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Abstract— Metabolic pathways in cells convert external food
and resources into useful cell components and energy. In many
cases the cell employs product inhibition to regulate and control
these pathways. We investigate the performance of such regula-
tion and control on certain autocatalytic pathways. Specifically,
we examine how well the pathways can maintain the desired
output concentrations in the presence of disturbances, such as
perturbations in resources, enzyme concentrations and product
demand. Using control theoretic tools, we show the effects of
the pathway size, the reversibility of the intermediate reactions
and the coupling of pathways through the consumption of inter-
mediate metabolites on performance. In addition, we establish
some necessary conditions on the existence of fixed points and
their stability for such pathways.

I. INTRODUCTION

Cell metabolism converts external food and resources to

useful cell components and energy, using a series of enzymat-

ically catalyzed chemical reactions organized in metabolic

pathways. One of the ways that cells regulate (control)

these pathways is by product inhibition, a process through

which a product of the pathway binds to an enzyme causing

the enzyme to change shape and become less effective

(allosteric regulation). Some of these metabolic pathways are

autocatalytic, i.e., they contain reactions that consume one

of the pathway’s own products. Autocatalytic processes are

found at every scale in biology, ecology, and technology. The

most basic and also the most studied is glycolysis, which is at

the heart of metabolism. The glycolysis pathway, which is the

main source of anaerobic energy production, initially requires

the consumption of 2 ATP molecules (energy carriers) and

later in the pathway produces 4 ATP molecules [1]. In

addition, metabolic pathways within the cell do not act in

isolation, but are an integral part of the whole cell activity.

They are coupled with other networks through the sharing of

components and the exchange of their intermediate products.

Glycolysis, for example, provides many of the necessary in-

termediates used to produce amino acids, lipids, nucleotides,

and other organic molecules essential to the function of

the cell [1]. In this paper we investigate pathways with the

topology shown in figure 1. Specifically, these pathways are

composed of a chain of reversible reactions that convert one

metabolite to another and require the consumption of the

final product to convert their input into the first metabolite.

Additionally, the product of the pathway inhibits the enzyme

that catalyzes the autocatalytic reaction and the pathway

product and intermediate metabolites are consumed by other

processes in the cell.
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Fig. 1. The autocatalytic network is composed of a chain of reversible re-
actions (black arrows) that convert one metabolite (black circles) to another.
The pathway requires the consumption of the final product (blue triangles)
to convert its input into the first metabolite. Additionally, the product
of the pathway inhibits (dotted red line) the enzyme that catalyzes the
autocatalytic reaction and the pathway product and intermediate metabolites
are consumed by other processes in the cell (dotted blue arrows).

Nonlinear stability and region of attraction properties for

such autocatalytic pathways (with application to glycolysis

pathway) are the subject of [2], [3], focusing on the case

in which the intermediate reactions are not reversible and

there is no intermediate metabolite consumption. For general

biochemical networks, stability and the existence of steady

states have been the subject of study for many decades. Re-

sults regarding the number of steady states and convergence

properties around steady states for rather general networks

with mass-action kinetics are established in [4], [5], [6]. Lo-

cal and global convergence properties have been established

for many network topologies such as monotone dynamical

systems [7], [8] and cyclic interconnection networks [9],

[10], [11], [12].

Here, we are primarily interested on the performance

of autocatalytic metabolic pathways near their biological

operating point. In particular, we study how the pathway can

best maintain the desired output concentration in the presence

of disturbances such as perturbations in resource availability,

product demand and enzyme concentrations using feedback

inhibition. Using tools from linear systems theory, our previ-

ous work on a simple two-state pathway (figure 2a) showed

that autocatalysis can aggravate controller performance [13].

We have shown that this reduced model captures the essence

of glycolysis pathway and glycolytic oscillations, but it

is sensitive to parameter perturbations and exhibits a very

rich dynamic behavior. Perturbations in the parameters can

make the system undergo a variety of bifurcations, such

as saddle-node, Hopf and homoclinic bifurcations [2], [14].

