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Signal Recovery from Random Projections

Emmanuel Candès and Justin Romberg
Applied and Computational Mathematics, Caltech, Pasadena, CA, 91125

ABSTRACT

Can we recover a signal f ∈ R
N from a small number of linear measurements? A series of recent papers developed

a collection of results showing that it is surprisingly possible to reconstruct certain types of signals accurately
from limited measurements. In a nutshell, suppose that f is compressible in the sense that it is well-approximated
by a linear combination of M vectors taken from a known basis Ψ. Then not knowing anything in advance about
the signal, f can (very nearly) be recovered from about M logN generic nonadaptive measurements only. The
recovery procedure is concrete and consists in solving a simple convex optimization program.

In this paper, we show that these ideas are of practical significance. Inspired by theoretical developments,
we propose a series of practical recovery procedures and test them on a series of signals and images which are
known to be well approximated in wavelet bases. We demonstrate that it is empirically possible to recover an
object from about 3M–5M projections onto generically chosen vectors with an accuracy which is as good as
that obtained by the ideal M -term wavelet approximation. We briefly discuss possible implications in the areas
of data compression and medical imaging.

1. INTRODUCTION

In many fields of science and technology, one is often able to make only a limited number of measurements about
an object of interest, i.e. a digital signal, a digital image and so on. Many important problems in medicine or
astrophysics such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) of course all come to
mind. Against this background, several recent works [1–3] have studied in depth the problem of recovering a
signal from a highy incomplete set of measurements. Roughly speaking, the main results of these papers state
that if a signal f has a parsimonious representation in a basis Ψ, it is possible to reconstruct (via a tractable
optimization program) f accurately (or even exactly) from a small number of projections onto randomly chosen
subspaces. To date, this work has been been for the most part theoretical in nature and mainly concerned
with mathematical explanations for this remarkable phenomenon. However, we believe that these results can
potentially impact several areas of signal processing. The purpose of this paper is to show that these ideas have
practical import, and to demonstrate how they may deployed on real signals and images.

1.1. Exact Recovery of Sparse Signals

Suppose we wish to recover a finite signal f ∈ R
N from a set of K linear measurements

yk = 〈f, uk〉 k = 0, . . . ,K − 1 or y = Mf (1)

taken against vectors uk ∈ R
N (uk is the kth row of M). Of special interest is the vastly underdetermined case,

K << N , where there are many more unknowns than observations. Clearly, one cannot expect to recover every
f ∈ R

N from the data y. However, recent work [1–3] has shown that if f is sparse, in the sense that f can be
written as a superposition of a small number of vectors taken from a basis Ψ, then (1) exact recovery is possible
and (2) the ’true’ signal f actually is the solution to a simple convex optimization problem.

To make these ideas concrete, suppose that one collects K Fourier coefficients of f so that the measurement
ensemble M = FΩ is the matrix obtained by sampling K rows of the N by N discrete Fourier transform matrix
corresponding to frequencies in a set Ω. In other words, the data y is of the form

yk = 〈f, ei
2πωk

N 〉, ωk ∈ Ω ⊂ {0, . . . , N − 1}, |Ω| = K. (2)
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Now suppose that f is sparse in the sense that only a few of its entries are non-zero; that is, we can write f as
a superposition of M spikes∗

f(t) =
∑

τ∈T

ατδ(t− τ), (3)

for some T ⊂ {0, . . . , N − 1}, |T | = M . We do not know where the locations nor the amplitudes of the spikes.
The central theorem of [1] states that for an overwhelming percentage of sets Ω with cardinality obeying

|Ω| = K ≥ Const ·M logN, (4)

f is the unique solution to the convex optimization program:

min
g∈RN

‖g‖�1 :=
∑

t

|g(t)| subject to FΩg = y. (5)

That is, it is possible—with high probability—to recover f from the knowledge of its projection onto a randomly
selected K-dimensional subspace (spanned by the rows of FΩ).

The number of observations required in the Fourier domain is proportional–up to a logarithmic factor—to the
number of non-zeros components of f and is optimal; if M is small, we can “undersample” the Fourier transform
f̂ drastically and still be able to recover f without error. In addition, the recovery procedure is tractable. It
simply consists of solving a convex optimization problem (5). In fact, if f is real, (5) can be recast as a linear
program (see [4] for a detailed description).

