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Abstract

Plasmonics-active gold nanostars exhibiting strong imaging contrast and efficient photothermal 

transduction were synthesized for a novel pulsed laser-modulated plasmonics-enhanced brain 

tumor microvascular permeabilization. We demonstrate a selective, optically modulated delivery 

of nanoprobes into the tumor parenchyma with minimal off-target distribution.

In the pursuit of better treating medically intractable malignant glioblastoma, novel 

strategies designed to overcome the physiological obstacles imposed by the blood brain-

tumor barrier (BBTB) have been shown to facilitate the delivery of therapeutic agents into 

the tumor parenchyma.1, 2 Strategies exploiting either biological entities (e.g., 

immunotherapy, gene therapy) or transient physical blood-brain barrier (BBB) disruption 

(e.g., high-intensity focused ultrasound [HIFU]) have recently shown significant preclinical 

progress.3, 4 Novel platforms based on nanotechnology have also emerged to treat 

neurological malignancies due to their superior pharmacokinetic profiles than conventional 

drugs.5, 6 Targeted brain tumor nano-drug delivery can be achieved by exploiting their 

enhanced permeation and retention (EPR) effect as well as utilizing them as molecular 

“Trojan horses” (e.g., receptor-mediated transcytosis via transferrin, apolipoprotein, cyclic-

RGD peptide, etc.). However, prior efforts have shown that with nano-drugs alone, the 

majority of systemically injected nanoparticles (NPs) remain in the reticuloendothelial 

system (RES; e.g., liver, spleen, lymph node, etc.) whereas brain accumulation accounts for 
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less than 0.1 % of the injection dosage.7, 8 Here, we develop a new strategy to increase the 

brain tumor accumulation by integrating nanotechnology (e.g. theranostics, targeted 

delivery) with selective BBTB permeation. We demonstrate that such strategy not only 

allows for nano-drug imaging and therapeutic response monitoring, but also induces 

transient BBTB permeation for use in enhanced nano-drug delivery with superior spatial and 

temporal specificity. As a result, image-guided BBTB permeabilization and controlled nano-

drug delivery are achieved and will bring new insights to targeted brain tumor therapy.

Our strategy involves developing novel monolithic multifunctional NPs that features three 

functionalities: optical imaging contrast, photoactivated transducer, and therapeutic agent. 

Unlike three separated agents with distinct pharmakokinetic profiles, integrated design 

exhibits shared pharmacokinetic profile suitable for direct monitoring the delivery of 

therapeutic agent. Compared to conventional imaging methods (e.g., MRI or ultrasound), 

optical methods also offer higher spatial and temporal resolution.9 Hence, such an optical 

theranostic NP can be imaged and photoactivated under a single optical setup in high 

resolution.

In this study, NIR-responsive plasmonic gold nanostars (GNS) were used. Recently, NIR-

responsive plasmonic gold NPs of various shapes (e.g., shell, rod, cage, hollow sphere, star, 

etc.) have become one of the most promising theranostic agents designed for preclinical 

optical imaging and therapeutics.10-13 Also, plasmonic gold NPs exhibit simple size/shape 

tunability, versatile surface chemistry, intrinsic optical property, and biocompatibility. 

Depending on their nanoscale sizes and shapes, they display strongly enhanced 

electromagnetic fields due to the so-called ‘plasmonic effect’, which produces unique 

intrinsic optical properties that can be exploited as imaging contrast and therapeutic agents 

without further coupling of dye or drug.10, 12

In particular, GNS not only have plasmon peaks in the NIR ‘tissue optical window’ range 

but also contain multiple sharp tips creating a “lightning rod” effect that further enhances the 

local surface plasmon; these unique optical properties bring forth strong surface-enhanced 

Raman scattering intensity (106 enhancement factor), large extinction coefficient (109-10 

M-1 cm-1), enhanced two-photon photoluminescence (two-photon action cross section of 106 

