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We study the scalar stochastic gravitational-wave background (SGWB) from astrophysical sources,
including compact binary mergers and stellar collapses, in the Brans-Dicke theory of gravity. By contrast to
tensor waves, the scalar SGWB predominantly arises from stellar collapses. These collapses not only take
place at higher astrophysical rates but also emit more energy. This is because, unlike tensor radiation which
mainly starts from quadrupole order, the scalar perturbation can be excited by changes in the monopole
moment. In particular, in the case of stellar collapse into a neutron star or a black hole, the monopole
radiation, at frequencies below 100 Hz, is dominated by the memory effect. At low frequencies, the scalar
SGWB spectrum follows a power law of ΩS ∝ fα, with α ¼ 1. We predict that ΩS is inversely proportional
to the square of ωBD þ 2, with ðωBD þ 2Þ2ΩSðf ¼ 25 HzÞ ¼ 2.8 × 10−6. We also estimate the detectability
of the scalar SGWB for current and third-generation detector networks and the bound on ωBD that can be
imposed from these observations.
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I. INTRODUCTION

The first direct detection of gravitational waves (GWs)
from the merger of binary black holes (BBHs) by the
LIGO-Virgo Collaboration [1] marks the beginning of
gravitational-wave astronomy and opens up a new window
to the Universe. Since then, more GW events, both from
BBH mergers and from binary neutron star (BNS) mergers,
have been detected by the Advanced LIGO/Virgo network
[2–5]. Besides these resolvable, individual GW sources we
have discovered so far, a stochastic gravitational-wave
background (SGWB), which arises from the population
of unresolved GW events at larger distances, is anticipated
to be detectable in the upcoming years [6,7].
Gravitational-wave signals provide us with unprec-

edented opportunities to test general relativity (GR) and
study modified theories of gravity [1,3,8,9]. One significant
prediction of general relativity is that gravitational waves
only contain two tensor polarization modes (þmode and ×
mode). On the other hand, additional polarization modes do
exist in modified theories of gravity; if directly detected,
they would become strong evidence for extensions to
Einstein’s original theory [10,11]. For example, the
Brans-Dicke (BD) theory [12], which minimally extends
Einstein’s gravity by incorporating a scalar field (Brans-
Dicke field) coupled to the metric tensor, predicts the
existence of a transverse scalar polarization mode (also
referred to as the breathing, or the “∘ mode”). Previously,

several detection strategies for the nontensorial SGWB
have been proposed [13–15]. A recent study [16], based on
the method in [15] and the data from LIGO’s O1 observing
run, has placed the first constraints on the contributions
from nontensorial polarizations to the SGWB.
All the works so far have assumed general, power-law

models for the energy spectra of the nontensorial SGWB—
without considering its specific origins. However, in order
to theoretically estimate the plausible magnitudes of the
nontensorial SGWB, and to experimentally make statistical
inferences on parameters of modified gravity models from
detector data, it is necessary to consider the astrophysical
origins of the nontensorial SGWB. Furthermore, obtaining
astrophysicically motivated energy spectra may allow us to
more efficiently search for the nontensorial SGWB using a
more optimal matched filtering technique [17]—than sim-
ply assuming a power-law spectrum.
In this paper, we focus on the SGWB in the transverse

scalar mode of the Brans-Dicke (BD) theory: identifying its
astrophysical origins and obtaining its energy spectrum (as
a function of the BD coupling constant). Candidates for
sources of the SGWB include gravitational stellar collapses
and compact binary mergers. As we will see, the existence
of monopole scalar radiations makes stellar collapses by far
the major contributor to this SGWB. This differs signifi-
cantly from the tensorial SGWB in GR, which is dominated
by BBH and BNS mergers.
This paper is organized as follows: In Sec. II, we give an

overview of the scalar GW in Brans-Dicke theory and its
relation to scalar SGWB. In Secs. III and IV, we calculate*smdu@caltech.edu
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the contributions to the scalar SGWB from compact binary
coalescences, including BBH and BNS mergers, as well as
the contribution from gravitational stellar collapses. In
Sec. V, we explore how the scalar SGWB depends on
variations in the underlying population models. In Sec. VI,
we discuss the detectability and possible constraints on the
BD coupling constant ωBD from current and future obser-
vations. Finally, in Sec. VI, we draw conclusions and
suggest prospective research directions.