This can cause the system to oscillate (limit cycles) or

even crash, implying that none of the theorems or existing

theory that rule out such behavior are applicable. Since

this level of parameter sensitivity of the dynamics is not

immediately obvious from the structure of the reduced model

or the underlying biology, it is important to explore more

realistic pathway models and examine how perturbations in

the structure of the chemical reactions in the pathway model
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Fig. 2. Performance in the different network topologies (reversibility of
intermediate reactions (b), large pathways (c) and intermediate metabolite
consumption (d)), is compared to that of the simplest two-state pathway (a).

effect dynamics and performance. In this paper, we inves-

tigate how the size of the pathway, the reversibility of the

intermediate reactions and the coupling of pathways through

the consumption of intermediate metabolites effect their

performance (figure 2). In the case when there is coupling

to other pathways via intermediate metabolite consumption,

we establish some necessary conditions on the existence of

fixed points.

The rest of the paper is organized as follows: We introduce

the pathway model in the next section, followed by a

discussion of control and performance in section II-A. Next

we consider the different topologies separately, by looking

at large pathways in section III, pathways with reversible

reactions in section IV and pathways with intermediate

metabolite consumption in section V. The more general

pathways are discussed in section VI.

II. MODEL DESCRIPTION

Consider the autocatalytic metabolic pathway with multi-

ple intermediate metabolite reactions (figure 1)

u+ ay ⇀f x1

x1 �g1
l2

x2 �g2
l3

· · · �gn−1
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Here, u is some precursor and source of energy for the

pathway with no dynamics associated, y denotes the product

of the pathway, xi are intermediate metabolites, ϕ is a null

state, a is the number of y molecules that are invested in the

pathway, and a+ b is the number of y molecules produced.

A ⇀f B denotes a chemical reaction that converts chemical

species A to species B at rate f and A � B denotes a

reversible reaction (i.e., both the reaction that converts A
to B and the one that converts B to A are present). The
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ĥ

-
�

Fig. 3. Block diagram of system (2).

corresponding ordinary differential equations are

ẋ1 = f(y) + l2(x2)− g1(x1)− d1(x1)
ẋ2 = g1(x1) + l3(x3)− g2(x2)− l2(x2)− d2(x2)

...

ẋn−1 = gn−2(xn−2) + ln(xn)− gn−1(xn−1)
−ln−1(xn−1)− dn(xn−1)

ẋn = gn−1(xn−1) + ly(y)− gn(xn)
−ln(xn)− dn(xn)

ẏ = (a+ b)gn(xn)− af(y)− (a+ b)ly(y)− gy(y),
(1)

for xi ≥ 0, y ≥ 0. Here, g1, . . . , gn, l2, . . . , ln, ly, d1, . . . , dn,
and gy are continuous, monotone, increasing functions that

vanish at 0. These assumptions are consistent with large

classes of chemical kinetics models such as mass-action

and Michaelis-Menten. The rate f(y) of the autocatalytic

reaction captures the negative feedback of the output (y) via

the inhibition of the catalyzing enzyme of the first reaction.

We choose f(y) = V yq

1+γyh that is consistent with biological

intuition and experimental data (in the case of the glycolysis

pathway [15], [16]). In this parameterization V > 0 depends

on the concentration of the input (u), q > 0 captures the

strength of autocatalysis and γ > 0 and h > 0 capture

the strength of inhibition (negative feedback). Note that f
is not monotone and captures the coupling between the

autocatalysis and inhibition. For the rest of the paper, we

take a = b = 1 and note that the generalization of the results

for a > 0 and b > 0 is straightforward.

A. Feedback Mechanism, Sensitivity Function, Zeros

If a nonzero fixed point (x̄, ȳ) � (0, 0) of (1) exists, then

without loss of generality we set ȳ = 1 (and assume so for

the rest of the paper). Define ĥ := γ
γ+1h, and

V0 := f(1) = V
1+γ ri :=

∂
∂xi

li(xi)|x̄
ki :=

∂
∂xi

gi(xi)|x̄ ηi :=
∂

∂xi
di(xi)|x̄

ky := ∂
∂y gy(yi)|1 ry := ∂

∂y ly(y)|1.

