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ABSTRACT 

We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of 

individual plasmon resonant nanoparticles, along with a brief description of some major results. The apparatus consists 

of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select 

individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant 

nanostructures scatter light elastically, and typically have very large scattering cross-sections at their resonant optical 

wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds, and color images can 

be captured using consumer digital color cameras. Spheres, tetrahedrons, and pentagonal platelets were fabricated using 

colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and “barbells”, templates 

were used. Many of these nanostructures have been individually spectroscopically characterized, and their spectra 

correlated with their shape and size as determined by transmission electron microscope (TEM). The unique shape, size, 

composition, and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon 

resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the 

dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles. 

Keywords:  Plasmon resonance, nanoparticles, nanorods, silver enhancement, colloid, barbells 

1. INTRODUCTION

There has been great recent interest in the optical properties of gold and silver nanoparticles with at least one geometrical 

dimension below 100 nm.  At optical wavelengths, the free electrons in the metal particles can be collectively excited 

into a plasmon resonance that is strongly coupled to the incident electromagnetic radiation.  Under dark field or 

evanescent (T.I.R.) white light illumination, the individual Plasmon Resonant Particles (PRPs) appear as bright, colored, 

diffraction limited “point source” scatterers. The plasmon resonance spectra of the nanoparticles is very sensitive to their 

shape [1-9], size [1, 10, 11], composition [12, 13], local dielectric surrounding [14-16] and interparticle interactions [17-

20]. These PRPs have been used for optical coding [21], biological labeling [11, 22], biosensing [23-26], and for novel 

plasmonic devices and materials [27-31]. While many experimental studies have examined the properties of collections 

of PRPs (whether in solutions or in arrays), we have focused our efforts on the spectroscopic characterization of 

individual PRPs. We characterize the optical properties of the particles with a specially modified Nikon Labophot 

darkfield microscope that can capture the spectrum from individual PRPs. These spectra can be correlated with 

transmission electron microscope (TEM) images, thereby illuminating the relationship between optical properties and 

nanostructure. We have studied the plasmon resonance spectrum from hundreds of gold and silver particles of a variety 

of shapes, sizes, compositions and in a variety of local environments. These results provide insight into the optical 

properties of the PRPs which will contribute to the advancement of applications utilizing them individually and in more 

complex nanostructures. 

2. METHODOLOGY 
2.1 Apparatus

To image PRPs, we utilize a Nikon Labophot Darkfield microscope with 5x, 20x, 50x, and 100x Brightfield/Darkfield 

(BF/DF) objectives and a 100x oil immersion objective (Figure 1: and also described in reference [1]). Our source of 

illumination is a 75 W Xenon bulb, housed in a columnating/focusing assembly from Oriel. The Xenon light source is 

preferable as it has a smooth emission across the visible region of the spectrum, allowing for the excitation of plasmon 

resonances from 380nm to 700nm. Sample illumination can occur via epi illumination (brightfield), or as is most 

common utilizing the appropriate darkfield cube through the darkfield microscope objective. Brightfield illumination is 
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only useful for viewing PRPs when using an oil immersion objective and a transparent substrate mounted to a “light 

sink” (such as a glass prism) to prevent backscattering. An alternate illumination is through a coupled 1mm diameter 

multimode optical fiber with a compound output focusing lens. The fiber can be used to illuminate the sample from 

below in total internal reflection (TIR) or from above (at a large enough angle to result in darkfield). The lamp output is 

coupled into the optical fiber using a standard fiber-coupler (Oriel). Passband illumination can be achieved by 

positioning 10nm bandpass filters (Omega Optical) along the illumination light path. Samples of interest are mounted on 

a quartz right angle prism, to allow for TIR illumination on substrates such as glass slides and coverslips (placed with 

index matching oil). The samples are positioned with a high precision, (1 m resolution) 3-axis microscope stage (Prior). 

In order to study the polarization dependence of some samples, a rotation stage is mounted between the microscope stage 

and the prism allowing for the sample to be rotated with respect to a uni-directional polarized fiber illumination. PRPs 

are bright enough to be readily observed individually through a 50x or a 100x magnification objective. Selection of 

individual particles for spectroscopic characterization is done using a Nikon adjustable image plane aperture and 

monocular. While observing the image through the monocular, the particle is positioned within the selected aperture 

using the precision Prior stage. Light from this selected nanoparticle can then be directed to the spectrometer (Spex 

270M), using a fixed mirror and re-focusing lenses, all of which are mounted above the microscope. The spectrometer is 

equipped with two precision controlled gratings (1200g/mm and 150g/mm), and a Princeton Instruments CCD detector 

(1300 x 1030). Spectra are always normalized with a white scatterer (Labsphere) and background scattering (of substrate 

without PRP or spurious scatterers) is subtracted for all data presented.  