II. SCALAR GW IN BRANS-DICKE THEORY
AND RELATION TO SGWB

In the Brans-Dicke (BD) theory, the Lagrangian density
of the gravity sector in the original conformal frame is
given by

LBD ¼ ffiffiffiffiffiffi
−g

p �
ϕR − ωBD

∂μϕ∂μϕ

ϕ

�
; ð1Þ

where the Ricci scalar R is associated with the spacetime
metric tensor gμν. The scalar field ϕ is related to the
gravitational constant G via the relation

Gϕ0 ¼
2ωBD þ 4

2ωBD þ 3
; ð2Þ

where ϕ0 is the value of the scalar field at null infinity. The
matter sector Lagrangian density remains the same as in
GR, which means the scalar field does not couple to the
matter fields directly. When the model parameter ωBD
approaches infinity, Brans-Dicke theory recovers to GR. In
this rest of this section, we shall discuss the polarization
content of GWs in the BD theory and describe the energy
content of the scalar SGWB. Details can be found in
Refs. [12,13].

A. GWs in the BD theory

To study GWs in Brans-Dicke theory, we perform a
perturbation of the metric tensor and the scalar field around
the Minkowski spacetime and the null infinity value,
respectively,

gμν ¼ ημν þ hμν; ϕ ¼ ϕ0 þ δϕ; ð3Þ

where components of the metric tensor in Minkowski
spacetime are chosen to be ημν ¼ diagð−1; 1; 1; 1Þ. The
perturbative Lagrangian contains a quadratic cross term:
hμνð∂μ∂ν − ημν∂2Þδϕ. To eliminate this term we redefine
the following physical degrees of freedom:

Hμν ¼ hμν þ ημν
δϕ

ϕ0

: ð4Þ

Under these treatments, the perturbative Lagrangian is
expressed as

LBD ¼ Lkin
BD þ LS

BD þ Lother
BD ;

Lkin
BD ¼ ϕ0

2
HμνVμνρσHρσ þ ωBD þ 3=2

ϕ0

ημνδϕ∂μ∂νδϕ;

LS
BD ¼ ωBD þ 3=2

ϕ0

�
Hμν −

1

2
ημνH

�
∂μδϕ∂νδϕ: ð5Þ

Here Lkin
BD represents the kinetic terms for the tensor field

Hμν and the scalar field δϕ, where the operator Vμνρσ is
defined as

Vμνρσ ¼
1

2
½ðημρηνσ − ημνηρσÞ∂2 þ ημν∂ρ∂σ

þ ηρσ∂μ∂ν − ημρ∂ν∂σ − ηνσ∂μ∂ρ�:

The Lagrangian LS
BD contains the leading interaction terms

between the scalar and the tensor fields. Later, we shall
show that it relates to the scalar stress-energy tensor. The
third term Lother

BD contains other higher-order interaction
terms. Notice that the Lagrangians in Eq. (5) is invariant
under the infinitesimal diffeomorphism transformation
xμ → x0μ ¼ xμ þ ξμðxÞ:

�
Hμν → H0

μν ¼ Hμν − ∂μξν − ∂νξμ

δϕ → δϕ0 ¼ δϕ:
ð6Þ

The vacuum field equation for Hμν is obtained from
δLkin

BD=δHμν ¼ 0, which gives VμνρσHρσ ¼ 0. If we choose
the harmonic coordinate condition, this equation is
reduced to

� ∂2Hμν ¼ 0

∂μHμν − 1
2
∂νH ¼ 0:

ð7Þ

Notice that the vacuum field equation (7) and the gauge
transformation Eq. (6) have the same form as in GR; hence,
we can similarly gauge away redundant degrees of freedom
which leave only two physical ones.
However, GW detectors respond directly to the change in

the spacetime metric, i.e., hμν, which depends both on Hμν

and δϕ. As a result, three physical degrees of freedom
remain for hμν [13]. More specifically, within a spatial slice,
let ΣΩ be the two-dimensional plane perpendicular to the
plain wave propagation direction Ω̂, and let m̂, n̂ be the two
orthogonal unit vectors in ΣΩ, then we can find a gauge in
which the plain wave can be expanded as

hijðxÞ ¼ hþðxÞeþij þ h×ðxÞe×ij þ hSðxÞeSij: ð8Þ

Here, the amplitudes are related to Hij and δϕ via

hþ ¼ eijþHTT
ij =2; h× ¼ eij×HTT

ij =2; hS ¼ −δϕ=ϕ0;

ð9Þ
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where HTT
ij is the transverse-traceless part of Hij [18]. The

polarization tensors are expressed as

eþij ¼ m̂im̂j − n̂in̂j; e×ij ¼ m̂in̂j þ n̂im̂j;

eSij ¼ m̂im̂j þ n̂in̂j: ð10Þ

Here eþ;× and eS represent tensor and scalar polarizations
of GW, respectively, because under an SO(2) rotation in ΣΩ
plane, m̂0 þ in̂0 ¼ expðiθÞðm̂þ in̂Þ, they behave as eþ0 þ
ie×0 ¼ expð2iθÞðeþ þ ie×Þ and eS0 ¼ eS.