Goeppert-Mayer unit), and short lifetime (0.2 ns) for sensitive real-time imaging,14, 15 as 

well as efficient photothermal transduction for photothermal therapy or photothermal-

triggered drug release.16-18 With these unique plasmonic features, GNS are potential 

multifunctional plasmonic NPs that allow for both high-resolution imaging evaluation of NP 

intratumoral distribution and image-guided photothermal-triggered BBTB permeabilization 

for controlled NP delivery.10

Here, GNS' plasmon maximum was tuned to 800 nm to match the laser excitation system for 

optimal two-photon photoluminescence response (Fig. 1A). The GNS surface was protected 

by PEGylation for reduced RES clearance and extended circulatory half-life. The final 

hydrodynamic size was around 80 nm (Fig. S1). When investigated via photoacoustic 

computer tomography (PACT) through intact scalp,19 the photoacoustic (PA) signal rose 

instantly and then increased gradually before reaching a maximum at around half an hour 

(Fig. 1B). The intravascular PA intensity then slowly declined as GNS were cleared from 
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the RES or extravasated into tissues elsewhere. Measured through PACT, an extended 

circulatory half-life greater than 4 hours was found. Furthermore, due to its large extinction 

coefficient, high absorption-to-scattering ratio, and multiple thin branches favorable for heat 

generation, the GNS heat up quickly upon laser irradiation rendering it an efficient 

photothermal transducer (Fig. S1).20

To investigate the GNS intratumoral distribution with high spatial resolution, multiphoton 

microscopy (MPM) was employed through a cranial window chamber on orthotopic brain 

tumor animal models. Tumor xenograft in the cranium typically has smaller pore cutoff size 

than subcutaneous xenograft. Using dextran of various sizes, the pore size of the D270 

glioma xenograft was found around 70-100 kDa (7∼9 nm; data not shown), which is smaller 

than that of the commonly used U87MG glioma xenograft;21 D270 thus behaves closer than 

U87MG to actual human glioma. Due to GNS' intense two-photon photoluminescence signal 

and short fluorescence lifetime, subcellular resolution MPM imaging of GNS can be 

obtained using low laser energy (e.g., 0.5∼1.5 mW at 800 nm) and fast scanning speed (e.g., 

2 μs/pixel). Since standard biodistribution quantification on a whole brain using elemental 

analysis (e.g., ICP-MS) or whole-body imaging cannot distinguish intravascular or 

intraparenchymal accumulation, MPM complements whole-body imaging by offering a 

unique imaging tool with superior detection sensitivity and greater spatial/temporal 

resolution.

Fig. 1C illustrates a high-resolution depth-resolved in vivo cerebral microangiogram taken 

through a cranial window. Capillaries were clearly visible with minimal tissue 

autofluorescence background. Unlike commonly used intravascular contrast (e.g., FITC-

dextran) that undergoes significant signal decay in less than 30 minutes, the intravascular 

intensity of our GNS remained stable for hours without significant extravasation (Fig. S2), 

reflecting its intravascular stability inherited from inert gold and strong surface PEGylation. 

On a non-perfused mouse whole brain resected 3-hour post injection, GNS can be seen more 

prevalent in the tumor than the surrounding normal area (Fig. 1C,S3). On histology of 

perfused brains, GNS not only accumulated in the tumor vascular endothelial cells (ECs), 

but also selectively penetrated BBTB but minimally BBB to enter perivascular tumor 

parenchyma and tumor periphery (Fig. 1C,S4,S5). Tumor vessels appear larger in diameter 

but lower in density whereas distinctive GNS extravasation can be clearly seen. Long 

circulatory half-life superimposed on the EPR effect (fenestrated or gapped EC on capillary 

or venule) leads to EC accumulation and paracellular extravasation with possibly minimal 

true transcytosis.22 Peripheral tumor accumulation of PEG-GNS is most likely due to the 

hyper-neovascularity along the tumor edge and interstitial fluid pressure gradient at the 

boundary that would attenuate GNS delivery deep into the tumor. Nonetheless, a great 

portion of PEG-GNS still accumulated in RES (Fig. S6). To further enhance the brain tumor 

GNS delivery and reduce off-target distribution, additional BBTB opening mechanism needs 

to be explored.