Figure 1: Darkfield Microscope and Spectrometer Apparatus                   

An additional CCD detector (Princeton Instruments CCD camera or a Nikon Coolpix 995) is also used on a secondary 

microscope output port for optional imaging of the nanoparticles. All Transmission Electron Microscope (TEM) work 

was done on a JEOL 2000 at the National Center for Microscopy and Imaging Research. This TEM was equipped with a 

sample tilt mechanism which made possible the determination of 3-D nanoparticle structure [1]. 
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2.2 Sample Preparation

There are a variety of different techniques that can be used to produce plasmon resonant structures with dimensions less 

than 100nm such as e-beam lithography [5, 17, 21], nanosphere optical lithography [15, 24], and wet chemistry [2, 3, 4, 

9, 12, 32]. For single particle optical characterization studies, wet chemistry methods are advantageous since, under 

correct conditions, a variety of shapes can be produced in a single fabrication reaction. Typically, we produce Ag 

colloids by silver enhancing (BBI Silver Enhancer Kit) commercially available Au colloids (BBI) [1, 22]. The silver 

enhancement is a robust technique that can be used to silver coat nucleating Au colloids with diameters ranging from a 

few nanometers to over 100nm.  We have successfully produced PRPs from gold particles that are suspended in solution, 

immobilized on a substrate, or embedded in a biological tissue [22]. In solution, we typically suspend a desired number 

of Au colloids in 20ml DDH20, and add 100ul of an initiator and 50ul of the enhancer, both supplied from the kit. The 

amount of enhancer and the number of Au colloids determine the final size of the resulting Ag colloid. We determine the 

approximate size of the Ag colloids by a measuring the optical extinction of the solution, in a Cary Spectrophotometer. 

The Ag colloid solution is typically composed of a variety of particle shapes that can be individually studied, including 

spheres, pentagons, tetrahedrons and aggregates (Figure 2A).  

Nanorods of 25nm to 50nm diameter are produced with a templated plating technique [6, 13]. A gold film is sputtered 

(15 minute at 15mTorr and 15mA, Technics Hummer V) on one side of a porous 7 m thick polycarbonate membrane 

(Costar, Nuclepore 15nm pore size). The membrane is then placed Au side down within a custom jig which contacts the 

Au layer with a conductive surface and is filled with an electroplating solution to cover the top surface of the porous 

membrane. An electric potential is established between the bottom Au layer and the top solution, and the resulting 

current determines the amount of plated metal that will fill the pores in a given amount of time. We use this technique 

with gold or Nickel plating solutions (RTU solutions, 434 gold and high speed nickel sulfamate, Technic Inc.) to create 

Figure 2: Fabrication of plasmon resonant nanostructures and color CCD images of far field scattering of completed PRPs under 

Darkfield microscope. A) Silver enhancement of Au nucleating colloids. B) Templated plating to produce plasmon resonant nanorods

(a. gold, b. silver, c. nickel, d. gold/silver, e. nickel/gold/silver) 
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gold or nickel nanorods. Silver nanorods are grown using an electroless silver plating technique where the silver
enhancement kit is used in place of the electroplating solution, and no current is required. However, using the electroless
silver enhancement requires that the silver segments always follow a gold layer, as the silver enhancer does not nucleate
on nickel. By exposing a membrane sequentially to different plating solutions, it is relatively easy to grow nanorods with
multiple segments consisting of different metals with each metal segment having a characteristic plasmon resonance and
a desired length. Once the desired nanorod length and composition is obtained, the membrane is removed from the jig
and is dissolved in chloroform. The nanorods themselves are then suspended in solution and can be immobilized on a
substrate for optical and TEM analysis (Figure 2B). The preferential illumination of the nanorods is to use a 100x oil
immersion bright field objective, with the nanorods (embedded in 1.5 index oil) immobilized on a glass slide, mounted
on a right angle prism (to act as a “light sink”, see references 6 and 13). The plasmon resonance of the nanorods is
polarization dependent. The nanorod cross section (25nm to 50nm), is the plasmon resonant dimension in all of our
nanorod studies. Therefore, the illumination must be polarized perpendicular to the rod length in order to preferentially
excite this mode, allowing for the unique size and composition dependent optical scattering signature for each segment
to be observed. Polarization of the illumination along the rod length (typically >1 m) results in the excitation of a broad
white scattering mode.

We have also experimented with new sample preparation techniques, such as the silver enhancement of composite
nanorods. For example, composite nanorods with a gold/nickel/gold pattern, produced using the electroplating technique
described above, were silver enhanced. The gold segments preferentially nucleate the silver enhancer solution resulting
in two Ag nanoparticles linked by a nickel nanorod (Figure 3). In the case shown below, the electroplated nanorods are
immobilized on a substrate prior to enhancement, after which a drop of the enhancer solution is placed over the substrate
for a controlled length of time before rinsing with DDH20. This enhancement technique could potentially be extended to
create more complicated structures such as necklaces of Ag particles. Precisely spaced pairs or chains of plasmon
resonant nanoparticles may be useful as SERRS substrates and for plasmon light propagation.

Figure 3: Representation of fabrication technique used to create controllably spaced plasmon resonant nanostructures, including TEM
and darkfield microscope images of typical “barbell” nanostructures.

