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Abstract— Many recent problems in distributed estimation
and control reduce to estimating the state of a dynamical
system using sensor measurments that are transmitted across
a lossy network. A framework for analyzing such systems was
proposed in [1] and called Kalman filtering with intermittent
observations. The performance of such a system, i.e., the error
covariance matrix, is governed by the solution of a matrix-
valued random Riccati recursion. Unfortunately, to date, the
tools for analyzing such recursions are woefully lacking, osten-
sibly because the recursions are both nonlinear and random,
and hence intractable if one wants to analyze them exactly.
In this paper, we extend some of the large random matrix
techniques first introduced in [2], [3] to Kalman filtering with
intermittent observations. For systems with a stable system
matrix and i.i.d. time-varying measurement matrices, we obtain
explicit equations that allow one to compute the asymptotic
eigendistribution of the error covariance matrix. Simulations
show excellent agreement between the theoretical and empirical
results for systems with as low as n = 10, 20 states. Extending
the results to unstable system matrices and time-invariant
measurement matrices is currently under investigation.

I. INTRODUCTION

Groundbreaking advances in microsensor technology in

the past decade have made several previously out of reach

applications feasible. The proposed and/or already deployed

applications include but are not limited to distributed catas-

trophe surveillance, smart transportation systems, and more

efficient electric power grids. All these applications essen-

tially rely on large scale networks that incorporate com-

munication, estimation, and control. Therefore a significant

body of research in recent years has been devoted to the

study of distributed estimation and control over networks

of many sensors and actuators. An important aspect of these

systems which has prohibited direct extension of the classical

theories of control and estimation is the natural unreliability

of the underlying communication links. The stingy power

constraints of microsensors only worsen the situation by

making reliable communication further unrealistic.

A very well-received model for studying the effect of

unreliable links in distributed sensing and control problems

([1], [4], [5], [6], [7]) assumes that the estimation and control

data are in the form of packets which travel through an

erasure network and each packet may be independently lost
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according to some probability. This model makes many

problems mathematically tractable and at the same time has

great resemblance with practice. In the very heart of this

approach lies Kalman filtering with intermittent observations.

More formally, we have a linear, but time-varying, state-

space model of the form,
{

xi+1 = Fxi + ui

yi = Hxi + vi
(1)

E

[
ui

vi

]
[

u∗
j v∗j

]
=

[
Q 0
0 Ri

]

δij (2)

where xi is the n-dimensional state vector, yi is the m-

dimensional measurement vector, and ui and vi are zero-

mean process and measurement noises. All the measure-

ments are assumed to have the same noise variance and

to be independent of each other. Each component of the

measurement vector may also be lost independently over

both measurements and time with some fixed packet drop

probability, pd. Therefore the measurement noise covariance

matrix should be represented by a matrix-valued i.i.d. random

matrix process. In fact, the only thing time-varying about (1-

2) is the noise covariance Ri.

The estimation error covariance of the Kalman filter for

the above system can be shown to satisfy a random Riccati

recursion,

Pi+1 = FPiF
∗ + Q − FPiH

∗(Ri + HPiH
∗)−1HPiF

∗. (3)

Clearly, in contrast to the classic case of time-invariant

Kalman filtering, the above Riccati recursion does not con-

verge to any specific value. The reason being that the covari-

ance matrix Ri is indeed random and time-varying. However,

there are several important questions that may be asked about

such a recursion, especially about the distribution of the

eigenvalues of Pi.

Since Ri is a matrix-valued stationary random process,

it may be expected that Pi also converges to a stationary

process. Furthermore, one can argue that the state vector size

is usually large due to the fact that the dynamical systems

under consideration are often complex. This allows the use

of several powerful tools which have been developed in

the theory of large random matrices. In this work, we find

the eigenvalue distribution of the prediction error covariance

under these two assumptions. We will make two further

assumptions. The first is that the measurement matrix H

is also time-varying and random. In this sense, we will be

forced to depart from the model (1-2). The main reason is

that we do not quite yet know how to extend our techniques

to deal with a fixed H. Nonetheless, as will be explained later

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

FrA16.3

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 6847

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216300116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in the paper, this assumption, and the relation to the constant

H case, can be justified through the ergodicity of random

matrix ensembles. The second assumption is that the matrix

F is stable. This implies that the matrix-valued process Pi is

bounded and thus we do not need to worry about stability in

our analysis. How to relax these two assumptions is currently

under investigation.