B. The scalar SGWB

We expect the presence of the scalar GW would give rise
to a stochastic background with scalar polarization, which
is described by the dimensionless energy density spectrum:

Ω̃SðfÞ ¼
1

ρc

dρS
d ln f

: ð11Þ

In this equation, ρc ¼ 3H2
0=8πG is the critical density to

close the Universe with H0 representing the Hubble
constant. The energy density of the scalar GW ρS relates
to the scalar stress-energy tensor Tμν

S via ρS ¼ T00
S , with

Tμν
S ¼ 1

8π

∂LS
BD

∂Hμν
¼ ωBD þ 2

8πG

�
∂μhS∂νhS −

ημν

2
∂ρhS∂ρhS

�
:

ð12Þ

Combining with the field equation ∂2hS ¼ 0 and averaging
over several wave lengths, we obtain [13]

ρS ¼
ωBD þ 2

8πG
h _h2SðxÞi: ð13Þ

Under the assumption that the stochastic background is
stationary, isotropic, and Gaussian, the ensemble average of
the Fourier transformed amplitude h̃Sðf; Ω̂Þ satisfies

hh̃�Sðf; Ω̂Þh̃Sðf0; Ω̂0Þi ¼ 5

8π
δðΩ̂ − Ω̂0Þδðf − f0ÞHSðfÞ:

ð14Þ

Here, h̃Sðf; Ω̂Þ relates to hðt;xÞ via

hSðt;xÞ ¼
Z

d3k
ð2πÞ3 e

−iωðkÞtþik·xh̃Sðf; Ω̂Þ þ c:c: ð15Þ

with ωðkÞ ¼ jkj=c, and

k ¼ 2πfΩ̂=c; ð16Þ

where Ω̂ is the unit vector along the direction of k.
The quantity HS is defined as the spectral density for

scalar GW. The factor of 5=8π follows the same convention
in [15,16].
Under this definition, HS is related to the scalar spectral

density Ω̃S
GW [defined in Eqs. (11)–(13)], via

Ω̃SðfÞ ¼ ðωBD þ 2Þ 20π
2

3H2
0

f3HSðfÞ: ð17Þ

As we shall see later in Sec. V, the quantity HS is directly
related to the detectability of the scalar SGWB [see
Eq. (33)]. In this way, even though Ω̃S is directly propor-
tional to the energy density of the scalar wave, detectability
of the background, given the same Ω̃S, still depends on the
BD coupling constant ωBD. This is related to the appear-
ance of the ωBD þ 2 term in the coefficient of Eq. (12).
Instead, following the same convention as Ref. [16], we
define a new quantity

ΩSðfÞ ¼
Ω̃SðfÞ
ωBD þ 2

¼ 20π2

3H2
0

f3HSðfÞ: ð18Þ

In the following discussions, we will keep using this
redefined energy density spectrum to describe the sca-
lar SGWB.

III. SCALAR AND TENSOR SGWB FROM
MERGERS OF COMPACT BINARY SYSTEM

A. Tensor SGWB from compact binary
mergers in BD theory

In GR, the SGWB has only tensor polarization, and the
major contribution within the bandwidth of ground-based
GW detectors is from the mergers of BBH, with ΩTðf ¼
25 HzÞ ≃ 1.1 × 10−9 [6]. Besides BBH, the mergers of
BNS have a comparable contribution to the SGWB, with
ΩTðf ¼ 25 HzÞ ≃ 0.7 × 10−9 [7]. In BD, we expect that
the tensor SGWB takes approximately the same value as in
GR, which is predicted from the relation [19,20]

PðBDÞ
T ¼ 2ωBD þ 3

2ωBD þ 4
PðGRÞ
T ; ð19Þ

where PðBDÞ
T and PðGRÞ

T denote the power emitted in GW
with tensor polarization from a system of binary stars in BD
and in GR, respectively, at the same orbital frequency. For a
large ωBD, we expect the ratio between the two powers is
approximately equal to one. As will be shown in the next
section, in BD most gravitational radiation by binary stars
is from tensor GW—with scalar radiation suppressed by
ωBD. Consequently, the coalescing trajectory of the com-
pact binary system which is mainly a result of GW
radiation, as well as the spectrum of tensor GW radiation,
is nearly unchanged as in GR.
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B. Scalar radiation from a compact
binary in BD theory

