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Abstract— Autocatalytic networks, where a member can stim-
ulate its own production, can be unstable when not controlled by
feedback. Even when such networks are stabilized by regulating
control feedbacks, they tend to exhibit non-minimum phase
behavior. In this paper, we study the hard limits of the ideal
performance of such networks and the hard limit of their
minimum output energy. We consider a simplified model of
glycolysis as our motivating example. For the glycolysis model,
we characterize hard limits on the minimum output energy by
analyzing the limiting behavior of the optimal cheap control
problem for two different interconnection topologies. We show
that some network interconnection topologies result in zero
hard limits. Then, we develop necessary tools and concepts to
extend our results to a general class of autocatalytic networks.

I. INTRODUCTION

Autocatalysis refers to any cyclical concatenation of pro-
cesses wherein each member has the tendency to accelerate
the activity of the preceding link and therefore stimulating
its own production. This structure originates and stimulates
growth of its constituent members until some physical or
spatial constraint has been reached or a negative feedback
stops the process of growth, allowing the system to settle
in a stable state. Without such constraints or feedback, the
autocatalytic system is inherently unstable. In metabolic
systems the destabilizing effects of positive autocatalytic
feedback is often countered by negative feedback loops, but
high feedback gain can also move the system into a limit
cycle.

Autocatalytic feedbacks commonly exhibit lags in time,
and the time it takes one state variable to respond to changes
in another may cause overshoot followed by an undershoot
in the transient response. This is a typical behavior of a non-
minimum phase system. This type of performance may be
detrimental in live cells which in some cases may require
more precision in both concentration and timing to function,
yet autocatalytic networks are both ubiquitous and necessary
in engineered and biological systems. Because of this, the
operating point of such system is therefore constrained and
the optimal performance we can gain from negative feedback

† The authors acknowledge research funding from the ONR through
Grant N00014-08-1-0747, the ARO through Grant W911NF-08-1-0233,
the AFOSR through Grants FA9550-08-1-0043 and FA9550-10-1-0143,
the NSF through Grants EFRI-0735956 and ECCS-0835847 and ECCS-
0802008 and CMMI-0626170, the NIH through Grant R01-GM04983 and
the Institute for Collaborative Biotechnologies through Grant DAAD19-03-
D-0004 from the US Army Research Office.

1 The authors are with the Control and Dynamical Systems Department,
California Institute of Technology, 1200 E. California Blvd, Pasadena, CA
91125 USA ({motee,fiona,doyle}@cds.caltech.edu).
2 The authors are with the Department of Mechanical Engineering,
University of California, Santa Barbara, CA 93106, USA
({bamieh,khammash}@engineering.ucsb.edu).

control is bounded. This bound exists in all systems and is
typically even more aggravated in systems with autocatalysis.

With biology as our main motivation, first we look at the
hard limits of a simplified glycolysis model given different
optimal feedback mechanisms. For the glycolysis model,
we consider optimal control problem with a quadratic cost
function, in which a small parameter multiplies the control
cost. This is the so called cheap control problem [1]. The
key idea is the performance of an optimal control scheme
is close to the ideal performance if the control effort is
cheap and can be achieved if the control effort is free. This
corresponds to solving an optimal control problem where the
control effort is scaled by a small parameter ε > 0 and the
ideal performance is calculated as ε → 0. This problem is
important in analyzing the limiting possibilities of feedback
controllers. One can used the result as a design principle
in the form of high-gain feedback. The linear cheap control
problem is well-studied [2]–[6].

In [7], a nonlinear cheap control analysis is proposed
which highlights the role of unstable zero-dynamics– the
nonlinear counterpart of nonminimum-phase (NMP) zeros.
In Section III, we apply the result of [7] by looking at
the zero-dynamics of the glycolysis model. We show that
unstable zero-dynamics of the glycolysis model represents
a structural obstacle to achieving zero ideal performance
and that imposes a hard limit. This hard limit is exactly
the least amount of output energy required to stabilize the
zero-dynamics. We characterize this hard limit in terms of
systems parameters and the strength of the autocatalytic
feedback. The interconnection topology of the autocatalytic
feedback and regulating control feedback in an autocatalytic
network plays an important role in imposing hard limit on the
minimum output energy. In the simplified glycolysis model,
the autocatalytic and regulating control feedbacks are applied
both on the same biochemical reaction. In fact, the unstable
zero-dynamics in glycolysis model is an artifact of such
interconnection topology.