Results analogous to (4) can be derived for other measurement ensembles. In some sense, we can use almost
any M to the same end. Specifically, suppose we generate a Gaussian ensemble by choosing each (M)k,n

independently from a zero-mean, normal distribution with unit variance

(M)k,n ∼ N(0, 1) k = 0, . . . ,K − 1, n = 0, . . . , N − 1, (6)

and use it to measure a sparse signal f , y = Mf . Again, if K ≥ Const ·M logN , then f is the unique solution
to

min ‖g‖�1 subject to Mg = y (7)

with very high probability [3]. Results of this type with similar bounds hold for other random measurement
ensembles as in the case where (M)k,n take values {−1, 1}, each with probability 1/2.

When we construct the K × N measurement ensemble as in (6) and use it to measure f , we are essentially
choosing a K dimensional subspace uniformly at random from the set of all K dimensional subspaces, and
projecting f onto it. The fact that we can recover f means that although K can be much smaller than N , the
projection retains enough critical information to specify f uniquely.

The Gaussian measurement ensemble easily allows to extend the results to signals that are sparse in any fixed
orthonormal basis Ψ (in (3), f is sparse in the identity basis). To recover the signal, we modify (7) to search
over coefficient sequences in the Ψ-domain:

min ‖α‖�1 subject to MΨα = y. (8)

Because the subspace is chosen uniformly at random, it does not matter which set of axes the signal is aligned
with. Mathematically speaking, if M has i.i.d. Gaussian entries and Ψ is orthonormal, then the distribution of
the random matrix MΨ is exactly the same as that of M; making measurements of f using M and solving (8)
will recover signals with M -sparse representations in the Ψ domain when K ≥ Const ·M logN . This invariance
property makes the Gaussian measurement ensemble especially attractive; we can recover sparse signals in any
fixed basis from randomly sampled K measurement vectors with very high probability.

∗The sparsity basis Ψ here is the identity matrix.
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1.2. Approximate Recovery of Compressible SIgnals

In general, real-world signals are not exactly sparse in any orthogonal basis. Instead, a commonly discussed
model [5,6] are compressible signals. A compressible signal is such that the reordered entries of its Ψ-coefficients
α, f = Ψα, decay like a power-law; that is, when we rearrange the sequence of in decreasing order of magnitude
|α|(1) ≥ |α|(2) ≥ · · · ≥ |α|(N), the n-largest entry obeys

|α|(n) ≤ Const · n−s (9)

for some s ≥ 1. Given an M , the M -term linear combination of elements which best approximate f in an
L2-sense is obtained by keeping the M largest terms in the expansion

fM (t) =
M−1∑

n=0

α(n)ψ(n)(t).

If α obeys (9), then the error between fM and f also obeys a power-law:

‖fM − f‖2 ≤ Const ·M−(s−1/2).

As such, accurate approximations to f can be constructed using a small number of vectors from Ψ.

This notion of compressibility is fundamental to signal processing. Both in theory and in practice, our ability
to denoise and compress (among other things) a certain class of signals relies critically on finding a basis in
which the expansion coefficients of these signals decay rapidly. Much energy over the past two decades has been
devoted to finding bases in which certain types of signals have fast decay. Perhaps the most notable of these, the
wavelet transform [7,8] and its later geometric extensions [9], have found widespread use due to their suitability
for general classes of piecewise smooth signals, especially photograph-like images (see Figure 1).

No matter which of these bases we decide to use, the recovery via (8) from Gaussian measurements works as
well for signals that are compressible as it does for signals that are truly sparse. If the expansion coefficients α
obey (9) and we make K ∼M logN Gaussian measurements, the solution f �

K to (8) has error on the same order
as fM [3]:

‖f �
K − f‖2 ≤ Const ·M−(s−1/2), K ∼M logN. (10)

It is worth stepping back for a moment and looking at these results in a broader context. Geometrically,
the class of signals for which we can construct accurate M -term approximations in a basis Ψ is tightly clustered
around a union of M -dimensional subspaces in R

N . We have seen that we can (nearly) recover a signal in this
class after projecting it onto a subspace of dimension about M logN ; the projection of the cluster onto this
subspace is (almost) invertible. In addition, we do not have to search for “special” subspaces for which this is
true. Choosing a subspace in a completely random manner will work almost all of the time.