The problem of Kalman filtering with intermittent observa-

tions was first considered in [1] where the authors find upper

and lower bounds on the critical packet drop probability

above which the Kalman filter diverges. The tightness of

the lower bound is further investigated in [8]. In [9] the

authors characterize the critical packet drop probability for

boundedness of the error covariance for a wide range of

systems. Other authors have studied various sensor data

transmission scenarios [10], [11], [12].

The rest of the paper is organized as follows. In Section

II we will give a brief overview of definitions and tools

from random matrix theory which are used in this work.

Section III contains the main results of the paper. We look

at two scenarios for the process noise covariance matrix,

namely, when Q is a multiple of identity or a Wishart

matrix. We find the steady-state eigendistribution of Pi as

the solution of a pair of implicit equations. Simulation results

provided show the accuracy of our method in predicting the

eigendistribution. Finally, Section IV concludes the paper.

II. PERTINENT RESULTS FROM RANDOM MATRIX

THEORY

In this section we give a brief overview of pertinent

definitions and results from random matrix theory. A more

comprehensive review of the subject can be found in [13],

[14]. A random matrix is simply described by the joint prob-

ability distribution of its entries. Often, the most important

questions to be answered about a random matrix ensemble

concern the distribution of the eigenvalues. For an n × n
random matrix, M , the empirical cumulative distribution

function of the eigenvalues is defined as,

FM(λ) =
1

n

n∑

l=1

Pr {λl(M) ≤ λ} , (4)

where λl(M) denotes the l-th eigenvalue of M. An empirical

density function, fM (x), can be associated with FM(x). This

density function is frequently referred to as the eigendistri-

bution of M and is nothing but the marginal distribution

of one randomly selected eigenvalue of one realization

of the random matrix. As will be explained in the next

section, finding the eigendistribution of the error covariance

matrices under consideration is of significant importance. It

turns out that in the random matrix arena, results on the

eigendistribution of random matrices can be expressed much

more efficiently in terms of certain transforms of fM(λ). The

most ubiquitous example of these transforms is the so-called

Stieltjes transform which was first used in the seminal work

of Marcenko and Pastur [15]. The Stieltjes transform of the

eigendistribution of a random matrix M –interchangeably

referred to as the Stieltjes transform of the matrix itself–

is defined on the complex plane as,

SM(z) = E

[
1

λ − z

]

=

∫
fM(λ)

λ − z
dλ. (5)

Having the Stieltjes transform, the eigendistribution can be

uniquely retrieved through its inversion formula [16],

fM(λ) = lim
ω→0+

1

π
Im [SM(λ + jω)] . (6)

The main reason for the Stieltjes to be a handy tool in

random matrix theory is that it can be directly computed from

the random matrix itself through an alternative definition,

SM(z) = E
1

n
tr (M − zI)

−1
, (7)

or equivalently,

SM(z) = − d

dz
E

1

n
log det(M − zI). (8)

As can be clearly seen through the above definition, the

Stieltjes transform can be computed without finding the

eigenvalues themselves. Then, having SM(z), the eigendis-

tribution can be easily found through (6).

Another important aspect of random matrix theory is the

set of powerful tools available for analyzing large random

matrices. While the majority of results on the eigendistribu-

tion of fixed-dimensional random matrices are complicated

and offer little insight –and mainly limited to Gaussian

random matrices and matrices derived from them–, when

the matrix dimensions are allowed to grow, one usually finds

simple, closed form expressions for the eigendistribution that

behave like universal laws, i.e., they depend on the matrix

structure and statistics rather than the exact distribution of

the entries. Moreover, although the derivations are carried

out for n ≫ 1, the law of large numbers guarantees fast

convergence to the asymptotic results for n being as small

as 10 − 20. This range of values for the state vector size is

reasonable in most applications. Moreover, random matrix

ensembles demonstrate an ergodic behavior in the sense that

every single realization looks similar to the deterministic

asymptotic eigendistribution. In terms of eigenvalues, it

means that FM(λ) in (4) does not change if we replace the

Pr(·) with the Heaviside step function, 11(·).
A useful property of the Stieltjes transform in the asymp-

totic regime is the so-called self-averaging property which is

stated in the follwing Lemma [17]:

Lemma 2.1 (Self-Averaging): Let M be an n× n positive

semidefinite random matrix. If the empirical eigendistribu-

tion of M almost surely converges to its mean value as

n → ∞, i.e.,

lim
n→∞

1

n
tr(M − zI)−1 = SM(z) a.s. (9)

(Note the absence of the expectation) then for any n-

dimensional vector x independent of M with i.i.d. zero-mean,

unit-variance elements with bounded higher moments, we

have,

lim
n→∞

1

n
xT (M − zI)−1x = SM(z) a.s. (10)
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The above Lemma can be intuitively verified by comparing

to the definition (7).

III. KALMAN FILTERING WITH INTERMITTENT

OBSERVATIONS

In this section we consider Kalman filtering with intermit-

tent measurements under the assumption of a stable system

matrix and a time-varying observation matrix. Although this

is not the convention in the literature, there are several

reasons for doing so. The first is that we do not yet know

how to deal with the time-invariant case in our method.

The second reason is that in many recent applications of

distributed estimation, the sensors’ environment and/or their

position is time-varying. Finally, as mentioned earlier, in the

theory of large random matrices every single realization of

an ensemble has an eigendistribution that converges almost

surely to the asymptotic eigendistribution. Therefore one

may expect that if the matrix H is large enough, then the

eigendistribution of Pi may be the same irrespective of H

and whether it is time-varying. The second assumption is

that the matrix F is stable. As mentioned in the introduction,

this guarantees the boundedness of Pi and will absolve us of

having to consider stability issues. Of course, relaxing these

two assumptions is critical and currently under investiagtion.

In this sense, the results reported in this paper represent

significant progress towards analyzing these more general

and realistic cases.

In the following, we will consider two cases in which the

state process noise covariance matrix is either a multiple of

identity or a Wishart matrix, where the latter means Q =
GG∗ where G is an n × mG matrix with i.i.d. zero-mean,

1√
mG

-variance entries.

For each Riccati recursion, we will find the steady-state

eigendistribution of Pi. There are several reasons to look at

the eigendistribution. First of all, E[λ] = 1
n

E[trPi] is nothing

but the mean square error performance of Kalman filtering.

Moreover, determining the support of eigendistribution is

crucial for finding various performance bounds and studying

the system stability. On the other hand, the convergence

properties of the eigendistribution in the transient phase

directly establish the convergence properties of the recursion

itself. Thus in this work we focus on characterizing the

eigendistributions in the steady state. The transient behavior

is well worth of future scrutiny.

A. The case of Q = qI

When Q = qI in the linear time-varying state-space model

under study, the error covariance matrix undergoes a random

Riccati recursion of the form,

Pi+1 = αF
(
P−1

i + H∗
i R−1

i Hi

)−1
F∗ + qI, P0, (11)

in which α is a scalar between 0 and 1, and F is assumed

to be an n × n matrix with i.i.d. entries having zero mean

and variance 1√
n

. The observation matrix, Hi, is an m × n

matrix with i.i.d. zero-mean 1√
m

-variance entries and q
is a constant denoting the variance of the state process

noise. As mentioned in Section. I, we will assume that

the observations may independently be missing with some

probability pd. Thus Ri can be modeled as a diagonal matrix

with independent entries such that,

(R−1
i )jj =

{
0 with probability pd
1
r

with probability 1 − pd
.