Furthermore, we show how hard limits on the minimum
output energy can disappear by altering the interconnection
topology of the autocatalytic system. The topology of the
glycolysis model is altered by applying autocatalytic and
regulating control feedbacks on two different biochemical
reactions. We investigate the limiting behavior of the optimal
cheap control problem for the altered system by employing
power series methods [9], [10]. The power series method was
originally proposed to find numerical solution of Hamilton-
Jacobi-Bellman (HJB) PDE that arises in an infinite-horizon
(nonlinear) optimal control problem. We employ this method
to find the solution of the optimal cheap control problem
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analytically. More specifically, we show that for the altered
autocatalytic system the ideal performance is zero when the
control effort is free. Therefore, the minimum output energy
of the system can enjoy zero hard limit by altering the
interconnection topology of the system in a specific way.

In Section IV, we introduce a class of large-scale au-
tocatalytic networks. We characterize various types of au-
tocatalytic feedbacks in an autocatalytic network. We de-
velop underlying concepts and tools in order to extend our
results from Section III to general autocatalytic networks.
By applying concepts from graph theory, it is shown that
under some sufficient conditions the zero-dynamics of an
autocatalytic network is unstable. This motivates the analysis
of the limiting behavior of the optimal cheap control problem
for general autocatalytic networks.

II. TWO-STATE REGULATED AUTOCATALYTIC MODEL

OF GLYCOLYTIC PATHWAY

Although autocatalytic networks can be unstable or have
a constrained ideal performance, it is in some cases also
unavoidable. Glycolysis is perhaps the most common control
system on the planet and has been widely studied. Glycolysis
generates ATP, which is the cell’s energy currency. Similar
to an engineered power plant whose machinery runs on its
own energy product, the glycolysis reaction is autocatalytic
and is therefore ideal to motivate theoretical analysis of
biological systems. In the glycolysis pathway, autocatalysis
of Adenosine triphosphate (ATP) is necessary for the steady
state efficiency of this energy producing pathway. Glycolysis
converts the sugar glucose into energy in the form of ATP,
but initial investment of ATP molecules are necessary in the
first steps of the pathway in order to convert glucose into
something that would react more readily [13]. Two molecules
of ATP are consumed in the early steps (hexokinase, phos-
phofructokinase/PFK) and four ATPs are generated as pyru-
vate is produced, hence producing an autocatalytic loop of
ATP with a net gain of 2 molecules. We use glycolysis as
our motivating example and look at a simplified model of
glycolysis previously presented in [11]. Early experimental
observations suggest that there are two Hopf modes present
in the system and that a two-state model centered on an
abstracted version of PFK is a reasonable simplification of
glycolysis. We consider the two-state model from [11] with
ATP (denoted by variable y) and a lumped intermediate
metabolite (denoted by variable x) as states. We assume that
the total concentration of adenosine phosphates in the cell
remains constant, i.e., [Atot] = [ATP] + [ADP] + [AMP],
and hence the activating effects of AMP can be expressed
as inhibition by ATP. We assume that the decay rates of
the metabolites and the intermediate reaction converting x

to y are operating in the linear regime and obey simple mass
action kinetics:

ẋ = −kxx +
V yq

1 + γyh
(1)

ẏ = −kyy + (1 + q)kxx− q
V yq

1 + γyh
(2)

in which q is the number of y molecules that are invested
in the pathway, and q + 1 is the number of y molecules
produced. The parameter kx represents the lumped metabolic
reactions that generate ATP, and h is the gain of the inhibition
of the enzymes by ATP. The parameter ky represents the ATP
demand of the cell, and we assumed that ATP-dependent
processes are in saturation, and thus constant. In this case
the glycolytic flux is set by the ATP demand of the cell
or the reactor in the case of cell extract experiment. As
a reminder, glycolytic oscillations have so far mainly been
seen in anaerobic conditions, and so there is no additional
ATP production from aerobic pathways. We normalize the
model such that the system produces one more molecule of
y than the number consumed, i.e., consumes qy molecules
and produces (1 + q)y molecules.