As for the scalar part, the story is completely different:
the contribution to the scalar SGWB from the mergers of
BBH is exactly zero. This is a direct implication from
Hawking’s “no scalar-hair” theorem of black holes in the
BD theory of gravity [21]. The theorem states that for black
holes in BD, the exterior spacetine geometry is the same as
in GR, and the scalar field ϕ takes a constant value. Since
hS ¼ 0 everywhere, there is no scalar GW radiation from
the merger of BBH.
On the other hand, the no scalar-hair theorem does not

forbid scalar GWs emitted from mergers of BNS. Within
the bandwidth of ground-based GW detectors, the back-
ground is mainly from the inspiral stage, since the BNS
merger frequency is above 2 kHz [7]. The power of scalar
GW emission from inspiraling binary systems has been
studied in [19,20]. Contrary to the tensor case, the scalar
GW has monopole and dipole radiations in addition to
quadrupole radiation. In the limit of vanishing eccentricity
e → 0 (this assumption should be valid since the orbital
angular momentum should have been radiated away from
GW emission for coalescing binary systems as they enter
the band of ground-based detectors), the scalar energy
spectrum for the monopole radiation (j ¼ 0) is negligible
(binary systems with circular orbit have no monopole
moment), while the dipole (j ¼ 1) and quadruple (j ¼ 2)
are given by

dEj¼1
S

df
¼ 1

ωBD þ 2

5

48

�
BE1

m1

−
BE2

m2

�
m1m2

m1 þm2

f−1

dEj¼2
S

df
¼ 1

ωBD þ 2

ðπGÞ23
36

m1m2

ðm1 þm2Þ13
f−

1
3: ð20Þ

Here, f represents the frequency of GW, andm1 andm2 are
the masses of the two neutron stars in the binary system.
The energy spectrum is derived from the relation to the
power, dEj

S=df ¼ Pj
S= _f, where we adopt the power of

scalar GWemission Pj
S calculated by Brunetti et al. [19]. In

the limit of e → 0, the orbital frequency F and the GW
frequency f are related by f ¼ jF for j ¼ 1, 2. The rate of
change of the orbital frequency due to GW emission is the
same as in GR [22]:

_F ¼ 48π
8
3G

5
3

5

m1m2

ðm1 þm2Þ13
ð2FÞ113 : ð21Þ

In Eq. (20), BE represents the binding energy of neutron
stars, and we adopt the model by Lattimer and Prakash
[23], which reads

BE
m

≃
0.6β

1 − 0.5β
; ð22Þ

where β ¼ Gm=R with R denoting the radius of the
neutron star.

C. Scalar SGWB from compact binaries in BD theory

The energy density spectrum of the produced SGWB can
be obtained from the emission spectrum of a single BNS
merger event via [6,24]

Ωj
SðfÞ ¼

1

ωBD þ 2

f
ρc

Z
zmax

0

dz
RmðzÞ dE

j
S

df ðfzÞ
ð1þ zÞHðzÞ ; ð23Þ

where fz ¼ ð1þ zÞf is the frequency at emission. Note
that the factor of 1=ðωBD þ 2Þ is from the definition of
Eq. (18). Here, we adopt the ΛCDM cosmological model
with

HðzÞ ¼ H0½ΩMð1þ zÞ3 þΩΛ�1=2; ð24Þ

where the Hubble constant H0 ¼ 70 km=sMpc, ΩM ¼ 0.3
and ΩΛ ¼ 0.7. The redshift cutoff is chosen as zmax ¼ 10.
In Eq. (23), RmðzÞ is the BNS merger rate per comoving
volume at redshift z. We adopt the same merger rate as in
[7], which is expressed as

RmðzÞ ¼ Rmð0Þ
R tmax
tmin

dtd Rf½zfðz; tdÞ�pðtdÞR tmax
tmin

dtd Rf½zfð0; tdÞ�pðtdÞ
: ð25Þ

Here, td denotes the time delay between formation and
merger of BNS, and pðtdÞ is its probability distribution
function. We assume pðtdÞ ∝ 1=td for tmin < td < tmax,
with tmin ¼ 20 Mpc and tmax equal to the Hubble timeH−1

0 .
The BNS formation rate RfðzÞ is assumed to be propor-
tional to the star formation rate (SFR): RfðzÞ ∝ _ρ�ðzÞ. As in
[6,7], we adopt the GRB-based SFR model given in [25],
which is inferred from observed gamma-ray burst data at
high redshift [26]. The local BNS merger rate is inferred
from GW170817 [5] with Rmð0Þ ¼ 1540 Gpc−3 yr−1, and
zfðz; tdÞ is the redshift at the binary formation time
tf ¼ tðzÞ − td, with tðzÞ the age of the Universe at merger.
In Eq. (23), the energy spectrum is given by Eq. (20)

with the observed GW frequency f replaced by the
frequency at emission fz. The frequency cutoff is at the
innermost stable circular orbit (ISCO) [27]: fmax ¼
fISCO ≃ 4400=ðm1 þm2Þ Hz, with the mass in the unit
of M⊙. As in [7], the neutron star masses m1 and m2 in the
binary are assumed to follow a uniform distribution
ranging from 1 to 2 M⊙. We adopt the neutron star mass-
radius relation from the baseline model of Steiner et al.
[28]. Within our range of m, the radius is around
R ≈ 12 km.
We show the resulting scalar SGWB in Fig 1. Note that

the energy density spectrum ΩS we have chosen to use
scales with the BD parameter as ΩS ∝ ðωBD þ 2Þ−2. For
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BNS mergers, we predict ðωBD þ 2Þ2Ωj¼1
S ðf ¼ 25 HzÞ ¼

1.1 × 10−11 with a power law of f0 at low frequencies and
ðωBD þ 2Þ2Ωj¼2

S ðf ¼ 25 HzÞ ¼ 6.0 × 10−11 with a power
law of f2=3 at low frequencies. For f > 10 Hz, the dipole
(j ¼ 1) contribution to the scalar SGWB is much less than
the quadrupole (j ¼ 2), which is a consequence from the
small asymmetry between the two neutron stars in the
binary system. Also, as discussed earlier, BBH has no
contribution to the scalar SGWB.

