ear drums, 

respectively. Because the dose of illumination is normally restricted for in vivo or live cell 
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imaging due to safety [23] or phototoxic concerns [251], the throughput advantage that 

snapshot imagers offer becomes even more valuable in biomedical applications.
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Appendix

List of acronyms (alphabetical order)

Acronym Full name

CACTI Coded aperture compressive temporal imaging

CASSI Coded aperture snapshot spectral imaging

CCD Charge-coupled device

CS Compressed sensing

CTIS Computed tomography imaging spectrometry

CTICS Computed tomographic imaging channeled spectropolarimeter

CMOS Complementary metal–oxide–semiconductor

CUP Compressed ultrafast photography

DMD Digital micro-mirror device

EI Elemental image

FDT Fourier domain tomography

FPA Focal plane array

FOV Field of view

MLA Microlens array

MSI Multispectral Sagnac interferometry

NA Numerical aperture

IRIS Image-replicating imaging spectrometry

IS-FB Imaging spectrometry using a fiber bundle

IS-FS Imaging spectrometry using a filter stack

IS-LFA Imaging spectrometry using a light field architecture

IMS Image mapping spectrometry

OCT Optical coherence tomography

OPT Optical path difference

PGIS Polarization grating imaging spectropolarimeter

P2C2 Programmable pixel compressive camera

SHIFT Snapshot hyperspectral imaging Fourier transform spectrometry

SLM Spatial light modulator

SNR Signal to noise ratio

SPI Smart pixel imaging
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Acronym Full name

STAMP Sequentially timed all-optical mapping photography

TwIST Two-step iterative shrinkage/thresholding algorithm

VHI Volume holographic imaging
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Fig. 1. 
Filter-based versus mapping-based multidimensional imaging. a. Filter-based 

multidimensional imaging suffers from throughput loss at each filtering stage. In this 

illustrative example, the incident photons experience throughput losses both at the filter 

wheel (wavelength selection unit) and polarization filter wheel (polarization selection unit). 

b. Mapping-based multidimensional imaging retains full throughput because it utilizes 

optical devices—e.g., a diffraction grating and Wollaston prism—that direct, rather than 

filter, the incident photons towards the corresponding pixels at the FPA. The colored spheres 
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represent the incident photons of different wavelengths, and the arrow above each photon 

depicts its linear polarization direction.
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Fig. 2. 
Conceptual architecture for categorizing snapshot multidimensional imaging techniques.
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Fig. 3. 
Image mapping spectrometry (IMS). a. Optical setup. b. Photograph of an image mapper. 

Figure reprinted with permission from [45] and [17].
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Fig. 4. 
Integral imaging spectrometry using hyperpixels. a. Image of undispersed sub-pupils after 

pinhole filtering. b. Image of spectrally dispersed sub-pupils. Figure reprinted with 

permission from [32].
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Fig. 5. 
Reformatting a 2D image to 1D signals by a maneuverable coherence fiber bundle. Figure 

adapted with permission from [55].
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Fig. 6. 
Imaging spectrometry using a filter stack. Figure reprinted with permission from [60].
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Fig. 7. 
Optical setup of an imaging spectrometer using a light field architecture. u, v, coordinates at 

the lens aperture; s, t, coordinates at the pinhole array. Figure reprinted with permission from 

[61].
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Fig. 8. 
Image-replicating imaging spectrometry (IRIS). a. Birefringent spectral demultiplexor. b. 

Optical setup. t1, t2 thickness of retarders. Figure reprinted with permission from [35].
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Fig. 9. 
Snapshot hyperspectral imaging Fourier transform spectrometry (SHIFT). a. Optical setup. 

b. 3D interferogram. A, analyzer; FPA, focal plane array; G, polarizer; HWP, half wave 

plate; NP1, NP2, Nomarski prims. Figure adapted with permission from [65].
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Fig. 10. 
Optical setup of a multispectral Sagnac interferometer. G1, G2, diffraction gratings; LP, 

linear polarizer; M1, M2, mirrors; WGBS, wire-grid beam splitter. Figure reprinted with 

permission from [38].
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Fig. 11. 
Computed tomography imaging spectrometry (CTIS). a. Optical setup. b. Diffraction-order 

images of retina dispersed by a computer-generated-holograph (CGH). Figure adapted with 

permission from [77].
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Fig. 12. 
Snapshot plenoptic imaging. a. Near-field integral imaging setup. b. Far-field integral 

imaging setup. c. Dappled photography setup. FPA, focal plane array.
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Fig. 13. 
Dual-camera optical setup for simultaneous two-plane imaging. Figure reprinted with 

permission from [118].

Gao and Wang Page 57

Phys Rep. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Snapshot volumetric imaging by using a multiplexed volume hologram. Figure adapted with 

permission from [121].
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Fig. 15. 
Use of a distorted grating in an imaging system. a. When a single object is imaged by a 

distorted grating and lens, different diffraction-order images are formed at different image 

planes. b. When multiple objects at different depths are imaged by same imaging system, 

their different diffraction-order-associated images are formed at the same image plane. 

Figure adapted with permission from [124].
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Fig. 16. 
Optical setup of a parallel phase-shifting digital holography technique. Figure reprinted with 

permission from [172].
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Fig. 17. 
Parallel phase-shifting digital holography utilizing fractional Talbot effect. a. Formation of 

Fresnel images. b. Optical setup. Figure reprinted with permission from [175].
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Fig. 18. 
Sequentially timed all-optical mapping photography (STAMP). Figure reprinted with 

permission from [26].
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Fig. 19. 
Schematic setup for frequency-domain streak tomography of evolving pump-laser-induced 

refractive index changes. Reprint with permission from [199].

Gao and Wang Page 63

Phys Rep. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 20. 
Optical setup of parallel streak imaging utilizing a lenslet array. Figure adapted with 

permission from [200].
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Fig. 21. 
Temporal pixel multiplexing utilizing a digital micro-mirror device (DMD) as an active 

shutter. a. Optical setup. b. Exposure groups at the camera. c. Exposure time for different 

pixels in an exposure group. d. Reorganization of camera pixels dependent on the exposure 

time. Figure adapted with permission from [201].
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Fig. 22. 
Optical setup of compressed ultrafast photography (CUP). DMD, digital micro-mirror 

device. Figure reprinted with permission from [27].
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Fig. 23. 
Programmable pixel compressive camera (P2C2). a. Optical setup. b. Photograph of system. 

LCOS, liquid crystal on silicon. Figure reprinted with permission from [13].
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Fig. 24. 
Comparison of reconstruction reliability in CUP, CACTI, and P2C2 and SPI. The 

reconstructed movie sequence depth is 10 and 500 frames for a and b, respectively.
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Fig. 25. 
Imaging polarimetry using a wedged double Wollaston prism. Figure reprinted with 

permission from [217].
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Fig. 26. 
Schematic of a device using four wedged birefringent prisms and an analyzer to perform 

complete imaging polarimetry. PR, prism pair. Figure reprinted with permission from [67].
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Fig. 27. 
Snapshot imaging polarimetry using Savart plates. a. Uniaxial birefringent crystal in a Savart 

plate. b. Savart plate. c. Optical setup. HWP, half-wave plate; L1, L2, lenses; SP1, SP2, 

Savart plates; A, analyzer. Figure reprinted with permission from [228].
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Fig. 28. 
Optical setup of a white-light channeled imaging polarimeter. PG1, PG2, PG3, PG4, 

polarization grating; QWP, quarter-wave plate. Figure reprinted with permission from [231].
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