For the sake of simplicity of notations, we assume that
the equilibrium of interest is ȳ = 1. This can be done by
further non-dimensionalizing the model with respect to the
concentration and flux of y. The equilibrium of interest can
be characterized as[

x̄

ȳ

]
=

[
ky

kx

1

]
where kxx̄ = ky =

V

1 + γ
. (3)

III. IDEAL PERFORMANCE OF AUTOCATALYTIC

CONTROL SYSTEMS

In the glycolytic pathway model (1)-(2), we can interpret
u = 1

1+γyh as the regulatory feedback control that captures
the inhibition of the catalyzing enzyme. In this section,
we derive two control system models from the regulated
autocatalytic model of the glycolytic pathway (1)-(2). First,
we consider a network structure where autocatalytic and
regulating control feedbacks are applied both on the same
biochemical reaction (see Fig. 1). In the second scenario, we
consider a system where autocatalytic and regulating control
feedbacks are applied each on a different reaction (see Fig.
2). We show that the first network structures imposes a hard
limit on the ideal performance of the system while the second
network structure allows the system to achieve the ideal
performance with cheap control strategy.

We consider the first scenario which corresponds to the
following autocatalytic control system model

ẋ = −kxx + V yqu (4)

ẏ = −kyy + (q + 1)kxx− qV yqu (5)

The linearization around the non-zero equilibrium point (3)
yields an LTI system with the following state-space matrices

A1 =

[
−kx qky

(1 + q) kx −
(
1 + q2

)
ky

]
, B1 =

[
V

−qV

]

The transfer function from control input u to output y is
given by

G1(s) =
V (−qs + kx)

s2 +
(
ky + kyq2 + kx

)
s− (q − 1)kxky

The linearized model has a zero in C+ at kx

q
and that it is

nonminimum phase. One can also feature the nonminimum
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Fig. 1: A simple autocatalytic system where autocatalysis
feedback and regulating control feedback are applied on
the same biochemical reaction. This diagram corresponds to
system (4)-(5).

phase nature of the system by introducing a new variable
z = x+ 1

q
y and rewriting the system (4)-(5) in the following

canonical form

ẏ = −
(
ky + (1 +

1

q
)kx

)
y + (q + 1)kxz − qV yqu (6)

ż =
(kx

q

)
z −

(kx

q2
+

ky

q

)
y (7)

The subsystem (7) represents the zero-dynamics of (4)-
(5). The zero-dynamics (7) is antistable, i.e., ż = −(kx

q
)z

is asymptotically stable. One can think of y as a control
input to unstable subsystem (7). One can see that some
minimum output energy (i.e., ATP) is required to stabilize
unstable zero-dynamics (7). This output energy represents
the energetic cost of the cell to stabilize to its steady state.
The following theorem, we show that the minimum output
energy is bounded from below by a constant which is only a
function of parameters and initial condition of the glycolysis
model. This hard limit is independent of of the feedback
control strategy used to stabilize the system.

Theorem 1: Suppose that the equilibrium of interest is
given by (3) and ū = 1

1+γȳh . Consider the optimal cheap
control problem for system (4)-(5) where the objective is to
minimize cost functional

Jε =
1

2

∫ ∞

0

(
(y(t)− ȳ)2 + ε2(u(t)− ū)2

)
dt (8)

where ε > 0 is sufficiently small. Then, the optimal cost
value is

J∗ε
(
x(0), y(0)

)
=

q3kx(
qky + kx

)2 z̃(0)2 + O(ε). (9)

where

z̃(0) = (x(0)− x̄) +
1

q
(y(0)− ȳ) and

[
x(0)
y(0)

]
∈ R

2
+.