Our framework is a significant departure from the current zeitgeist. In some information theoretic sense,
the most efficient way to represent information about a smooth signal with isolated singularities is by way of
its M largest wavelet coefficients [5]. However and in the scenario considered in this paper, one would need to
have available an oracle letting us know which coefficients are large beforehand. What we are suggesting here
is radically different. The observations y = Mf are made against vectors that are completely random; they
have nothing to do with the structure of the underlying signal, and hence they certainly do not provide a sparse
or compressible representation of the signal. Yet using (8) to recover the image from K ∼ M logN random
observations works nearly as well as constructing the optimal approximation from M wavelets, both in theory
(10), and in practice, as we shall see in the next section. The inconvenience of adapting the measurements to the
signal has also been avoided; the same set of K linear functionals can be used to recover every M -compressible
signal as (10) holds (with overwhelming probability) for all signals obeying (9) [3].
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2. PRACTICAL RECOVERY

The theoretical results in the previous section indicate that we can recover the signal just as well from K ∼
M logN observations in a random basis as we could from the M best observations in the sparsity basis Ψ.
These results are rather asymptotic in nature, and the practical viability of these ideas depends largely upon the
constants (4),(10) not being too large. In this section, we will present numerical experiments which suggest that
in practice, we can recover an approximation as close to the original signal as the optimal M -term approximation
by using about 3M to 5M random observations.

For concreteness, we will take Ψ to be a discrete wavelet transform for signals of length N = 2J ; in 1D the
coefficients α are parameterized by a scale j and a shift m

f(t) = Ψα =
2L−1∑

m=0

αL,mϕL,m(t) +
J∑

j=L+1

2j−1−1∑

m=0

αj,mψj,m(t). (11)

The ϕL,m are scaling functions and the ψj,m are oscillatory wavelets, see [7] for details. We will refer to the
collection of coefficients at a given scale {αj,m,m = 0, . . . , 2j−1 − 1} as a subband. In the separable extension
of (11) to 2D, there are three subbands at each scale. All experiments in this paper use the ‘Daubechies-8’
wavelet [8].

The wavelet transform is tremendously popular in the signal and image processing communities, due in large
part to its ability to provide parsimonious representations for signals that are smooth away from isolated discon-
tinuities (examples are shown in Figure 1). The ability to construct low-dimensional, accurate approximations
make wavelets particularly useful for image compression [10] and restoration [11]. In the remainder of this sec-
tion, we will demonstrate that from a projection onto a non-adaptive, randomly selected subspace of similarly
low dimension, we can recover equally accurate approximations to real-world signals and images.

2.1. A Practical Recovery Algorithm
The recovery problem (8) is convex, and when f is real, it can be recast as a linear program and solved using
modern interior-point methods [4]. As discussed in the last section, in doing so we recover the signal to within
near optimal accuracy. In practice, however, there are two drawbacks to recovery via (8).

First, the iterative interior point methods, although tractable and stable, require a K×K system of equations
to be solved at each step. We will be interested in cases where K is less than, but still a significant fraction
of, the signal length N . If N ∼ 106 (as for a typical image), the procedure is currently not feasible for typical
computing environments.

Second, although (10) guarantees that the recovered signal will be close to the original in Euclidean distance,
there are often visually undesirable artifacts in the solution. A 1D example of recovery from a projection onto
a random subspace is shown in Figure 2(a); we can see that there are spurious fine-scale oscillations in the
reconstruction. Because the �1 norm functional does not distinguish between coefficients at different scales,
energy has been shifted from coarse to fine scale.

To address these shortcomings, we propose a slightly different recovery procedure than (8) that requires a
small amount of a priori information about the signal we are to recover, but allows us to impose other desirable
characteristics on the solution. Our scheme is again iterative, but the cost of each iteration will be much lower,
essentially that of applying the measurement ensemble.