We are interested in finding the steady-state, i.e. when

i → ∞, eigendistribution of the error covariance matrix Pi,

or equivalently its Stieltjes transform. It can be shown that

the Stieltjes transform at the steady-state satisfies a set of

implicit equations on the complex plane:

Theorem 3.1: Let F be an n× n matrix with i.i.d. entries

having zero mean and variance 1√
n

and α to be such that√
αF is stable. As i → ∞ and n → ∞, the eigendistribution

of Pi in (11) converges to a stationary distribution whose

Stieltjes transform, SP(z), satisfies (12) and (13),

SP(z) = − 1

z − q
+

αr′SP(z)

z − q
Ω

(
−αr′SP(z)

)
, (12)

Ω(z) = − 1

r′u(z)
− 1

r′u2(z)
SP(

1

u(z)
), (13)

in which u(z) is an expression in terms of z and Ω(z),

u(z) =
z

r′
− β′/r′

β′ + Ω(z)
, (14)

which is used here for the sake of brevity in the expressions,

β′ = (1−pd)m
n

, and r′ = r
1−pd

.

Proof: We mention that the proof presented is at a somewhat

high level; although it can be made rigorous, we shall not

do so for reasons of space.

First of all, note that with high probability the term

H∗
i R−1

i Hi can be written as
(1−pd)

r
H̄

∗
i H̄i where H̄i is an

m(1 − pd) × n matrix with i.i.d. entries having zero mean

and 1√
m(1−pd)

variance. Now we can rewrite (11) as,

Pi+1 = αr′F
(
r′P−1

i + H̄
∗
i H̄i

)−1
F∗ + qI, (15)

where,

r′ =
r

1 − pd

(16)

Using the definition of the Stieltjes transform (7),

SP,i+1(z) =
1

αr′
SB,i(

z − q

αr′
), (17)

in which we have used Bi to denote,

Bi = F
(
r′P−1

i + H̄
∗
i H̄i

)−1
F∗. (18)

Therefore we focus on finding SB,i(z). Instead of the formal

and lengthy proof, hereby we give a sketch of the argument.

A fundamental concept in random matrix theory is the

notion of free probability which was first introduced by

Voiculescu [18], [19]. Freeness replaces the independence

notion for random variables that are non-commutative, as

are the random matrices. Essentially two non-commutative

random variables X and Y are called free if,

E [p1(X)q1(Y )p2(X)q2(Y ) . . . ] = 0, (19)
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for finitely many polynomials pi and qj for which,

E [pi(X)] = 0 = E [qj(Y )] . (20)

For free random variables, there exists a useful transform

called S-transform which is defined based on the Stieltjes

transform as,

Σ(γ) = − 1

γ
S(

γ + 1

γΣ(γ)
). (21)

S-transform is the analog of the so-called Mellin transform

for pairs of commutative random variables, in the sense that

for two free random variables X and Y ,

ΣAB(γ) = ΣA(γ)ΣB(γ). (22)

Therefore if one can establish the freeness of two non-

commutative random variables, the Stieltjes transform of

their product can be expressed in terms of the individual

Stieltjes transforms in an implicit form. Now going back to

(18), according to the definition (7), it makes no difference

to look at the Stieltjes transform of F∗F
(
r′P−1

i + H̄
∗
i H̄i

)−1
.

Moreover, we can diagonalize Pi without loss of generality

since the distributions of Hi and F are isotropic. Now the

results of [20] can be used to establish the freeness of

F∗F and
(
r′P−1

i + H̄
∗
i H̄i

)−1
in the steady-state. To do so

it is necessary to use random dynamical systems theory

[21] to establish the existence of a unique steady-state

eigendistribution for Pi [22]. Then it is straightforward to

show that for this choice of F,

ΣF∗F(γ) =
1

1 + γ
. (23)

Therefore, using (22), (23), and the definition of the S-

transform, we can show that,

SB(z) = −1

z
− SB(z)

z
Ω(−SB(z)), (24)

(please note the absence of the index i due to the steady-

state analysis from now on,) where Ωi(z) is just the Stieltjes

transform of,

Ai = r′P−1
i + H̄

∗
i H̄i. (25)

It only remains to find the relation between Ωi(z) and

the Stieltjes transform of Pi from the above equation. By

applying the definition of the Stieltjes transform (7) to both

sides we obtain,

Ω(z) =
1

n
E tr

(
r′P−1 + H̄

∗
H̄ − zI

)−1
. (26)

