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ABSTRACT

Characterization of Volume Phase Holographic gratings at cryogenic temperatures have been conducted using
a new test facility at Caltech. The new test bench includes a cryostat that allows large angles for incident and
diffracted light. Gratings under tests are shielded from thermal background, and precisely and uniformly tem-
perature controlled. Preliminary results are presented and show little temperature dependence of the efficiency
function.
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1. INTRODUCTION

Volume-Phase Holographic (VPH) gratings represent a very efficient alternative to classical surface-relief gratings.
Many of these devices are currently in use in various visible wavelength spectrographs on telescopes such as VLT,
AAT and Gemini. They are usually made of di-chromated gelatin sandwiched between two glass plates. Index
of refraction is modulated across the gelatin as shown in Figure 1.

One of the most interesting features of Volume Phase Holographic (VPH) gratings is the possibility of
adjusting the efficiency curve, or “blaze” function, by varying the angle of incidence. Indeed, while their dispersive
properties are identical to that of classical gratings, their diffracted energy distribution is governed by Bragg’s
law, as for X-rays in a crystalline structure. In the case where the modulation fringes are perpendicular to the
grating surface (Figure 1la), the Bragg condition follows,

my\ = 2ngrating sin Qgrating (1)

and from Snell’s law
mu\ = 2sin ogsr (2)

where m is the order of diffraction, v is the fringe frequency in the grating, A is the wavelength, n is the average
index of refraction, and « is the angle of incidence. Radiation that departs significantly from the Bragg condition
passes through the grating undiffracted. This tunability can be advantageously used in spectrographs' using an
articulated camera for example.

As an example of their usefulness figure 2 presents a comparison of optical design using traditional grism and
an equivalent VPH and prisms assembly. Such an assembly contributes to reduce the costs and risks of building
a transmissive multi-object spectrograph for a giant telescope, Keck in this case. Indeed, the development of
large sapphire prisms is an important cost and risk driver for a conventional solution.

VPH gratings have very high efficiency and can be optimized for any wavelength. According to Kogelnik’s
coupled wave analysis,? efficiency of thick gratings with unslanted fringes is approximately, for the two planes

of polarization:
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Figure 1. Four possible fringe structures for VPH gratings : (A) Littrow transmission grating. (B) Non-Littrow trans-
mission grating. (C) Non-dispersive reflection grating (notch filter). (D) Dispersive reflection grating.
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Figure 2. Top - Grating and sapphire prism. Middle - Equivalent VPH and fused silica prisms. Bottom - Higher
dispersion VPH and fused silica prisms.

where « is the angle of incidence in the air, v is the fringe frequency, and d the depth of the grating structure.
Also, the wavelength bandwidth is given by:

A)\FWHM cot a
A T owvd 5)

As a practical example figure 3 shows the efficiency function of three VPH gratings optimized for the J, H
and K band.
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Figure 3. Efficiency curve for three VPH gratings optimized for J (top), H (middle), and K (bottom).

2. CRYOGENIC TEST BED

Considering the importance of near-infrared spectroscopy and its sensitivity to thermal radiation, it is of great
interest to understand the behavior of these gratings at cryogenic temperature. To do so, we have built a test
facility that includes a cryogenic chamber and fully automated moving stages and detector for the IR and visible
light. The facility is also used to test CCDs and IR arrays detectors as described in Guzman 2004.3 Figure 4
describes the test bench in the mode allowing efficiency testing of cold optical components. It is composed of
a monochromatic light source collimated on the optical component, the VPH in this case, a cryostat mounted
on a rotation table, and two detectors mounted on a semi-circular rail. The monochromator (including an order
sorter filter wheel and a neutral density filter wheel) the rotation table, and the detector rail are motorized and
controlled via a Labview application. In addition, temperature inside the cryostat is monitored by five sensors
and controlled by two resistors through the same Labview application. A polarizer is also placed at the exit port
of the monochromator.

The cryostat head (figure 5) has large windows to allow incident and diffracted light to form angles up to
90°. One of the consequence of that design is the large amount of outside thermal radiation hitting the optical
element inside the cryostat. This causes not only a rise in temperature but also a temperature gradient from
the center to the cooled edge of the optical element. To alleviate this cooling problem, a pair of cooled windows
shields the optical sample from most of outside thermal radiation. These fused silica windows act as a filter,
reflecting radiation above 2.5 pym. The optical element is then only subject to the blackbody radiation of these
cooled windows and to the outside radiation up to the windows cut-off wavelength.

3. METHODOLOGY

About 20 samples were provided by Wasatch Photonics. Three sets of respectively 494, 685, and 1095 lines/mm
are divided in samples with optimal index modulation for diffraction efficiencies above 90%, and samples over

280 Proc. of SPIE Vol. 5494

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/26/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Monochromatic
beam

cryostat

VPH

N\

Diffracted a

A/;etector

Figure 4. Schematic view of the test bed. A monochromatic beam is diffracted by the grating and measured by the
detector. Both the grating and the detector can move to change the angles of incidence and diffraction.
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Figure 5. Cryostat head containing the optical element under test, the VPH in this case. Outer windows allow up 90°
between incident and refracted beam. The sample is sandwiched between two thermal shield windows. Temperature is
monitored at multiple point in the cryostat and controlled by two resistors.
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Figure 6. Main interface of the Labview application that controls the test bed.

or under-modulated. The goal of this distribution is to be able to study, among other things, the effect of
temperature on index modulation.