The ideal performance can be obtained from (9) as ε → 0.
Furthermore, there is a hard limit on the total output energy
of system (4)-(5), i.e.,

min
u∈U

1

2

∫ ∞

0

(
y(t)− ȳ

)2
dt ≥ J∗0

(
x(0), y(0)

)
(10)

where U is the set of all stabilizing state feedback control
laws for system (4)-(5).
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Fig. 2: A simple autocatalytic system where autocatalysis
feedback and regulating control feedback are applied on
different biochemical reaction. This diagram corresponds to
system (13)-(14).

Proof: We refer to [14] for a proof.

We emphasize that the result of Theorem 1 asserts that
structure of the autocatalytic network (as shown in Fig. 1)
is the main reason for existence of a hard limit on the ideal
performance. In the following, we show that this hard limit
results in some performance limitations and tradeoffs. The
zero-dynamics of the glycolysis model (4)-(5) is linear with
the following transfer function

Z(s) = −

kx

q2 +
ky

q

s− kx

q

Y (s) (11)

A simple performance requirement is to have small steady-
state gain when there is a small constant disturbance in ATP
consumption, i.e., y → y+δ. The steady-state value is given
by

z(∞) =

(
1

q
+

ky

kx

)
δ (12)

We assume that the equilibrium of the system remains fixed,
i.e., x̄ =

ky

kx
. According to inequality (10), the glycolysis

mechanism is more energy efficient if q is small. On the other
hand from (12), small autocatalysis q deteriorates achievable
steady-state disturbance rejection.

Remark 1: We note that inequality (10) is not tight. A
more realistic scenario is to obtain a hard limit by optimizing
the output energy over all output (rather than full-state)
feedback control laws. This is usually the case in biological
systems. For example in Glycolysis model (1)-(2), output
feedback control law u(y) = 1

1+γyh stabilizes the process.
However, adding this new constraint to our problem makes
the analysis quite difficult.

In most biological experiments, it is often the case that the
equilibrium of the process is attained in T < ∞ seconds. In
such situations, the inequality (10) reduces to

sup
t∈[0,T ]

|y(t)− ȳ| ≥

√
2 J∗0 (x(0), y(0))

T

This inequality provide a lower bound on the peak error for
a given reference step input ȳ and a given settling time T .
According to Theorem 1, this hard limit is dictated by the
unstable zero-dynamics of (4)-(5).

Next, we show that if one modifies the structure of
network in (4)-(5) so that autocatalysis and regulating control
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feedbacks are applied on different biochemical reactions (as
shown in Fig. 2), one can achieve the ideal performance, i.e.,
zero hard limits on the total output energy. To this end, we
consider the following autocatalytic system

ẋ = −kxxu + V yq (13)

ẏ = −kyy + (q + 1)kxxu − qV yq. (14)

The linearization around the non-zero equilibrium point (3)
yields an LTI system with the following state-space matrices

A2 =

[
−

kxky

V
qV

(1+q)kxky

V
−ky − q2V

]
, B2 =

[
−ky

(1 + q)ky

]

It is straightforward to verify that the transfer function from
input u to output y is

G2(s) =
(1 + q) ky s

s2 +
(
ky + V q2 +

kxky

V

)
s +

kxk2
y

V
− qkxky

The linearized model has a zero at the origin and there-
fore it is nonminimum phase. This is clearly due to the
particular autocatalytic network structure. Despite the fact
the linearized model has a zero at the origin, in the next
theorem we show that there is no hard limits on the ideal
performance of the nonlinear system (13)-(14).

Theorem 2: Suppose that the equilibrium of interest is
given by (3) and ū = 1. Consider optimal cheap control
problem for system (13)-(14) where the objective is to
minimize cost functional (8) for sufficiently small ε > 0.
Then, the optimal cost value is

J∗ε (x(0), y(0)) = O(ε). (15)

Furthermore, the ideal performance can be obtained as ε→ 0
and therefore

min
u∈U

1

2

∫ ∞

0

(y(t)− ȳ)2dt ≥ 0 (16)

where U is the set of all stabilizing state feedback control
laws for system (13)-(14).