To date, many alternative delivery strategies have been investigated for systemically 

delivering NPs into brain parenchyma.4, 23, 24 In particular, HIFU, which has been applied to 

increase BBB permeation by transiently disrupting the vascular integrity, has shown some 

progress in preclinical settings.25 To improve the delivery specificity from HIFU 
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(millimeter-resolution), optical method featuring superior spatial control (micrometer-

resolution) potentially allows for more specific delivery. Choi et al. recently reported 

optically modulated selective vascular permeabilization using a pulsed laser but required 

high laser power (300-2000 mW).26 To reduce the laser burden while maintaining the 

optical selectivity, plasmonics-active NPs can be used to significantly enhance the laser-

induced permeabilization effect. Ultrashort laser pulse interacting with plasmonics-active 

nanoparticles can lead to heating, stress wave release, or vapor bubble formation.27, 28 GNS, 

by having plasmon absorption matching the excitation laser, high absorption-to-scattering 

ratio, and multiple thin branches favorable for heat generation,20 can therefore be a strong 

candidate to enhance the laser-induced vascular permeabilization. Our study for the first 

time achieved a plasmonics-enhanced and optically modulated delivery of GNS into brain 

tumor under a much lower laser power (35 mW).

Exploiting GNS' plasmonic property, a locally triggered vascular permeabilization can be 

achieved through a cranial window in vivo at low NP dose (< 1 pmole) and laser power (35 

mW; 14 W/cm2) (Fig. 2), thus avoiding unwanted hemorrhagic infarction under high-power 

photothermal treatment (data not shown). The irradiation was performed within 10 minutes 

after PEG-GNS tail vein injection when most GNS were intravascular with little uptake in 

ECs or RES. After finding the tumor region, the laser irradiation was performed on the same 

multiphoton microscope. Immediately following the pulsed laser irradiation, some 

vasoconstriction and a minute focal extravasation was visible (Fig. 2B). 48-hour afterwards, 

extravasation could be seen in tumor vessels confined to the whole irradiated volume but not 

the surrounding tumor tissue (Fig. 2C-G). In normal brain, no apparent extravasation was 

found after the same irradiation (Fig. S7). Irradiating the brain tumor region using the same 

laser power but without GNS resulted in no observable extravasation of FITC-dextran (Fig. 

S8). The treatment was well tolerated with no sign of neurological disability over the next 2 

days. Even though the tumor vascular pore size is much smaller than the 80-nm GNS, an 

apparent GNS permeation of 10-30 μm deep into tumor parenchyma is visible (Fig. 2C-E); 

the extravasation depth is much greater than that from merely EPR effect. It is of interest 

that the selective tumor vessel response may add another level of tumor targeting specificity. 

Although the irradiation is depth-limited in this study, it provides an unprecedented spatial 

selectivity for enhanced targeted GNS delivery in cortical tumor.

To understand this process, it is noteworthy to know that the impact of NP exposure could 

be derived from a combined physical, chemical, as well as immunological trigger that 

eventually affect the BBB or BBTB causing increased vascular permeability. The 

mechanism of this delayed regional BBTB permeabilization may possibly explained by 

short-term intravascular hyperthermia or energy burst that triggers a local inflammatory 

response exacerbating the already weakened tumor neovasculature whereas normal vessels 

were less vulnerable and did not show significant extravasation.29 Hence, plasmonics-

enhanced low-energy pulsed laser treatment may preferentially induce tumor vascular ECs 

inflammasome activation that enhances regional BBTB permeability.

To investigate the possibility of the immunological involvement using an in vitro system, we 

examined the cytotoxicity and inflammasome induction on bone marrow derived 

macrophages (BMDMs) upon exposure to PEG-GNS. The formation of the NLRP3-
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inflammasome regulates the maturation of the proinflammatory cytokines (e.g., interleukin 

1β [IL-1β] and IL-18) in response to exogenous or endogenous danger signals during innate 

immunity. Here, PEG-GNS exposure to lipopolysaccharide (LPS)-primed macrophages 

resulted in the production of IL-1β and tumor necrosis factor α (TNFα) but not IL-6 (Fig. 3), 

implying that PEG-GNS do not induce a non-specific pan-inflammatory response. Rather, 

both TNFα and the inflammasome were activated related to NP concentration and 

incubation duration (Fig. S9); this is consistent with previous findings on different NPs (e.g., 

silica, silver, polystyrene) suggesting a possible universal immunological impact from 