To ensure a complete understanding of the test results, an alignment procedure was devised to account for
any misalignment between the VPH and the cryostat windows. In addition, the testing procedure scans through
all angles of incidence and diffraction to track any residual misalignment or discrepancy in the results.

A Labview application (figure 6) controls the various scans and motions. Any region of the parameter space
composed of wavelength, light intensity, sample angle, detector angle, and temperature can be scanned in an
automated manner. This gives a important flexibility to reduce the testing time while obtaining complete and
robust results.

For the first tests presented here a spectrum was taken at each angular position of the detector. The scan
was repeated for many sample positions, effectively scanning incident and diffraction angles. The process was
done at room temperature and at the coldest stable temperature, without heating. The temperature reached
by the VPH was first characterized with a dummy sample where sensors were glued near the center and on its
aluminum holder. After a settling time of about 2 hours the difference between the two sensors is about 17° C.
That represents a strong upper limit for the gradient in the sample considering that the thermal contact between
the glass and the holder is far from perfect.

4. PRELIMINARY RESULTS

As a first sample we tested a 685 lines/mm, optimally modulated. According to Wasatch photonics, these
gratings are optimized for 21.37°. Using equations 2 we expect the efficiency to peak around 1.064 micron at
this angle. To cover the peak efficiency region in a limited time we used the parameter showed in table 1.

Figure 7 shows the results for three sample positions. Each small curve represents a spectrum taken at a
given detector angle in S-polarization. The efficiency curve, equivalent to the classical grating “blaze” function,
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Table 1. Scan parameters for a 685 1/mm sample.

Temperature: 300 K 105 K
Wavelength: 800 nm — 1150 nm | 800 nm — 1150 nm
Detector Angle: 34° — 52° 36° — 50°
Sample Angle: 18° — 25° 19° — 24°
Angle of incidence 21° 23° 25°
Peak @ 969.98 nm Peak @ 979.97 nm Peak @ 979.98 nm
ID Py TTTTITTTIT VR PR ELT ’: _‘ ryrrrryroroes } L3 R |_
300K 1" TN " ERNY |
A RN
A 1o il
g A | *.‘-I ‘m . o ” ' * " i "'.‘; ]
204 d hil 04 - 04— ,fu,'; | i' -
= ‘W hi ; i'i“"h!'i'i’ﬁ | : F ; i w ‘h"‘ ]
o092 0.2 it ! - 0.2 ‘ ]"' * H
% f? / i!rﬂ!fi‘f}," i‘::rj“ i . b *!rl.'J‘nlqjlllllilg,Jil:j1‘ .ﬁ!‘ i /}M }.ﬁ&a'm " ) "‘1’
© 800 850 900 950 1000 1050 1100 1150 800 850 900 50 1000 1050 1100 1150 800 B850 900 950 1000 1050 1100 1150

wavelenth —»

Peak @ 969.98 nm Peak @ 979.97 nm Peak @ 990.03 nm

105K E i ‘ 3 sk f \“ E 08
2 _ ‘n § il H ' m E B
5 j AL = - ,\iu ¥ 06—
' CEr W
v
02 ‘!j‘i%’y‘!ﬁaﬁ'ﬁ“‘ ] ga b ‘ A SR
N/ }ﬁ*i“fé‘a’:‘ﬁw’ .. /) ; , : -
800 850 900 950 1000 1050 1100 1150 %00 850 800 950 1000 1050 1100 1150 “$00 850 900 950 1000 1050 1100 1150

Figure 7. Results from efficiency tests.

is obtained by plotting the maximum of each spectrum, or their envelope. The preliminary results are shown as
an indication of the global trends. More data and better calibration are needed to draw precise conclusions.

At 21°, close to the optimum angle, the efficiency peaks at a wavelength of 970 nm, about 85 nm below the
expected value. As expected, it shifts toward the red at higher angle of incidence. This is true for warm and
cold tests but for the 25° degree sample position where the blue part of curve drops but the red part stays the
same, peaking at the same wavelength than at 23°.

The comparison of warm and cold tests are quite surprising. One would expect the fringes density to get
higher as the glass cools and contracts. The reality is a quite different. The efficiency curves are very similar at
105 K and 300 K. The peaks are at similar wavelengths. Only a slight narrowing of the curves can be observed.
This behavior is unexpected but could be due to a higher than previously measured thermal gradient across the
sample. More thermal calibrations are necessary to draw any definitive conclusion.

5. CONCLUSION

Preliminary results at 300 K and 105 K tend to show that the impact of temperature on the efficiency profile of
VPH is surprising low. These results could be explained by a higher than expected temperature gradient across
the sample although it is unlikely to suffice to explain such stability.

To have a clearer picture and to study all the possible problems, a larger part of the parameter space needs
to be explored with higher precision. In addition to angles, wavelength, and temperature other variables like line
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frequency, modulation, variation across sample surface, and polarization will be explored to fully understand the
cryogenic behavior of VPH gratings.

Once these small samples fully understood, it will be possible to build and optimize a larger gratings for a
fully cryogenic infrared instrument.
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