The dynamics of (1) near the fixed point are given by the

following linear system

[
ẋ
ẏ

]
=

(
J0 − ĥBC

)[
x
y

]
(2)
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for x ∈ R
n, y ∈ R and where B := V0 [1, 0, . . . , 0,−1]

T
,

C := [0, 0, . . . , 0, 1] , J0 is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m1 r2 0 · · · 0 0 qV0

k1 −m2 r3 0 0 0

0 k2 −m3
. . . 0 0 0

. . .
. . .

...

0 0 0 −mn−1 rn 0
0 0 0 kn−1 −mn ry
0 0 0 · · · 0 2kn −δy − qV0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and for all i, mi := ki+ ri+ ηi, r1 := 0 and δy = ky +2ry .

Notice that equation (2) can be viewed as the closed-loop

dynamics of

ξ̇ = J0ξ +Bν
ζ = Cξ.

(3)

using a proportional (negative) feedback controller of gain

ĥ (i.e., ν = −ĥζ). Biologically, the gain ĥ captures the

strength of the inhibition of the autocatalytic reaction by

the pathway product (in the case of glycolysis, it captures

the strength of inhibition of the catalyzing enzyme PFK by

ATP [2]). Figure 3 shows the feedback structure of system

(3), where P (s) := C(sI − J0)
−1B. In this paper, we

explore the performance of the controller on the different

network topologies shown in figure 2 by investigation of

the sensitivity function S, given by S(s) = 1
1+ĥP (s)

. S

captures the ability of the system to reject many relevant

disturbances, such as perturbations δ in the pathway product

consumption rate (i.e., perturbations of the RHS of equation

(2) by [0, . . . , 0, 1]T δ) or in the consumption rate of other

metabolites. In the topologies we investigate, the plants P
have right half-plane (RHP) zeros which introduce theoretical

limits on performance captured by a special form of the

Bode’s integral formula [13],

1

π

∫ ∞

0

ln |S(jω)| 2z

z2 + ω2
dω = M ≥ 0 (4)

where z is a RHP zero and M = ln | z+p
z−p̄ | > 0 if the open-

loop plant has a RHP pole p, and M = 0 otherwise. Notice

that these limits are exacerbated by smaller magnitude RHP

zeros, since it severely penalizes performance in frequencies

below z. Reference [13] characterizes the limits and the

tradeoffs involved for a special form of the two-state model

shown in figure 2a. In particular it shows that performance

improves as the concentration of the intermediate enzyme

increases (higher intermediate reaction rate). Here, using the

two-state model in figure 2a as a basis for comparison,

we investigate how limits on performance change as this

two-state model is extended to include multiple intermediate

states (figure 2c), reversibility of the intermediate reactions

(figure 2b) and consumption of intermediate metabolites by

other pathways (figure 2d).

Comparison of performance in these different topologies

can be tricky, since these topologies imply fundamental

changes in the “plant” and the number and locations of the

fixed points of the (nonlinear) closed loop system (1). The
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Fig. 4. (left) The magnitude of the RHP zero decreases as pathway size
increases. (right) The weight in the Bode integral gets tighter around 0
for longer pathways. This means the price paid for performance at small
frequencies increases substantially as the number of intermediate reactions
increases.

assumption that the (operating) equilibrium concentration

of the pathway output y is fixed and normalized to 1 for

all topologies makes such comparisons appropriate, since it

directly addresses the question of which topology is easier

to control, i.e., in which pathway topology the controller can

best maintain the desired concentration of the output y of the

pathway in the presence of disturbances.

III. LONGER PATHWAYS

In this section we investigate the topology of figure 2c,

i.e., a pathway of size n+1 with no reversible reactions and

no consumption of any of the intermediate metabolites (in

equation (1), ly(y) = 0, li(xi) = 0, di(xi) = 0, ∀i). Then

P (s) = C (sI − J0)
−1

B

= V0

∏n
i=1(ki+s)−2

∏n
i=1 ki

(ky+qV0+s)
∏n

i=1(ki+s)−2qV0
∏n

i=1 ki
.