Proof: We refer to [14] for a proof.

IV. GENERAL AUTOCATALYTIC NETWORKS

We have just analyzed one example of autocatalytic net-
works as represented by glycolysis. Both in engineering and
in biology, we find many other autocatalytic networks with
varied topology. For example, the blood clotting pathway
is composed of a nested series of autocatalytic loops [12].
In this section, we will generalize our results for general
autocatalytic networks. An autocatalytic set is a collection
of entities, each of which can be created catalytically by
other entities within the set, such that as a whole, the set is
able to catalyze its own production. To some extent, we can
formalize the autocatalysis concept using graph theoretical
tools. We can imagine a given set of biochemical reactions
as a directed graph G (reaction graph) in which a node
represents a molecular species and an edge from node j

to node i means that j is a catalyst for i. From a control

x1 x2 xi xj xn
S xk

Fig. 3: A schematic graph of an autocatalytic network. Each
square box represents a biochemical reaction and each circle
denotes the byproduct of the biochemical reaction. In this
network, autocatalytic feedback Ani is of type I, Aj̄ k̄ of
type II, and An 1̄ of type III.

theoretic perspective, each edge can be interpreted as a
catalytic and regulating control feedback loop (see Fig. 3
and Table I).

Definition 1: A subgraph Ga of a reaction graph G is
called autocatalytic if every node of Ga has at least one
incoming edge from another node of Ga.

In general, autocatalytic subgraphs are different from cy-
cles and irreducible subgraphs. In fact, there is a hierarchical
inclusion relationship between cycles, irreducible subgraphs,
and autocatalytic subgraphs as follows

cycles ⊂ irreducible subgraphs ⊂ autocatalytic subgraphs.

We define a class of autocatalytic networks with multiple
autocatalytic and regulating control feedbacks (see Figure 3).
Roughly speaking, an autocatalytic feedback can be thought
of as an energy delivery channel from a source node to
a sink node. In an autocatalytic feedback from node j to
node i (denoted by A), byproduct of biochemical reaction j

(denoted by xj ) catalyzes the evolution of species i in order
to help to create more xj . In this case, j is the source node
and i the sink node of the autocatalysis feedback. We denote
j = source{A} and i = sink{A}. For an autocatalytic
network with underlying autocatalytic graph G, the set of
all autocatalytic feedbacks is represented by ACL(G).

Now we have enough machinery to characterize an in-
etersting class of autocatalytic networks. An autocatalytic
network consists of a collection of interconnected subsystems
each with the following dynamics

ẋi = −gi(xi) + wi (17)

for i = 1, . . . , n. It is assumed that functions gi are
differentiable and increasing functions and gi(0) = 0. The
network interconnection topology is determined from the
underlying autocatalytic graph of the network. In Table I, we
characterize various types of autocatalysis feedbacks based
on their role in catalyzing and controlling the corresponding
biochemical reactions. For example, in a type III autocat-
alytic feedback, only one of the biochemical reactions of the
end nodes (source or sink) is regulated by a control input. In
Fig. 3 shows a type III autocatalytic feedback from node n

to 1 with a regulating control input on biochemical reaction
1 which is denoted by An 1̄.