Since H̄ has an isotropic distribution, without loss of gener-

ality, P−1 can be assumed to be a diagonal matrix, Λ. Now

we break Λ and H̄ in the form,

Λ =

[
λ1 0
0 Λ2

]

, H̄ =
[

h1 H2

]
, (27)

and rewrite the RHS of (26) as,

1

n
E tr

[
r′λ1 + h∗

1h1 − z h∗
1H2

H∗
2h1 r′Λ2 + H∗

2H2 − zI

]−1

(28)

Clearly, since we are interested in the marginal eigendistri-

butions, it does not matter which diagonal entry of the above

inverse we look at. Thus, without loss of generality, we can

focus on the first diagonal entry which can be written as,

E
1

r′λ1 − z + h∗
1(I − H2(r′Λ2 − zI + H∗

2H2)−1H∗
2)h1

.

(29)

Using the matrix inversion lemma, we can rewrite the above

expression as,

E
1

r′λ1 − z + h∗
1(I + H2(r′Λ2 − zI)−1H∗

2)
−1h1

. (30)

Now one can invoke the self-averaging Lemma (9) –using

the independence of h1 and the inversed matrix in the

denominator– to find that,

Ω(z) = E
1

r′λ1 − z +
1

m′
E tr(I + H2(r

′Λ2 − zI)−1H∗
2)

−1

︸ ︷︷ ︸

∆
=w(z)

,

(31)

where m′ = m(1 − pd). In order to find w(z), we employ

the same technique used to obtain (31) by breaking H2 in

the form,

H2 =

[
h21

H22

]

, (32)

which eventually yields,

w(z) = E
1

1 + h21(rΛ2 + H∗
22H22 − zI)−1h∗

21
︸ ︷︷ ︸

∆
=w′(z)

,

where, by invoking the self-averaging lemma, w′(z) in turn

can be rewritten as,

w′(z) =
n

m′
× 1

n
tr(rΛ2 + H∗

22H22 − zI)−1. (33)

The second part of the expression above is nothing but an

(n− 1)× (n− 1) version of (26). Since we are considering

the large n regime, w′(z) can be simplified as n
m′

Ω(z).
Therefore,

w(z) =
1

1 + n
m′

Ω(z)
(34)

We can now replace (34) into (31). Since λ1 is a randomly

selected eigenvalue of P−1, (31) can be written in terms of

the Stieltjes transform of P−1,

Ω(z) =
1

r′
SP−1

(
z

r′
− (1 − pd)β/r′

(1 − pd)β + Ω(z)

)

, (35)

which together with the relation between the Stieltjes trans-

forms of a matrix and its inverse,

SP−1(z) = −1

z
− 1

z2
SP

(
1

z

)

, (36)

result in (13). Substituting (24) in (17) yields (12) and

completes the proof.

�
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Fig. 1. The empirical steady-state eigendistribution of the recursion (11)

for n = 10, 20, m = 30, r = 0.5, q = 2.5, and pd = 0.2 compared to

the theoretically found eigendistribution.

Since Ω(z) is a Stieltjes transform itself, equations (12)

and (13) can be readily written in terms of the steady-state

eigendistribution of Pi and an auxiliary probability distribu-

tion and be numerically solved to find the eigendistribution

efficiently. In other words, the implicit equations of Theorem

3.1 need only be solved very close to the real line rather than

on the whole complex plane. Figure 1 shows the simulation

results for n = 10, 20 and m = 30. The empirical curve is

generated through Monte Carlo simulation of the recursion.

It can be observed that the asymptotic theoretical prediction

closely matches with the empirical curve for state vector size

being as low as n = 10.

It is also worth mentioning that the assumptions on the

problem can be further relaxed by assuming that different

measurements may have different packet drop probabilities,

the average of whom equals pd. This is often a more realistic

model since in practice different sensors may be deployed at

different locations and consequently have different channel

strengths when they communicate through a wireless net-

work.