IV. SCALAR SGWB FROM STELLAR
GRAVITATIONAL CORE COLLAPSE

It is well known that massive stars end their lives through
gravitational core collapse. In GR, stellar core collapses only
contribute a minor fraction to the total SGWB. For example,
Crocker et al. [29] predict an SGWB from the black hole
ringdown following the collapsewithΩTðf ¼ 25 HzÞ ≃ 2 ×
10−12 (Fig. 6 of [29], model 2 and 3). In [30], Buonanno et al.
predict the background from the neutrino burst associated
with the core collapse with ΩTðf ¼ 25 HzÞ ≃ 1 × 10−13

(Fig. 1 of [30], the optimistic model). The small contribution
to the SGWB given the greater event rate of stellar collapses
compared to binarymergers can be explained by the fact that,
in GR, the tensor GWs are emitted through secondary effects
of stellar collapse: only the small asymmetry in the collapse
gives rise to a nonzero quadrupole moment.

A. Scalar emission from gravitational core collapse

However, we expect a different picture in BD: the scalar
GW emission starts from the monopole order, which
indicates even the perfectly spherical collapses are able
to emit scalar GW. Further, the progenitors of collapse are

sources of the scalar field, with a monopole moment
proportional to m=ð2ωBD þ 4Þ [31]. As the progenitor
collapses, this scalar monopole is radiated away. In this
way, the scalar GW is dominated by the memory effect at
low frequencies [32]: the scalar GW slumps from a nonzero
initial value hiniS to a zero final value if the collapse remnant
is a black hole or a different nonzero final value if the
remnant is a neutron star. The change in the amplitude of
the scalar field is expressed as [32]

Δhij ¼
8<
:

− 1
ωBDþ2

Gm
r eSij black hole remnant

− 1
ωBDþ2

Gðm−mNSÞ
r eSij neutron star remnant:

ð26Þ
Here, m and mNS represent the mass of the progenitor and
the mass of the remnant neutron star, respectively.
As discussed in [32], for ground-based GW detectors,

most of the detection band is dominated by the memory as
the “zero-frequency limit.” The resulting scalar energy
spectrum from the memory effect is

dES

df
¼ G½m −mNSΘðMBH −mÞ�2

ωBD þ 2
Θðm −MCÞΘðfcut − fÞ;

ð27Þ
whereMC is the minimummass for the progenitor to end its
life via core collapse, andMBH is the mass threshold above
which the final product from collapse is a black hole instead
of a neutron star. As suggested in [33], we choose MC ¼
8 M⊙ and MBH ¼ 25 M⊙. The NS mass is chosen as
MNS ¼ 1.4 M⊙. The cutoff frequency of the memory effect
is fcut ≃ 1=τc, where the collapsing time is approximated
from the Oppenheimer-Snyder model [34],

τc ≃Gm
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8β3ð1 − 2βÞ
p ; ð28Þ

where β is the same as in Eq. (22). Here, we choose β ¼ 0.1
for the progenitor as in [31,32].

B. Scalar SGWB from core collapse

From the individual energy spectrum, the total scalar
SGWB energy density spectrum can be obtained using
knowledge of collapse rates throughout the age of the
Universe [29],

ΩSðfÞ ¼
1

ωBD þ 2

f
ρc

Z
zmax

0

dz

×
Z

Mmax

MC

dm
dRc
dm ðz;mÞ dES

df ðfz; mÞ
ð1þ zÞHðzÞ : ð29Þ

In this equation, Mmax is the upper limit of the mass of
massive stars, and here we choose Mmax ¼ 100 M⊙ as

BNS Merger (j=1)

BNS Merger (j=2)

BNS Merger (total)

BBH Merger

1 10 100 1000

10–11

10–10

10–9

10–8

Frequency (Hz)