Without loss of generality, we may assume that the
byproduct of the first reaction does not catalyze any of
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Type Regulating Control Input Notation Schematic
I None Aji ←−
II Source and Sink Aj̄ ī |←−|
III Either Source or Sink Aj̄ i or Aj ī |←− or ←−|

TABLE I: Possible control scenarios for an autocatalysis
feedback from subsystem j to subsystem i.

the biochemical reactions in the network. Based on this
assumption and our notations, w1 = 0 if subsystem 1 is
not catalyzed, otherwise

w1 =
∑

j

{
κj1(xj)uj1 if 1 ∈ sink{Aj 1̄}

κj1(xj) if 1 ∈ sink{Aj1}
(18)

where κji captures the effect of autocatalytic feedback on
biochemical reaction 1. The interconnection topology of the
rest of the network can be modeled according to the under-
lying autocatalytic graph of the entire system as follows. For
i = 2, . . . , n and depending on the structure of the underlying
autocatalytic graph, we define:

• If i is not a sink or source node:

wi = gi−1(xi−1) (19)

• If i = sink{Aj∗}:

wi =
∑

j

{
gi−1(xi−1) κji(xj) if i∈sink{Aj i}

gi−1(xi−1) κji(xj) uji if i∈sink{Aj ī}
(20)

• If i ∈ source{A∗j}:

wi = fi−1(xi−1)−
{

ηi1(xi) if i∈source{Ai1}
ηi1(xi) ui1 if i∈source{Aī1}

−
∑

j

{
gj−1(xj−1) ηij(xi) if i∈source{Aij}
gj−1(xj−1) ηij(xi) uij if i∈source{Aīj}

(21)

The output vector is defined as

yk = xjk
, k = 1, . . . , M (22)

where jk = source{A} for all A ∈ ACL(G) and M is
the number of autocatalytic feedbacks in the network. The
functions κji, ηji, and fj are differentiable and increasing
functions and κji(0) = ηji(0) = fj(0) = 0. The function κji

capture the effect of the autocatalysis feedback from node j

to i on the corresponding biochemical reactions.

Assumption 1: For an autocatalytic feedback from node j

to i, we assume that

κji(x) < ηji(x) and gj(x) < fj(x)

for all x ∈ R+.

Lemma 1: Consider autocatalytic network defined by
(17)-(22) with no autocatalytic feedback. Then the origin
x = 0 is a globally asymptotically stable equilibrium of the
system for all x(0) ∈ Rn

+.

Proof: When there is no autocatalytic feedback, the
dynamics of the network is governed by the following

differential equations

ẋ1 = −g1(x1) (23)

ẋi = −gi(xi) + gi−1(xi−1) (24)

for i = 2, . . . , n. From our assumptions that gi(0) = 0 it
follows that the unique equilibrium of (23)-(24) is x∗ = 0.
The Jacobian matrix evaluated at the origin is given by

J(0) =

⎡
⎢⎢⎣
−g′

1
(0) 0 0 ... 0

g′
1
(0) −g′

2
(0) 0 ... 0

...
. . .

...
0 0 ... −g′n−1

(0) 0

0 0 ... g′n−1
(0) −g′n(0)

⎤
⎥⎥⎦ .

Since all functions gi are increasing, it follows that J(0) is
Hurwitz. Therefore, x = 0 is a globally asymptotically stable
equilibrium of the system for all initial condition in Rn

+.

In the following theorem, we show that under some condi-
tions that are imposed due to the existence of autocatalytic
feedbacks in the network, the zero-dynamics of the network
is unstable. This result helps to extend the results of Theorem
1 to arbitrary autocatalytic networks.

Definition 2: An autocatalytic network is simple if every
node is either a source or sink of at most one autocatalytic
feedback.

In this paper, we only present our results for simple au-
tocatalytic networks with type II autocatalytic feedbacks.
However, similar results hold for a general autocatalytic
network defined by (17)-(22).

Theorem 3: For a simple autocatalytic network (17)-(22)
with M autocatalytic feedbacks of type II, suppose that x̄ ∈
R

n
+ is a desired equilibrium. Suppose that

f ′j−1(x̄j−1)

g′j−1(x̄j−1)
>

ηji(x̄j)

κji(x̄j)
(25)

in which j = source{A} and i = sink{A} for all
A ∈ ACL(G). Then the zero-dynamics of the autocatalytic
network is unstable.