To begin, suppose that the condition for exact reconstruction is satisfied; that is, the wavelet coefficients α
are non-zero only on a small set T . Let M′ = MΨ be the measurement matrix expressed in the wavelet domain.
Since α is the unique solution to (8), the �1-ball B = {β : ‖β‖�1 ≤ ‖α‖�1 and the hyperplane H = {β : M′β = y}
meet at exactly one point; B ∪H = {α}. Thus, if in addition to the random projection values y = M′α, we are
given the �1-norm ‖α‖�1, we can recover α (and hence f) by finding the point of intersection. Since both B and
H are convex, this can be accomplished with the alternate projections onto convex sets (POCS) algorithm [12].

From a starting point α0 outside of B, we iterate by alternating projections onto H , then onto B. The
algorithm is guaranteed to converge to a point (in this case, α) in B ∪H [12]. Both of the projections are fairly
straightforward.
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Projection onto H:
To find the closest vector β̂ in H to an arbitrary β ∈ R

N , we use the formula

β̂ = β + M′∗(M′M′∗)−1(y −M′β).

The computational cost of a projection onto H is essentially the cost of applying M′ = MΨ and its
adjoint M′∗. (If necessary, (M′M′∗)−1 can be computed beforehand; if the rows of M are orthogonal,
then (M′M′∗)−1 = IK .) Applying the wavelet transform Ψ is fast — it requiresO(N) operations. Applying
the K × N measurement matrix M will require K · N operations in general, which can be prohibitively
slow when N (and K) are large. However, if the measurement matrix is structured (as in the randomly
sampled Fourier case (2)), the complexity can be reduced to O(N logN), say.

Projection onto B:
To project a vector β onto the �1-ball B we simply apply a soft-thresholding operation

β̂(t) =






β(t) − γ β(t) > γ

0 |β(t)| ≤ γ

β(t) + γ β(t) < −γ
.

To determine the threshold γ such that ‖β̂‖�1 ≤ ‖α‖�1 , we sort the coefficients by magnitude and perform
a linear search, a procedure requiring O(N logN) operations.

Of course, when f can only be approximated — instead of represented exactly — by a superposition of a small
number of vectors, B ∪H will in general contain more than just α. From these, we will choose the coefficients
corresponding to the signal that has smallest total variation (TV) by solving

min ‖Ψβ‖TV such that M′β = y, ‖β‖�1 ≤ ‖α‖�1 , (12)

where
‖g‖TV =

∑

s,t

√
(g(s+ 1, t) − g(s, t))2 + (g(s, t+ 1) − g(s, t))2

is the sum of the magnitudes of the (discretized) gradient of g(s, t). The TV functional is well-known in signal
and image processing for its tendency to suppress spurious high-frequency features [13,14]; roughly speaking, (12)
will choose the signal in B ∪H with the least amount of oscillation. Again, (12) can be solved with an iterative
scheme with two simple stages: a step in the direction of the (negative) TV gradient, followed by a projection
onto B ∪ H using POCS. If we start the procedure from a feasible point (by running POCS beforehand), it
takes very few POCS iterations to re-project onto B ∪ H . Note that in practice, finding an exact solution to
(12) is not absolutely necessary. After finding a feasible initial point, each descent iteration can be viewed as an
improvement on the last, and the process can be terminated at the behest of the user. In our experience, only a
few iterations are needed to remove high-frequency artifacts.

We can further restrict the feasible set by imposing a few additional constraints. In some ways, the condition
(9) is a bit lax in that it does not place any restrictions whatsoever on where the large wavelet coefficients can
appear. For signals and images such as those in Figure 1, we expect the large wavelet coefficients to appear
at coarse scales (small values of j in (11)). To account for this, we will constrain the �1-norm of each subband
αj = {αj,m,m = 0, . . . , 2j−1 −1} of the wavelet transform. In the experiments which follow, we will assume that
the values ‖αj‖�1 are known. Admittedly, this falls slightly outside of our framework of making only random
linear measurements of the signal f . However, we emphasize that our primary purpose here is to explore the
potential performance of recovery from random projections and in this direction, establishing a few benchmarks
may be of benefit. In addition, there is little doubt that future research will provide competititive alternatives
to these additional assumptions. Equipped with the ‖αj‖�1 ’s , our program (12) becomes

min ‖Ψβ‖TV such that M′β = y, ‖βj‖�1 ≤ ‖αj‖�1 , j = L, . . . , J (13)
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Figure 1. Test signals and images. (a) ’Cusp’, (b) ’Heavisine’, (c) ’Doppler’, (d) ’Blocks’, (e) ’Lena’, (f) ’Camera’,
(g) ’Boats’, (h) ’Peppers’