B. The case of Q = GG∗

In order to extend the results to the case of state noise

process covariance being a full matrix, here we consider Q

being a Wishart matrix. As mentioned earlier, this means

that,

Q = GG∗, (37)

where G is an n × mG matrix with i.i.d. zero-mean, 1√
mG

-

variance entries. The random Riccati recursion of the state

estimation error covariance will be,

Pi+1 = αF
(
P−1

i + H∗
i R−1

i Hi

)−1
F∗ + GG∗, P0, (38)

where all the other parameters are as defined in the previous

subsection. All the coefficients are time invariant except for

the observation matrix Hi and observation noise covariance

Ri –of course, due to the intermittent observations,– and

once again, we are interested in finding the steady-state

eigendistribution of the error covariance matrix. The follow-

ing theorem describes its Stieltjes transform as the solution

of a pair of implicit equations:

Theorem 3.2: Let F and G be n×n and n×mG matrices

with i.i.d. entries having zero mean and variances 1√
n

and
1√
mG

, respectively, and α to be such that
√

αF is stable.

As i → ∞, the eigendistribution of Pi in (11) converges

to a stationary distribution whose Stieltjes transform, SP(z),
satisfies (39) and (40),

SP(z) = − 1

αr′v(z)
+

SP(z)

v(z)
Ω

(
−αr′SP(z)

)
, (39)

Ω(z) = − 1

r′u(z)
− 1

r′u2(z)
SP(

1

u(z)
), (40)

in which v(z) and u(z) are expressions in terms of z, SP(z),
and Ω(z),

v(z) =
z

αr′
− βG/αr′

βG + SP(z)
(41)

u(z) =
z

r′
− β′/r′

β′ + Ω(z)
, (42)

which are used in order to simplify the equations, β′ =
(1−pd)m

n
, r′ = r

1−pd
,and βG = mG

n
.

Sketch of proof: The proof essentially follows the proof of

Theorem 3.1. The only difference is that instead of having,

Pi = αr′Bi + qI, (43)

in this case we have,

Pi = αr′Bi + GG∗, (44)

where Bi is as defined in (18). This is similar to the

expression (25) that we dealt with in the proof of Theorem

3.1. Once again, although G is not time-varying, it is selected

from an isotropic random matrix ensemble and therefore we

can diagonalize Pi and follow the same techniques that where

used to obtain (35) to show that,

SP,i+1(z) =
1

αr′
SB,i

(
z

αr′
− βG/αr′

βG + SP,i+1(z)

)

. (45)

Using (45) instead of (17), the rest of the proof will be similar

to that of Theorem 3.1.

�

As in Theorem 3.1, this implicit pair of equations for

SP(z) can be rewritten as an expression for the steady-state

eigendistribution involving an auxiliary distribution, which

can be efficiently solved through numerical methods in order

to determine the eigendistribution.

In Figure 2, we have plotted the theoretical curve obtained

by numerically solving (39) and (40) versus the empirical

eigendistributions which are found through Monte Carlo

simulation of the recursion (38) for various values of n. It

can be seen that the theoretical curve captures the behavior

of the empirical one very closely.
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Fig. 2. The empirical steady-state eigendistribution of the recursion (38)

for n = 10, 20, m = 30, r = 0.5, q = 2.5, mG = n, and pd = 0.2
compared to the theoretically found eigendistribution.

As mentioned in the previous subsection, our proof re-

mains valid even when assuming that the observations are

dropped independently with different probabilities, while

the average of these packet drop probabilities equals pd.

In Figure 3, we have compared the theoretical curve with

the Monte Carlo simulation results for this scenario. Each

observation may be dropped with probability pj , where pj’s

are selected uniformly between zero and 2pd.

IV. CONCLUSIONS

Using the framework first introduced in [2], [3] we obtain

explicit equations that allow one to compute the asymptotic

eigendistribution of the error covariance matrix that arises

in Kalman filtering with intermittent observations, when

the state dimension is large. Our analysis relies on two

key assumptions: the system matrix F is stable and the

measurement matrices Hi are time-varying. Relaxing these

assumptions, so that the results can apply to a wider range

of problems, is currently under investigation.
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