(5)

The coefficients of the numerator of P (s), given by

n1(s) =
∏n

i=1 (ki + s)− 2
∏n

i=1 ki
= sn + (k1 + · · ·+ kn) s

n−1 + · · ·+ (−∏n
i=1 ki) ,

do not have the same sign. This implies that the polynomial

n1(s) is not Hurwitz stable and therefore P (s) has at least

one RHP zero and equation (4) holds for the n-D pathway.

Let us look at the case where ki = k, for all i. Define

ĥd(n) := q+
ky

V0

θ(n)
2+θ(n) , θ(n) := (sec(π/(n+ 1)))

n+1
, then

the system is stable for gains q − 1 < ĥ < ĥd(n) [3], [11].

This implies that, in general, as the pathway size increases,

the upper bound on stable feedback gains ĥ decreases. The

zeros of P (s) are given by s = k
(∣∣∣2 1

n

∣∣∣ ej 2πi
n − 1

)
, ∀i.

As expected, there is at least one zero in the RHP. The

magnitude of this RHP zero decreases as the size of the

pathway (n) increases (figure 4 left).

This fact, coupled with the conservation law given by (4),

implies that as the number of intermediate reactions grows

the price paid for performance at small frequencies increases

substantially (figure 4 right). So the increase in the interme-

diate metabolite reactions has two main consequences.

• The price for good performance at low frequencies

increases as the magnitude of the RHP zero gets smaller.

• The upper bound on the feedback gains gets smaller, so

the range of stable gains gets smaller.

For example look at the DC gain (steady state error) of a

n-D system with q = 2, ky = V0 = 1. From (5) we get

P (0) = 1 and the DC gain S(0) = 1
1+ĥ

. It is clear that

the DC gain improves as the gain increases, however the
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Fig. 5. The performance of two-state, three-state and four-state systems
is compared. The intermediate reaction rates are k1 = k2 = k3 = 1 and
q = 2, ky = V0 = 1. (top-left) Plot of log |S| for the same feedback

ĥ = 3.8, shows that the higher dimension systems pay a higher price at
higher frequencies for similar performance at low frequencies (top-right)
Closed-loop system step response shows that the same gain ĥ = 3.8 yields
the same steady state error for all 3 systems. However higher dimensional
systems have poorer transient response. (bottom-left) Lower dimensional
systems have access to higher gains, which means that they can get better
performance at low frequencies. The plot of log |S| for ĥ = 5.5, 4, 3.8
for two-state, three-state and four-state systems respectively, illustrates the
difference in performance at low frequencies, and the price paid at higher
frequencies (comparable for all 3 systems). (bottom-right) Closed-loop
system step response shows that access to higher gains for the low dimension
systems (ĥ2D = 5.5, ĥ3D = 4, ĥ4D = 3.8) achieves smaller steady state
error and better transient response as well.

maximum ĥ that still stabilizes the system gets smaller as n
increases. Therefore lower dimensional systems can achieve

better DC gain (steady state error). Figure 5 illustrates the

consequences of increased pathway size on performance by

looking at log |S| and the step response for comparable two-

state, three-state and four-state systems.

In general, long pathways in the cell can be biochemically

unavoidable or even necessary (such as the intermediate

metabolites are crucial to other processes in the cell). The

cell uses means such as employing metabolite channeling

[17] instead of free diffusion, to counteract the adverse effect

of large pathway size.

IV. REVERSIBLE REACTIONS

We investigate the topology of figure 2b, i.e., a pathway

of size 2 with one reversible intermediate reaction, but no

consumption of the intermediate metabolite (in equation (1)

n = 1, d1(x1) = 0).

The system is stable for gains q − 1
V0
ky < ĥ < q +

1
V0

(k1 + ky + 2ry) and so the presence of the reversible

reactions increases the range of stable gains ĥ. This suggests

that the reversible reactions make the pathway easier to

control. There is still a RHP zero at s = k1 since P (s) =
−V0

s−k1

pJ0
(s) , where pJ0

is the characteristic polynomial of

J0. This implies that equation (4) holds for this system.