NPs.30-32 Interestingly, although PEGylation can be used for reducing immunoclearance, 

PEGylated NP may still activate the inflammasome once being taken up a greater quantity 

by responsible cells. Meanwhile, unprimed macrophages showed no apparent cytotoxicity 

but induced a small secretion of IL-1β and IL-6 but greater secretion of TNFα at high PEG-

GNS concentration (10 nM). This finding is similar to the results by Trickler et al. where NP 

induced TNFα production in non-tumor rat brain microvessel ECs.33 It is possible that cells 

loaded with large dose of NPs may lead to reactive oxygen species (ROS) formation and 

cause lysosomal disruption.34 Lysosomal disruption is one signal that activates NLRP3 and 

this process has been implicated in signaling inflammasome activation in many reports 

where the trigger is nanomaterial.35 Nonetheless, although GNS exposure to “unprimed” 

macrophages did not alter cell viability, exposure to “primed” macrophages did decrease cell 

viability. It is therefore important to study the immunotoxicology profile before actual 

clinical applications.

Meanwhile, based on the response from primed macrophage, it is possible that exposing 

large dose NP to tumor neovasculature may exacerbate the already inflamed tumor 

microenvironment. Low-energy photothermal treatment, although may not induce cell death, 

has been shown to trigger the release of the danger-associated molecular patterns.36 

Combining the effect of NP exposure and photothermal treatment, it can potentially activate 

the inflammasome within tumor vascular ECs whereas the release of inflammatory 

cytokines may further enhance the EPR effect for deeper NP penetration. The exact 

mechanism on photothermally triggered BBTB permeabilization, however, requires further 

investigation.

Conclusion

This study demonstrates that plasmonics-active theranostic GNS can be a versatile 

nanoplatform for brain tumor imaging and controlled delivery of GNS into tumor in pre-

clinical settings. GNS could be delivered beyond the tumor vasculature and deep into the 

tumor parenchyma. By focusing ultrashort pulsed laser on brain tumor in mice preinjected 

with PEG-GNS, for the first time a proof-of-concept plasmonics-enhanced optically 

modulated image-guided brain tumor microvascular permeabilization was demonstrated, 

showing a highly spatial selective delivery of GNS into the tumor parenchyma with minimal 

off-target distribution. An immunological effect illustrated by inflammasome activation 

upon NP exposure may also contribute to the enhanced BBTB permeability. Based on these 

novel advances, we envision a strong translational potential on plasmonics-active theranostic 

gold nanostars for brain tumor molecular imaging and image-guided plasmonics-enhanced 

cancer therapy.
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Fig. 1. 
(A) Plasmon band extinction spectrum and TEM image of GNS. Scale bar: 50 nm. (B) 

PACT image acquired through an intact mouse scalp after PEG-GNS injection. R: rostral 

rhinal vein. S: sagittal sinus. T: transverse sinus. Scale bar: 2 mm. PA intensity (normalized 

to the 1st frame) of sagittal sinus calculated from each frame. The small jerk at 600 second 

was due to system transition. (inset) Normalized PA intensity monitored for the initial 600 

seconds. (C) MPM imaging of cerebral microangiogram, Hoescht 33342-stained whole 

brain, and DAPI/CD31-stained histology. GNS are white. T: tumor. N: normal. Scale bar: 

200 μm.
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Fig. 2. 
MPM images of photothermal-triggered tumor BBTB permeation examined through a 

cranial window. Tumor vessels prior to (A), 1-min after (B), and 48-hr after (C-G) laser 

irradiation. Following the irradiation, PEG-GNS (white) were found residing near the blood 

vessels and extravasating deep into the parenchyma (D,E), but not outside the irradiation 

zone (F,G). Red arrow denotes vascular tortuosity; red lines denote the border of irradiation. 

Scale bar: 100 μm.
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Fig. 3. 
Cytokines induction (IL-1β [A], TNFα [B], IL-6 [C]), and cytotoxicity (D) profiles from 

LPS-primed and unprimed BMDMS treated with PEG-GNS for 24 hours. Triangles denote 

PEG-GNS concentration of roughly 10, 1, 0.1 nM. Error bar: 1 SD.
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