2.2. Examples

We start with four 1D examples with N = 1024 taken from the well-known Donoho-Johnstone [11] collection
of synthetic test signals. The ’Cusp’, ’Heavisine’, ’Doppler’, and ’Blocks’ signals shown in Figure 1(a)–(d) are
all smooth away from isolated singularities, and hence are compressible in the wavelet domain. Since N is of
modest size here, applying M directly is not a computational burden, and select M by sampling a matrix with
i.i.d. Gaussian entries which we then orthonormalize. The results for several values of K are shown in Figure 2
and Table 1; using (13) reconstructs the signal from 3M–5M random projections with the same accuracy as the
best M -term wavelet approximation.

Recovering 2D images from random projections via (13) works equally well. In two dimensions, however,
applying the K × N measurement matrix is unwieldy, and we therefore sample the random projection in a
different way. We consider applying random Fourier matrices to in the wavelet domain (where f becomes a
decaying spike train). In theory and for coefficient sequences behaving as in (9), we can recover f from FΩα
essentially as well as from M′α [3]. In addition, there is of course a fast algorithm (the FFT) to apply FΩ and
F ∗

Ω, so that the projections onto H can be rapidly computed. We will be careful to count each measured Fourier
coefficient of α as two observations: y2k = Re〈α, ei2πωk/N 〉, y2k+1 = Im〈α, ei2πωk/N 〉.

The venerable ’Lena’, ’Cameraman’, ’Boats’, and ’Peppers’ images are shown in Figure 1(e)–(h). On each
image f , we computed the the solution f � to (13) for various values of K and different measurement matrices
FΩΨ. The empirical recovery errors ‖f − f �‖2 are tabulated in Table 2 and compared against those for the
optimal M -term wavelet approximations. Again, the recovery from 3M–5M random projections is comparable
to the best M -term wavelet partial reconstruction.

As our final example, we will consider the common task in medical imaging of reconstructing an image from
a limited number of Fourier samples†. The sampling domains can follow any one of a number of patterns, one of
the most prevalent is the ‘star-shaped’ domain shown in Figure 4(a), where we are given high-resolution samples
along a relatively small number of equally spaced lines through the origin. As in (2), our measurement ensemble
is a partial Fourier transform M = FΩ.

†In most scenarios, these are samples of a continuous-space image that do not lie on a cartesian grid, making the
situation somewhat more complicated. We are considering a simplified version here, where we are given samples of digital
images that lie on the usual discrete Fourier grid.
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Table 1. Recovery results for 1D synthetic test signals of length N = 1024. Column K denotes the number of observations,
EK is the average recovery error over 10 experiments, and Knla is the number of coefficients in the lowest-order wavelet
approximation that achieves error EK . The ’Blocks’ signal is recovered perfectly for each value of K shown.

Cusp Heavisine Doppler Blocks
K EK Knla EK Knla EK Knla EK Knla

100 0.1559 31 4.0211 23 3.0732 16 0 67
150 0.0390 45 1.2661 40 1.7101 29 0 67
200 0.0129 57 0.2734 61 1.0186 40 0 67
250 0.0057 63 0.0239 89 0.6613 51 0 67
300 0.0021 69 0.0084 98 0.4222 67 0 67
350 0.0009 75 0.0038 103 0.2379 85 0 67
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Figure 2. Top: ’Cusp’ recovery example with K = 150. (a) Solution to (8). (b) Solution to (12). (c) Wavelet
approximation with same error, Knla = 46. Bottom: ’Doppler recovery example with K = 320. (c) Solution to (12). (d)
Wavelet approximation, Knla = 82.