(
B

D
+

2)
2

S

FIG. 1. The scalar SGWB from compact binary systems. The
yellow curve is the contribution from mergers of BNS with j ¼ 1;
at low frequencies it follows a power law of f0. The blue curve is
the contribution from mergers of BNS with j ¼ 2; at low
frequencies it follows a power law of f2=3. The green curve is
the total BNS scalar SGWB. The mergers of BBH have no
contribution to the scalar SGWB, which is a direct consequence
of Hawking’s no scalar-hair theorem [21].
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reference. The energy spectrum is from Eq. (27), and the
other parameters are the same as in Eq. (23). The collapse
rate density dRc=dm (the number of collapses per unit
proper time, per unit comoving volume and per progenitor
mass) is related to the star formation rate (SFR) and initial
mass function ξ via [35,36]

dRc

dm
ðz;mÞ ¼ _ρ�ðzÞξðmÞRMmax

Mmin
dμμξðμÞ : ð30Þ

Here, we use the same SFR as in Sec. III and choose the
Salpeter IMF: ξðmÞ ∝ m−2.35, with Mmin ¼ 0.1 M⊙ and
Mmax ¼ 100 M⊙ [25]. The total merger RcðzÞ rate between
MC andMmax together with the BNS merger rate RmðzÞ are
shown in Fig 2.
In Fig. 3, we show the resulting scalar SGWB from

core collapse. As with the BNS scalar SGWB, the predicted
energy density spectrum scales with the BD parameter
as ΩS ∝ ðωBD þ 2Þ−2. At the reference frequency,
ðωBD þ 2Þ2ΩSðf ¼ 25 HzÞ ¼ 2.8 × 10−6. At frequencies
below ∼40 Hz, ΩS follows a power law of fα, with
α ¼ 1. Note that the core collapse scalar SGWB is around

4 orders of magnitude greater than BNS mergers. This
difference can be accounted for by considering two factors.
First, the collapse rate is much larger than the merger rate:
at their peak values Rc ≃ 106 Gpc−3 yr−1 and Rm ≃ 5×
103 Gpc−3 yr−1. Second, the energy emitted from scalar
GW radiation for a single collapse event is much larger than
a merger event: notice that ES ∝ m2, for mergersm ∼ 1 M⊙
and for collapses m ∼ 10 M⊙.
In Table I, we summarize the energy densities of SGWB

with scalar polarization from varied sources, compared
with the tensor SGWB.

C. Model dependence of the core collapse scalar SGWB

In this section, we want to explore the influence on the
core collapse scalar SGWB from alternative models. From
now on, we refer to the model described in Sec. IV as the
“baseline” model. More specifically, we consider four
alternative models that follow.

(i) The TimeDelay model. In this model, we take into
account the time delay between the formation of a
massive star and its core collapse. In this case, the
collapse rate is modified as

dRc

dm
ðz;mÞ ¼

R tmax
tmin

dtd _ρ�½zfðz; tdÞ�ξðmÞpðtdÞRMmax
Mmin

dμμξðμÞ : ð31Þ

With the other parameters the same as in Eq. (30),
we assume the distribution as pðtdÞ ¼ δðtd − TðmÞÞ,
with TðmÞ the lifetime of a star with mass m. In
addition, we use the relation TðmÞ¼T⊙ðm=M⊙Þ−2.5
for main sequence stars, with M⊙ representing the
solar mass and T⊙ ¼ 104 Myr.

(ii) The AltSFR model. In the baseline model, we adopt
an SFR model which is based on the GRB rate.
In the AltSFR model, we consider an alternative
SFR model [25], which is based on the luminosity of
star-forming galaxies [37]. This model is more
conservative than the GRB-based SFR at high red-
shifts. We compare the two SFR models in Fig. 4.

(iii) The BHonly model. In this model, we only consider
the scalar SGWB from core collapses into BHs. In
this case, the scalar energy spectrum is given by

dES

df
¼ Gm2

ωBD þ 2
Θðm −MBHÞΘðfcut − fÞ; ð32Þ
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FIG. 2. Comparison between the BNS merger rate RmðzÞ and
the core collapse rate RcðzÞ.
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FIG. 3. Red curve: The scalar SGWB from core collapse. The
model parameters are given in Sec. IV. Green curve: The scalar
SGWB from BNS merger, which is a sum of j ¼ 1 and j ¼ 2
radiation. The model parameters are given in Sec. III.

TABLE I. Energy density of tensor and scalar SGWB at 25 Hz
from various origins.

ΩTðf ¼ 25 HzÞ ðωBD þ 2Þ2ΩSðf ¼ 25 HzÞ
BBH 1.1 × 10−9 [6] 0
BNS 0.7 × 10−9 [7] 7.1 × 10−11

Collapse 2 × 10−12 [29] 2.8 × 10−6
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where the BH mass threshold MBH and the cutoff
frequency fcut are the same as in the baseline model.

(iv) The HighMass model. To reflect the recent obser-
vations of massive stars with M ∼ 200–300 M⊙
[38], we replace the mass upper limit Mmax to
200 M⊙, with other parameters remaining the same.

