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ABSTRACT

The combination of wavelength multiplexing and spectral interferometry allows for the encoding of multidimensional
information and its transmission over a mono-dimensional channel; for example, measurements of a surface’s topography
acquired through a monomode fiber in a small endoscope. The local depth of the imaged object is encoded in the local
spatial frequency of the signal measured at the output of the fiber-decoder system. We propose a procedure to retrieve the
depth-map by determining the signal’s instantaneous frequency. First, we compute its continuous, complex-valued, wavelet
transform (CWT). The frequency signature at every position is contained in the resulting scalogram. We then extract the
ridge of maximal response by use of a dynamic programming algorithm thus directly recovering the object’s topography.
We present results that validate this procedure based on both simulated and experimental data.

Keywords: Continuous wavelet transform, dynamic programming, ridge extraction, spectral interferometry, wavelength
multiplexing, temporal holography, optical coherence tomography

1. INTRODUCTION

Recently, a new setup for imaging surface topography based on the encoding and transmission of the local depth infor-
mation by means of wavelength multiplexing1,2 and spectral interferometry3 was proposed.4 Because the local depth
information is encoded such that it may be transmitted over a mono-dimensional channel (e.g. a monomode fiber) this
method is of highest interest for endoscopy. Indeed, accurate depth measurement is crucial for both diagnostic and treat-
ment of tracheal and bronchial stenoses. In this paper, we propose a new method for retrieving the sample’s local depth by
digitally processing the decoded signal.

We use the following definition of the Fourier transform̂f(ν) of a functionf(x)

f̂(ν) = Ff(ν) =
∫ ∞

−∞
f(x) exp(−2iπtν) dt, (1)

f(t) = F−1f̂(t) =
∫ ∞

−∞
f̂(ν) exp(2iπνt) dν. (2)

With this definition,‖f‖ = ‖f̂‖.

2. SETUP AND MODELLING

The experimental setup, depicted in Fig 1, can be modeled as sketched in the block diagram of Fig. 2. A pulsep(t) emitted
from a white light femtosecond source is sent through the fiber, expanded, and reaches a grating. Two lenses map the±1
diffraction orders onto the sample and a reference mirror, respectively. The combination of the grating-lens system can
be modeled by a temporal Fourier transform that maps each frequency (or wavelength) of the pulse to a specific spot on
the sample. The sample’s local depth and reflectivity introduce a phase shift in the signal at the corresponding position
(or equivalently wavelength). The object (and reference) signals follow a reverse path into the fiber. The process can be
approximated by a filtering operation with a filterh(x) = a(x) exp(iφ(x)). The recombined signal is transmitted over the
fiber and decoded by another grating-lens system and finally detected (square-law detection).

M.L.: E-mail: liebling@caltech.edu, Telephone: (+1-626) 395-2863

Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX,
edited by Valery V. Tuchin, Joseph A. Izatt, James G. Fujimoto, Proc. of SPIE Vol. 5690
(SPIE, Bellingham, WA, 2005) · 1605-7422/05/$15 · doi: 10.1117/12.591440

397

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/21/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



p(t)

x

y(x)

CCD

BS

Monomode Fiber

G1

Mirror

G2

Figure 1. Optical setup forwavelength multiplexing spectral interferometry imaging. BS: beam-splitter, G1, G2: gratings.

p(t)

F
ν → x

p̂(x)

Sample

×h(x) p̂(x)a(x) exp(iφ(x))
x→ ν
F−1

F
ν → x

p̂(x)

Mirror

1 p̂(x)
x→ ν
F−1

�+ g(t)

(a)

g(t)
Monomode fiber
��

��

��

��

��

��

F
ν → x

p̂(x) {1 + a(x) exp[iφ(x)]} | · |2 f(x) = A(x) +B(x) cos[φ(x)]

(b)

Figure 2. Block diagrams of (a) Acquisition and encoding (b) Transmission and decoding.

3. ALGORITHM

3.1. Measured Signal

The interference pattern measured on the CCD is of the form

f(x) = A(x) +B(x) cos[φ(x)]. (3)

The signalf(x) has a local phaseφ(x) that is directly related to the local depth of the sample and a slow varying enve-
lopeB(x) and DC componentA(x). In order to retrieveφ(x), we take advantage of the continuous wavelet transform
formalism.5, 6 The latter has proven to be effective for many time (or space)-frequency applications, including some in
optics.7–9
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3.2. Continuous Wavelet Analysis

A wavelet is a functionψ ∈ L2(R) with zero average

∫ ∞

−∞
ψ(x) dx = 0. (4)

It is normalized such that‖ψ‖ = 1 and centered in the neighborhood ofx = 0. A family of time-frequency atoms is
obtained by scalingψ by s and translating it byu:

ψu,s(x) =
1√
s
ψ

(
x− u

s

)
, (5)

with ‖ψu,s‖ = 1. The wavelet transform off ∈ L2(R) at positionu and scales is

Wf (u, s) = 〈f, ψu,s〉 =
∫ ∞

−∞
f(t)

1√
s
ψ∗

(
x− u

s

)
dx. (6)

We construct an analytical (complex-valued) wavelet by modulating a Gaussian window

ψ(x) =
(

2
πσ2

)1/4

exp(2iπν0x) exp
(−x2/σ2

)
. (7)

Its Fourier transform,
ψ̂(ν) = (2πσ2)1/4 exp

[−π2σ2(ν − ν0)2
]

(8)

is analytical forν0 � 0.