Table 2. Recovery results for 256 × 256 images. PSNRK is the peak signal to noise ratio between the original image f
and the recovered image f �, PSNRK(f, f �) := 20 log10(‖f − f �‖2/255).

Lenna Camera Boats Peppers
K PSNRK Knla PSNRK Knla PSNRK Knla PSNRK Knla

10000 26.5 1769 26.2 2024 26.7 2050 21.6 1966
15000 28.7 3125 28.7 3562 29.8 3896 25.3 4005
20000 30.4 4501 30.9 5415 31.8 5474 27.5 5638
25000 32.1 6148 33.0 7539 33.7 7207 29.4 7366
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(a) (b) (c) (d)

Figure 3. 256 × 256 image recovery examples. Left: ’Lena’ with K = 25000. (a) Recovered from random projections
via (12). (b) Optimal 6148-term wavelet approximation with same PSNR as (b). Right: ’Boats’ with K = 20000. (c)
Recovered from random projections via (12). (d) Optimal 7207-term wavelet approximation with same PSNR as (b).

The reconstruction framework is slightly different here; the samples are not randomly selected, rather they are
dictated by the imaging device. (The fact that the results from the previous section hold with high probability
means that solving (7) will be effective for most sampling configurations.) But in the end, the basic problem is
the same: we wish to recover an image from its projection onto a low dimensional subspace.

We also do not have access to the �1 norms of the wavelet coefficients of the underlying image. Because of
this, we will recover the image by solving (12) in Lagrange form

min ‖Ψβ‖TV + λ · ‖β‖�1 such that M′β = y (14)

for a user specified value of λ ≥ 0. The choice of λ prescribes the importance of the solution having small �1
norm in the wavelet domain versus having small TV norm in the spatial domain. Note that (12) and (14) are
essentially the same in that the �1 constraint in (12) will dictate the value of λ used in (14). We can also extend
(14) (as we did with (13)) to accommodate a different parameter λj for each scale.

The top row of Figure 4(b)–(d) shows the reconstruction result for the classic Shepp-Logan phantom from
a sampling domain consisting of 22 radial lines. The recovery is perfect. In light of our previous results, this
is to be expected, since the phantom is piecewise-constant: not only are most of its wavelet coefficients exactly
zero (it is strictly sparse), but also that it has very small total variation. For comparison, column (b) shows
the ‘minimum energy’ reconstruction obtained by setting the unobserved Fourier coefficients to zero (this is
basically what a simple backprojection algorithm would do). The bottom row of Figure 4 shows a similar result.
The image is again very simple; it is simply a superposition of 10 ellipses. However, notice that even even the
fine-scale features (such as the small ellipse in the upper left) are recovered perfectly by solving (12).

A more realistic example is shown in Figure 5. Here we take a high-resolution angiogram (image of blood
vessels in the brain), project it onto a Fourier star-domain with 80 lines, and reconstructed using (12). By
searching for an image that matches the observations while having rapidly decaying wavelet coefficients and
small TV norm, we are able to retain much of the detail of the original, while eliminating many of the artifacts
that appear in the backprojection.

3. DISCUSSION

This paper introduced promising early experiments suggesting that it is possible to reconstruct an object accu-
rately from a few random projections. Indeed, our experiments show consistently that one can recover an object
from the knowledge of about 3K to 5K random coefficients, with the same accuracy as if one had knowledge
of the K most significant wavelet coefficients. Although, this seems like an unexpected feat, we would like to
emphasize that this is only the tip of the iceberg as there are many ideas in the literature that would certainly
further enhance our reconstruction algorithms. We mention a few such possibilities.
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(a) (b) (c) (d)

Figure 4. Exact reconstruction from limited Fourier domain observations. Top row: Shepp-Logan phantom, Bottom
row: Superposition of 11 ellipses. (a) Observation locations in the Fourier domain. Fourier coefficients along 22 radial
lines are observed, K = 5481 in all. (b) Original images. (c) Minimum energy reconstruction. (d) Recovered via (12).
Both reconstructions match the originals exactly.