We show the scalar SGWB from the alternative models
in Fig. 5. We can see that TimeDelay and AltSFR have
negligible influence on the background inside the detection
band of ground-based detectors. The BHonly and
HighMass alter the background in low and high frequen-
cies, respectively. At the reference frequency f ¼ 25 Hz,
HighMass predicts a value of ΩS that is 1.1 times the
Baseline value, while BHonly predicts 0.7 the baseline
value. At this frequency, the impact from TimeDelay and
AltSFR to the scalar SGWB spectra is less than 1%. At
frequencies below ∼10 Hz, the HighMass model predicts
somewhat higherΩS, due to contributions from collapses of
higher-mass objects. At frequency f > 100 Hz, the only
non-negligible change to the spectrum is from the BHonly
model. This is because the stars which collapse into NSs
have lower mass compared to those collapse into BHs. The
cutoff frequency in Eq. (32) is related to the collapsing time
in Eq. (28) which is shorter for collapsing stars with lower

mass. As a result, the high-frequency part of the spectrum is
suppressed from the missing low mass progenitors.

V. DETECTABILITY

Since the dominant contribution to the scalar SGWB in
BD theory is from the core collapses, in this section we will
focus on the scalar background predicted by the baseline
core collapse model as described in Sec. IV.
A resent analysis [16] based on Advanced LIGO’s first

observing run (O1) has put the first upper limit on the scalar
SGWB, with ΩSðf¼25HzÞ<1.1×10−7. Compared with
our prediction ðωBD þ 2Þ2ΩSðf ¼ 25 HzÞ ¼ 2.8 × 10−6, it
is straightforward to obtain ωBD > 3. Much better upper
limits are expected since the O1 data only include an
observation time of four months and the detectors are
running below the designed sensitivity.
Next, we want to explore the detectability from

Advanced LIGO at its designed sensitivity and the planned
future ground-based GW detectors. The optimal signal-to-
noise ratio (SNR) for the scalar SGWB between a pair of
detectors is given by [14,15]

SNR ¼ 3H2
0

10π2
ffiffiffiffiffiffi
2T

p �Z
∞

0

df
γSðfÞ2ΩSðfÞ2
f6P1ðfÞP2ðfÞ

�
1=2

; ð33Þ

where P1;2ðfÞ are the detectors’ noise spectral density, and
γSðfÞ is the scalar overlap reduction function between the
detectors [13]. Here, we recall that it was the choice we had
made in Eq. (18) for ΩS that would lead to this expression
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FIG. 4. Comparison between the GRB-based SFR and the
luminosity-based SFR.
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FIG. 5. The scalar overlap reduction function γS for LIGO/
Voyager and Einstein Telescope.
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FIG. 6. The scalar overlap reduction function γS for LIGO/
Voyager and Einstein Telescope.

TABLE II. Maximal detectable BD parameter ωBD to reach an
SNR threshold of 3 from the scalar SGWBwith observation times
of 1 year and 5 years.

T LIGO Voyager ET

1 yr 10.8 54.1 175.8
5 yrs 17.1 81.8 263.8
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for the SNR, which is similar to that for a tensor
gravitational wave background.
Here, we consider the design sensitivity of Advanced

LIGO [39] and the planned sensitivities of LIGO Voyager
[39] and the Einstein Telescope (ET) [40]. The scalar
overlap reduction function between the detectors at
Hanford and Livingston is calculated in [14,15]; here,
we adopt the normalization convention as [15]. Voyager has
the same overlap reduction function as LIGO. The colo-
cated ET detectors have a constant γS ¼ −1=16 for f <
1000 Hz (see the Appendix for more details). These
overlap reduction functions are shown in Fig. 6. Note that
our γS for LIGO is one half of [15], which is due to the fact
that, as explained in Sec. II, only the breathing (traverse)
and no longitudinal part of the scalar polarization exist in
BD theory.
We show the maximal detectable ωBD for LIGO,

Voyager and ET to reach an SNR threshold of 3 in
Table II with observation times of 1 year and 5 years—
and in Fig. 7 for a range of observation times. With 5-year
integration, to reach SNR > 3 at ET, the BD parameter
should be no less than 264. On the other hand, the current
cosmological constraints on BD set ωBD > 692 [41] and
the solar system data from the Cassini mission put a
stronger constraint than ωBD > 40000 [42,43].