However, because the range of the stable gains is larger

for higher reversible reaction (RR) rates, the same feedback

gain is more “robust”. This suggests that systems with higher

RR rates have better performance (i.e., smaller peak in the

log |S|, and smaller oscillations in the step response, (figure

6 top-left, top-right). It also means that higher gains can

−5 −4 −3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

log ω

log |S|

RR Rate 2
RR Rate 1
No RR

5 10 15 20 25 30

−0.2

0

0.2

0.4

0.6

0.8

time

error

RR Rate 2
RR Rate 1
No RR

−5 −4 −3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

log ω

log |S|

RR Rate 2
RR Rate 1
No RR

0 5 10 15 20 25 30

−0.2

0

0.2

0.4

0.6

0.8

time

error

RR Rate 2
RR Rate 1
No RR

Fig. 6. The performance of three two-state models with k1 = 1, q =
2, ky = 1, V0 = 1 and ry = 2, 1, 0 is compared. (top) Using the same

feedback gain ĥ = 3.5 , the systems with higher reversible reaction (RR)
rates have better performance (i.e., smaller peak in log |S| (top-left), and
smaller oscillations in the step response (top-right)). (bottom) Models with
higher reversible reaction rates allow for higher stabilizing gains. Using ĥ =
7.5, 5.5, 3.5 respectively, we obtain better performance at low frequencies
(bottom-left) and better steady state error (bottom-right) for the systems
with higher RR rates.

be used for systems with high RR rates to obtain better

performance at low frequencies and better steady state error

without a meaningful increase in performance losses at high

frequencies and qualitatively similar oscillations in the step

response, as shown in figure 6 bottom-left and bottom-right.

The improvement in performance by having reversible

reactions is to be expected, since the reversible reactions act

as local feedback loops. For example the pathway studied in

this section, is (locally) equivalent to a two state pathway

with no reversible reaction, but where the product y controls

both the autocatalytic and the intermediate reaction.

V. CONSUMPTION OF INTERMEDIATES

For the topology of figure 2d, i.e., a pathway of size

2 with a single intermediate metabolite and no reversible

intermediate reaction, but with consumption of the inter-

mediate metabolite from external sources (in equation (1)

n = 1, ly(y) = 0), a fixed point (x0, y0) � (0, 0) exists only

if d1(x0) < g1(x0). I.e., there cannot be more intermediate

metabolite consumption by other pathways than the current

pathway. If the desired operating fixed point (x0, 1) exists,

then it is stable for

q − 1

V0
ky

k1 + η1
k1 − η1

< ĥ < q +
1

V0
(k1 + ky + η1)

and it can be shown that it is open-loop (ĥ = 0) stable when

η1 is close enough to k1. Notice that η1 cannot be larger

than k1, since for δ := η1 − k1 > 0 and δ < ky
η1+k1

η1+k1+ky
,

the system is not stabilizable.

Under the above conditions, the consumption of the in-

termediate increases the range of stable gains ĥ. Similar

to the RR case, this suggests that the consumption of the

intermediate metabolite might make the pathway easier to

control. However, the plant has a RHP zero at s = k1 − η1
since P (s) = −V0

s−k1+η1

pA(s) . This implies that as η1 increases

the magnitude of the RHP zero gets smaller, thus imposing

harder constraints on performance. There appears to be
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Fig. 7. Performance of three 2D models with k1 = 1, q = 2, ky = 1,
and η1 = βk1 with β = 0, 1

3
, 2

3
is compared. Using the same feedback

gain ĥ = 3 , the systems with less consumption of intermediates have better
performance, which corresponds to a smaller peak in log |S| plot, and less
oscillations in the step response.

another tradeoff, and it is not immediately clear whether or

not the consumption of intermediates helps the performance

of the system. Define m(x) := gx(x)+dx(x) and α(x) such

that d(x) = α(x)m(x). This results in a system of the form;

ẋ = V yq

1+γyh −m(x)

ẏ = (2− α(x))m(x)− V yq

1+γyh − gy(y).