The CWT of a real signal using an analytic wavelet has the property that the derivative of a point on the ridge vanishes

∂Ψf

∂s
(u, s) = 0, Ψf (u, s) = arg(Wf (u, s)). (9)

We take advantage of this (sufficient) condition to extract the ridge.

3.3. Ridge Extraction via Dynamic Programming

After the signal’s CWT has been calculated, the problem of finding the depth at everyx is isomorphic to that of finding
a ridge of maximum response through the scalogram. We address this problem by using a dynamic programming algo-
rithm.10 It was shown that algorithms based on that technique are highly effective for that purpose.11 One such method
has been utilized in the context of a CWT-based Moir´e imaging technique.12 Here, to improve accuracy, we rely on two
criteria to ensure that the right frequency is chosen. We compute a new image based on the absolute value and phase of the
signal’s CWT:

i(x, y) = |Wf (x, y)| γ
(

dΨf(u, s)(x, y)
dy

)
, (10)

whereγ(u) is a weighting function that penalizes pixels that do not satisfy the ridge condition (9)

γ(u) =

{
1 − u/um if |u| < um

0 otherwise,
(11)

with um a user specified threshold.

Based on the combined informationi(x, y) ∈ R of the CWT’s amplitude|W f (x, y)| and phasearg(Wf (x, y)), we
proceed in three steps that conduct to the extraction of the ridgey(x) (see Fig. 3).
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Figure 3. The three steps of the dynamic programming ridge extraction procedure.

Forx = 0, . . . , Nx−1, we compute a merit functionQ(x, y, yp) and store the position of the predecessor pixelȳp(x, y)
that yielded the maximal value of the merit function (see Fig. 3(a)), viz.

Q(x, y, yp) =

{
Q(x− 1, yp) + i(x, y) − µσ(y, yp) if x > 0
i(x, y) if x = 0

(12)

Q̄(x, y) = max
yp∈{ysin,...,ymax}

Q(x, y, yp), x = 0, . . . , Nx − 1 (13)

ȳp(x, y) = arg max
yp∈{ysin,...,ymax}

Q(x, y, yp), x = 0, . . . , Nx − 1. (14)

ymin = max(y−w, 0) andymax = min(y+w,Ny − 1). The functionσ(y, yp) = ‖y− yp‖, weighted with a factorµ > 0,
penalizes large leaps. With high probability, the maximum in Eqs. (13) and (14) is unique. WhenQ̄(x, y) and ȳp(x, y)
have been calculated for all(x, y), the abscissaye (initialization, see Fig. 3(b)) is chosen such that

ye = arg max
y∈{0,...,Ny−1}

Q̄(Nx − 1, y). (15)

The curve that maximizes the criterion is then recovered recursively (from right to left, see Fig. 3(c)), i.e.

y(x) = ȳp (x+ 1, y(x+ 1)) , x = Nx − 2, . . . , 0. (16)

3.4. Computational complexity

The computational complexity of the CWT algorithms, that uses an FFT internally, isO(N logN), whereN is the number
of considered signal samples. The dynamic programming algorithm has a linear complexity in the number of computed
wavelet coefficients.

4. RESULTS

In Fig. 4, we show the different steps that lead from the output signalf(t) measured on the CCD to the extracted ridge
y(x). We have evaluated the procedure on synthetic (Fig. 4(a)) and experimental (Fig. 4(b)) data. For the synthetic data, the
agreement between the gold standard step function and the recovered ridge is excellent (see bottom of Fig. 4(a)). Owing to
the fact that the wavelet transform is local, the technique is robust and not affected by local defects in the measured signal.
In Fig. 4(b), the sample—an inclined plane—is well reproduced by the ridge as well.
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Figure 4. (a) Simulated data set. (b) Experimental data set.

5. CONCLUSION

We have proposed a CWT and ridge extraction algorithm to retrieve the local depth from spectral interferometry data.
Using both simulated and experimental data, we have shown that this technique is suitable for this imaging application.
Moreover, the method is suitable for the decoding of several frequencies at a single position, which is not possible using
other methods that rely solely on frequency analysis,13 and should permit its future extension to extract several interfaces
in depth.
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