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the scalar SGWB in BD theory,
from astrophysical sources, in particular compact binary
mergers and stellar collapses. Unlike the tensor SGWB in
GR, we found that the scalar SGWB in the BD theory is
dominated by stellar collapses, by roughly 4 orders of
magnitude, over compact binary mergers. We have attrib-
uted this dominance to the higher rate of gravitational
collapses than binary mergers, as well as the fact that scalar
radiation does not require asymmetry.
Furthermore, scalar radiation from stellar collapses,

in the LIGO band, is mainly dominated by the memory

wave—as pointed out in an earlier paper [32]. Since the
memory wave has a simple frequency dependence of
hðfÞ ∼ 1=f, this has led to ΩSðfÞ ∝ f, which differs from
the tenor SGWB, which as ΩT ∝ f2=3.
For the dominant stellar-collapse scalar SGWB, we have

studied a range of models, which led to consistent pre-
dictions, with the most significant uncertainty lying at low
frequencies—up to within 30% at f ¼ 25 Hz, mainly due
to possible existence of heavier stars and the exclusion of
the collapses whose remnant are NSs.
Upon obtaining the SGWB spectrum, we estimated the

detectability for current and future detector networks. It is
estimated that third-generation ground-based detectors can
pose an upper limit for ωBD ∼ 300.
The potential bound for ωBD from our calculation is low

compared with solar-system bounds, and somewhat lower
than cosmological bounds; this nevertheless provides an
independent test. More importantly, having established that
the scalar SGWB mainly arises from stellar collapses, we
can further investigate other models that lead to scalar
radiations, e.g., scalar-tensor theories in which ωðϕÞ
depends on the value of ϕ instead of being a constant.
As we showed in Ref. [32], in such models the scalar
memory, which dominates scalar radiation during collapse,
can be significantly enhanced by such dependencies
through scalarization [44], and therefore might lead to
much stronger SGWB enhanced by several orders of
magnitude [45,46]. In that case, we expect a considerable
increase in the detectability from the current and the next
generation of detectors. We leave these for further studies.
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APPENDIX: SCALAR OVERLAP REDUCTION
FUNCTION FOR EINSTEIN TELESCOPE

In this Appendix, we calculate the scalar overlap
reduction function γSðfÞ for the Einstein Telescope (ET).
The configuration of ET is shown in Fig. 8. The coordinate
system for the detectors is

8<
:

x̂ ¼ ð1; 0; 0Þ
ŷ ¼ ð0; 1; 0Þ
ẑ ¼ ð0; 0; 1Þ:

ðA1Þ

In this coordinate system, the unit vectors for the ET
detector arms are

LIGO

Voyager

ET

0 1 2 3 4 5
1

5

10

50

100

500

1000

T (years)

B
D

FIG. 7. Maximal detectable BD parameter ωBD to reach an
SNR threshold of 3 from the scalar SGWB as a function of
observation of time.
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l̂11 ¼ x̂; l̂12 ¼
1

2
x̂þ

ffiffiffi
3

p

2
ŷ;

l̂21 ¼ −
1

2
x̂þ

ffiffiffi
3

p

2
ŷ; l̂22 ¼ −l̂11;

l̂31 ¼ −l̂12; l̂32 ¼ −l̂21: ðA2Þ

The detector tensors for ET are expressed by

Dij
a ¼ 1

2
ðl̂ia1l̂ja1 − l̂ia2l̂

j
a2Þ; ðA3Þ

where a ¼ 1, 2, 3.
If the GW is propagating along the angle (θ, ϕ), the GW

coordinate system can be constructed as

8<
:

m̂ ¼ cos θ cosϕx̂þ cos θ sinϕŷ − sin θẑ

n̂ ¼ − sinϕx̂þ cosϕŷ

Ω̂ ¼ sin θ cosϕx̂þ sin θ sinϕŷ þ cos θẑ:

ðA4Þ

Then the angular pattern functions for scalar polarization
are [14,17]

FS
aðΩ̂Þ ¼

X
ij

Dij
a e

ij
S ; ðA5Þ

where the scalar polarization tensor eijS is given in Eq. (10).
It is straightforward to find that

FS
1ðΩ̂Þ ¼ 1

8
sin2θð−3 cos 2ϕþ

ffiffiffi
3

p
sin 2ϕÞ

FS
2ðΩ̂Þ ¼ 1

8
sin2θð3 cos 2ϕþ

ffiffiffi
3

p
sin 2ϕÞ

FS
3ðΩ̂Þ ¼ −

ffiffiffi
3

p

4
sin2θ sin 2ϕ: ðA6Þ

The scalar overlap reduction function is defined as [14,15]

γSabðfÞ ¼
5

8π

Z
dΩ̂ e2πifΩ̂·ΔxFS

aðΩ̂ÞFS
bðΩ̂Þ: ðA7Þ

Here, we use the same normalization as [15]. For ET, the
separation jΔxj is equal to the arm length d ¼ 10 km.
Hence, for f < 103 Hz, the exponential function
e2πifΩ̂·Δx ≃ 1. In this case,

γS12 ¼
5

8π

Z
π

0

dθ
Z

2π

0

dϕ

�
−

3

64
ð1þ 2cos4ϕÞsin5θ

�
¼−

1

16
:

ðA8Þ

Similarly, we can show γS23¼ γS31¼−1=16 for f < 103 Hz.
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