These equations show that consumption of intermediates has

the same effect as reducing the net product of the pathway.

For example, if gx(x) = kx and dx(x) = βkx, then

α = β
β−1 and this pathway is equivalent to a pathway with

gx(x) = (1 + β)kx that produces (2 − α) molecules of y
for each molecule y invested. As Figure 7 shows, larger β
leads to worse tradeoffs on achievable performance and more

oscillations for the same steady state error.

VI. GENERAL PATHWAYS

We now consider the general autocatalytic metabolic path-

way given by equation (1) (figure 1).

A. Existence of the Fixed Point

Let us first consider ly = 0, li = 0, ∀i, i.e., no reversible

intermediate reactions. Assume that the fixed point (x̄, ȳ) �
(0, 0) exists, then(

2

n∏
i=1

gi(x̄i)

gi(x̄i) + di(x̄i)
− 1

)
f(ȳ) = gy(ȳ).

This implies that the fixed point (x̄, ȳ) � (0, 0) exists only

if

2

n∏
i=1

pi(x̄i)− 1 > 0 (6)

where pi(x̄i) := gi(x̄i)
gi(x̄i)+di(x̄i)

. We can think of pi(x̄i) as

the “rate” that a molecule xi will continue to the next step

of the pathway (i.e., will be converted into xi+1), and 1 −
pi(x̄i) =

di(x̄i)
gi(x̄i)+di(x̄i)

the rate that it will be used by another

pathway. Then the rate that a molecule x1 (produced by the

first reaction through the investment of 1 molecule of y)

will ultimately be converted into 2 molecules of y and not

be used by other pathways is given by
∏n

i=1 pi(x̄i). So for

each investment of 1 molecule of y at the start, the pathway

returns Ep [y] = 2 (
∏n

i=1 pi(x̄i)) molecules of y at the end.

Condition (6) states that for a fixed point to exist, the

return Ep [y] should exceed the value of the investment, i.e.,

each molecule y invested must produce at least one molecule

of y (Ep [y] > 1). So in order for the pathway to have

a stable operating fixed point it must not allow excessive

consumption of the intermediate metabolites. For example,

let di(xi) = αigi(xi), then condition (6) becomes

n∏
i=1

1

1 + αi
>

1

2
.

If αi = α for all i = 1, . . . , n then α < n
√
2 − 1. So for a

pathway of size 10, α has to be less than 0.072, i.e., only

a small percentage of the intermediate metabolites can be

consumed at each step.

In the general case, where the intermediate reactions

are reversible, we can get a similar condition to (6) by

considering the “net flow” gi(xi) − li+1(xi+1) through the

pathway (i.e., define pi :=
gi−li+1

gi−li+1+di
, ∀i, with ln+1 = ly).

B. Stability of the Fixed Point

For the cases when a nonzero fixed point (x̄, 1) � (0, 0)
of (1) exists, we establish bounds on gains ĥ that guarantee

stability of the pathway for arbitrary size (n) and arbitrary

values of intermediate reaction rates (gi,di,li, ly)

Proposition 1: (a) Let ĥr := q + 1
3
ky

V0
and ĥs := q − ky

V0
.

If ĥs < ĥ ≤ ĥr, then (2) is stable for arbitrary size (n) and

arbitrary values of (ki,ηi,ri, ry) at equilibrium.

(b) The bounds above are tight, i.e. for any gain ĥ /∈
(ĥs, ĥr], there exists an unstable pathway.

Proof: (a) Proved directly by showing diagonal domi-

nance of

Q :=

[
In 0
0 2

]−1 (
J0 − ĥBC

)[
In 0
0 2

]
.

(b) For ĥ ≤ ĥs, let n = 1, ry = 0, d1 = 0 in (2). For

these parameter values, the resulting two-state system (2) is

unstable.

We now show we can construct an unstable system for any

ĥ = ĥr + ε, ε > 0.