Proof: Without loss of generality, we may assume that
there is an autocatalytic feedback from node n to 1. In order
to obtain the zero-dynamics of (17)-(22) at equilibrium point
x̄, we should impose the following constraints on the outputs
of the system

yk − x̄jk
= xjk

− x̄jk
≡ 0

where jk = source{A} for all A ∈ ACL(G). By imposing
these constraints and solving the resulting equations for
control inputs, one can derive the zero-dynamics of (17)-(22)
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as follows

ẋ1 = −g1(x1) +
κn,1(x̄n)

ηn,1(x̄n)

(
fn−1(xn−1)− gn(x̄n)

)
ẋ2 = −g2(x2) + g1(x1)

...

ẋi = −gi(xi) +
κji(x̄j)

ηji(x̄j)

(
fj−1(xj−1)− gj(x̄j)

)
...

ẋn−1 = −gn−1(xn−1) + gn−2(xn−2)

In the following, we characterize conditions under which
the zero-dynamics is unstable. The corresponding Jacobian
matrix at x̄ is given by

J(x̄) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−g′
1

0 0 ... 0 ...
κn1

ηn1
f ′n−1

g′
1
−g′

2
0 ... 0 ... 0

..

.
. . .

g′i ...
κji
ηji

f ′j−1
... 0

..

.
. . .

0 0 ... −g′j−1
... 0

..

.
. . .

..

.
0 0 ... −g′n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can rewrite the Jacobian matrix in the following form

J(x̄) =
(
− I + A(x̄)

)
D(x̄)

in which

A(x̄) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ... 0 ...
κn1

ηn1

f′n−1

g′
n−1

1 0 0 ... 0 ... 0
...

. . .

1 ...
κji

ηji

f′j−1

g′
j−1

... 0

..

.
. . .

0 0 ... 0 ... 0
..
.

. . .
..
.

0 0 ... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and D(x̄) = diag(g′1(x̄1), . . . , g
′
n−1(x̄n−1)). We can think

of matrix A(x̄) as adjacency matrix of a weighted graph.
According to the proven lemmas in Appendix section of [14],
if

κji(x̄n)

ηji(x̄n)

f ′j−1(x̄j−1)

g′j−1(x̄j−1)
> 1,

then λmax(A(x̄)) > 1. Since D(x̄) a positive diagonal
matrix, if the above inequality holds, it concludes that
λmax(J(x̄)) > 0. Thus, the zero-dynamics of the autocat-
alytic network is unstable.

In the following corollary, we show that for an autocatalytic
network with only one autocatalytic feedback of type II, one
can explicitly characterize the zero of the transfer function
of the linearized model of the network.

Corollary 1: Suppose that system (17)-(22) has only one
autocatalysis feedback An̄ 1̄ and

fn−1(x) = (a + b)gn−1(x) and ηn1(x) = aκn1(x)

for some given a, b > 0 and all x ∈ R+. If we assume

g′i(x̄i) = 1 for all i = 1, . . . , n − 1, then the poles of the
linearization of the zero-dynamics at x̄ are given by

zk =

(
−1 +

n−1

√
1 +

b

a
cos

2kπ

n− 1

)
+ i sin

2kπ

n− 1
.

Proof: We refer to [14] for a proof.

V. CONCLUSION

We have studied the ideal performance limitations of
autocatalytic systems. We used a simplified model of the
glycolysis pathway as a motivating example and character-
ized the performance limitations of the model. The optimal
cheap control problem was considered for the glycolysis
model and we analyzed the limiting behavior of this cheap
control problem. We showed that the unstable zero-dynamics
of the glycolysis model represents a structural obstacle to
achieving zero ideal performance and therefore imposes a
hard limit. This hard limit is exactly the least amount of
output energy required to stabilize the zero-dynamics. We
proved that for some interconnection topologies there is a
hard limit on the ideal performance and we further show
that by altering the interconnection topology in a specific
way, the ideal performance can be achieved when the control
effort is free. Then, we developed a mathematical foundation
to study performance limitations for a class of autocatalytic
networks. We formally defined a class of autocatalytic net-
works and showed that the zero-dynamics of such networks
are unstable.
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