(a) (b) (c)

Figure 5. Angiogram example, with observations along 80 lines in the Fourier domain, K = 16129. (a) Original. (b)
Backprojection. (c) Recovered via (12).
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• Undecimated Wavelet Transforms. It is known that in certain areas of signal processing such as “de-
noising,” it is best to use undecimated wavelet transforms as opposed to orthogonal bases of wavelets.
Therefore, it is likely that searching for the sparsest decomposition in an undecimated wavelet tree while
fitting the data would improve upon the results presented in this paper.

• Combined representations. We limited our exposition to wavelet bases although it is clear that other
representations might offer enhanced sparsity [9, 14]. In addition, a popular approach nowadays consists
in combining several representations as to provide the flexibility of efficiently representing different feature
types with different basis functions [15]. It is clear that our methodology is compatible with these ideas
as one could easily search for the sparsest decomposition in a combined dictionary of waveforms, e.g.
a dictionary including for example local cosines for textures , wavelets for point-like singularities, and
curvelets for edges.

• Other variational functionals. This paper focussed on the Total-Variation norm while obviously, there
are many other ways of regularizing the object we wish to reconstruct, see the vast literature on inverse
problems [16].

• Additional constraints. Finally, in many application of interest, we often have a priori information that
can easily be incorporated in the reconstruction strategy. In medical imaging or astronomy for example,
it is often the case that the object under study is nonnegative. It is our experience that adding seemingly
uninformative constraints of this type may in fact boost significantly the performance of the reconstruction
algorithm.

Our results may have the potential for impact in several areas of signal processing. To conclude the paper,
consider the compression problem for example. In [3], it was proposed to use random projections as a universal
coding strategy. The encoder would encode correlations between the signal and randomly sampled waveforms,
send them to the decoder, which would reconstruct the signal by searching for that sparse decomposition matching
the transmitted information. Obviously, the decoder would need to know the random waveforms, which in
practice can be accomplished by synchronizing the random number generators at either end by communicating
a seed (or otherwise).

The performance of this type compression scheme depends, of course, on the number of measurements needed
to recover a signal to within a prescribed error, the experimental focus of this paper. We have seen that we
require about four or five times as many random measurements as (optimally selected) wavelets coefficients to
get the same error. Against this background, several comments are in order.

• No position information is encoded. Wavelet based coders (and other transform coders) spend bits not
only encoding important coefficients, but also specifying which coefficients are important. Some wavelet
coefficients are far more important than others, and which coefficients these are vary from signal to signal.
The cost of encoding (either implicitly or explicitly) this auxiliary information is significant [10]; much of
the research in image compression in centered on lowering this cost [17–19].

In contrast, every observation in our random measurement compression scheme is equally (un)important.
Indeed, the subspace onto which the encoder projects the signal is completely arbitrary, and can again be
determined by the decoder with careful synchronization.

• Quantization is straightforward. The projection coefficients are, by construction, random variables. In fact,
if we use the Gaussian ensemble, the observations are independent, identically distributed normal random
variables with zero mean and variance ‖f‖2

2. Thus, standard quantization schemes can be directly applied.

• Robustness. A fundamental problem with most existing coding strategies is their fragility vis a vis bit-loss.
Take JPEG 2000, the current digital still-picture compression standard, for example. All the bits in JPEG
2000 do not have the same value and if important bits are missing (e.g. because of packet loss), then there
is simply no way the information can be retrieved accurately.

The situation is very different when one is using the scheme suggested above. Suppose that in each packet
of information, we have both encoded the (quantized) value of the coefficients yk but also the label of the
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corresponding coefficients k. Consider now a situation in which half of the information is lost in the sense
that only half of the coefficients are actually received. Then one would still be able to reconstruct an object
from K/2 coefficients which is nearly as good as the best K/2 wavelet approximation!

• Flexibility. The encoding strategy is, of course, independent of the methodology deployed at the decoder’s
end. This is an appealing feature since it is likely that future research will develop better image repre-
sentations, hence offering the opportunity to provide lower distortions without having to re-encode the
signal.

For all these reasons and others, it seems worthwhile to pursue the potential of these ideas for compression.
Actually, the design of a full-fledged encoding scheme, and the corresponding rate-distortion analysis, is a topic
of current research. We hope to report on our progress in a future paper.
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