In equation (2), let ry = 0, and for all i, ri = 0, ηi = 0,
ki = 2

3ky − εV0 = k > 0. The characteristic polynomial

pJ(s) of J0 − ĥBC is given by

pJ(s) =
(
s+ ky + V0

(
q − ĥ

))∏n
i=1 (s+ ki)

−2V0

(
q − ĥ

)∏n
i=1 ki

= (s+ k)
n+1

+ kn (k + 3εV0) .

The eigenvalues λi are then given by λ = k (ω − 1) such that

ωn+1 = (−1− ε1)
1/(n+1)

, where ε1 := 3εV0

k . The real part

of the eigenvalue λ0, is given by �(λ0) = k(−1+γ(n+1)),
where

γ(n) := (1 + ε1)
1/n cos π

n = 1 + 1
n log(1 + ε1) +O( 1

n2 ).
This implies that for n large enough, the system (2) is

unstable since γ(n) > 1 and therefore �(λ0) > 0.

VII. CONCLUSIONS

Output feedback regulation of the pathway shown in figure

1, can counteract the destabilizing effects of the positive

feedback generated by autocatalysis, thus guaranteeing the

local stability of the operating fixed point. However the
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Fig. 8. The effect of increases in enzyme concentrations (EC), pathway size
(PS), intermediate metabolite consumptions (IC), and reversible reactions
(RR) on the performance and range of stable feedback gains.

structure of autocatalysis limits the range of stable feedback

gains ĥ, because the product of the pathway both controls

and is consumed by the first reaction. An upper bound ĥd(n)
on the feedback gains ĥ suggests that the range of available

stable gains gets smaller as the pathway size increases. On

the other hand, consumption of intermediate metabolites and

the presence of reversible reactions increases the range of

stable gains. For the general model described by (1) there

exist lower and upper bounds, respectively ĥs, ĥr, on the

feedback gain ĥ that guarantee stability for arbitrary pathway

size as well as arbitrary values of both the (reversible)

reaction rates and the intermediate consumption rates. These

bounds are tight in the sense that for gains that lie outside the

ranges established by these bounds, we can construct specific

unstable pathways.
The existence of a RHP zero z is at the core of many of

the limitations imposed on performance for these pathways,

captured by a special form of the Bode Sensitivity Integral.

These limitations are aggravated by smaller magnitude RHP

zeros. As shown in [13], high concentration of catalyzing

enzymes leads to an increase in the rates of the interme-

diate reactions (ki), which makes the pathway more stable

(i.e., there is a larger range of stable gains available) and

increases the magnitude of z (i.e., “softens” the hard limits

on performance).
Increased pathway size has the opposite effect of increas-

ing the enzyme concentrations on pathway performance. An

increase in the size of the chain of enzymatically catalyzed

intermediate reactions in the autocatalytic pathways causes

two adverse effects on performance: tradeoffs on perfor-

mance limits are exacerbated (as z becomes smaller) and

the range of available stable gains is reduced, which makes

the operating gains less robust and reduces the achievable

performance objectives.
Consumption of intermediates in autocatalytic metabolic

pathways results in less resources available to convert to the

product of the pathway, which effectively reduces the net

product of the pathway (i.e., how much product y is produced

per unit y invested in the autocatalytic step). This effective

reduction in net output production makes the pathway harder

to control because it corresponds with the RHP zero getting

smaller, and thus aggravating the tradeoffs on performance

limits. Additionally, these pathways must enforce a positive

return in the energy investment, i.e., for each unit of y
invested at the beginning, it must produce at least that much y
produced by the end of the pathway. Therefore, the loss of the

intermediates to the other pathways must be only a fraction

of the available resources, otherwise excessive consumption

of these intermediates causes the pathway to crash.

On the other hand, the presence of reversible reactions

makes the autocatalytic pathways easier to control, as they

function as “release valves” by making higher stable gains

available, thus providing more robustness and better achiev-

able performance objectives. Figure 8 shows a summary of

the role of concentration of catalyzing enzymes, pathway

size, consumption of intermediate metabolites, and reversible

reactions in determining the stability and performance of the

pathway.
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