All nanoparticles are immobilized on substrates prior to optical characterization. This is typically accomplished by
placing a drop of the colloidal solution on the substrate and letting it evaporate, or by first treating the substrate with
positively charged poly-lysine and binding the colloids prior to rinsing the surface with DDH20. Substrates we routinely
use that are compatible with our illumination scheme (i.e. low background) include glass and quartz slides and
coverslips, silicon wafers with and without oxide layer, silicon nitride TEM windows (Structure Probe Inc.), formvar and
carbon coated copper TEM grids (Ted Pella) and plastic multi-well ELISA plates.

Darkfield image

TEM image of a barbell
Silver enhancement
of Au segments

Templated plating
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3. DATA

3.1 Shape Dependence 

Correlating optically characterized PRPs with TEM for geometrical analysis, which we call “mapping”, provides insight 

into the effects of shape and size on the plasmon resonance of the nanoparticles. We have mapped hundreds of PRPs 

immobilized on formvar coated TEM grids or SiN TEM windows (for temperature annealing studies). The results of our 

mapping experiments on colloidally prepared Ag [1] show that spherical particles preferentially scatter blue light 

(400nm -500nm), pentagons scatter green light (500nm - 550nm), and tetrahedrons scatter red light (550nm - 750nm). In 

addition to the shape effect, the spectrum of a particle tends to red-shift (and broaden in the case of spheres) with 

increasing size. Figure 4 shows the results of a typical mapping experiment for 3 individual PRPs. The spectra obtained 

from individual Ag PRPs correlate well with other published shape dependence results [2, 3, 4, 7, 8]. In addition to Ag 

colloids, we have optically characterized individual Au colloids (BBI) ranging in diameter from 40nm to 100nm and 

ranging in size dependent plasmon resonance peak position from 520nm to 570nm respectively. These colloid solutions 

are of high uniformity (coefficient of variation <20%), and consist primarily of spherically shaped nanostructures.   

The mapping technique described here allows for iterative characterization of individual nanoparticle samples between 

the optical microscope and further modification or characterization. Using this technique, we have been able to alter the 

environment of the PRPs and follow the resulting changes in the spectra and morphology of the individual PRPs. As an 

illustration of this technique, we present the results of one such heating study in Figure 5.  By heating the Ag 

nanoparticle bound to a silicon nitride substrate, using a standard hot plate as described in reference [1], the shape of the 

tetrahedral PRP could be subtly altered, as determined by TEM characterization, while monitoring the spectral properties 

on the optical microscope. The results show that as the corners of the tetrahedron are rounded, the plasmon resonance is 

incrementally blue-shifted. Tuning the properties of an individual PRP in this manner is insightful, and confirms a 

sensitivity to shape that would be difficult to discern in ensemble studies. For example, this study shows that the 

plasmon resonance of a tetrahedron is strongly influenced by the integrity of the vertices, as has also been described in 

other publications [2, 7, 8]. 

Figure 4: Typical spectral results of Ag nanoparticle mapping.        Figure 5: Tuning plasmon resonance of individual Ag nanoparticle.  

Generally, spheres scatter in the blue, pentagons scatter green,         The tetrahedron is repeatedly heated and the changing particle’s    

and tetrahedrons scatter red light.                                                       morphology and spectra are mapped to show their correlation.    
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Other shapes, such as nanorods [6, 13], (as shown in Figure 2), aggregates of 2 or more colloids [17, 18, 19], and other 

asymmetric forms such as ellipses [5, 17] display polarization dependent optimal signatures, and provide a further 

avenue for plasmonic nanostructure design.   

3.2 Filtered Optical Imaging of Nanostructures 

The optical microscope we use to characterize individual PRPs is equipped with a 100x magnification chromatically 

corrected objective, which allows for diffraction-limited imaging of the scattered light from the plasmon resonant 

nanoparticles.  Images are recorded by a CCD camera (Princeton Instruments). Each nanoparticle in a particular far field 

CCD image area appears as a bright diffraction-limited spot with a characteristic point spread function (Figure 2A).  For 

the 100x magnification, the typical point spread function has an F.W.H.M. of ~8 pixels. A cross-section of the point 

spread function for a given PRP has a maximum at the center position of the scatterer and can be used to locate the 

position of the particle with respect to its local environment, with nanometer scale resolution [22]. Of course, it is not 

possible to determine the distance between two closely spaced identical PRPs with nanometer precision, as the point 

spread functions of the two PRPs will generally interfere.  However, if the two PRPs are distinct spectrally, then even 

this limitation can be overcome.  This point is illustrated in Figure 6. Two closely spaced PRPs appear as a single bright 

scatterer (Figure 6 insert) under white light illumination. The pair in Figure 6 is composed of a spherical particle (blue 

scatterer) and a tetrahedron (red scatterer) spaced 225nm apart–a scale below the resolution limit of an optical 

microscope, but large enough that inter-particle interactions are not dominant. In order to determine the relative positions 

of the two PRPs without the use of an electron microscope, we take advantage of the fact that the resonances of the two 

PRPs are spectrally well separated. By inserting 10 nm bandpass filters (Omega) into the illumination path , we are able 

to measure the point spread function of one particle while rejecting the point spread function of the other, thus increasing 

the interparticle contrast. To measure the interparticle distance, we take line-scans through two consecutive CCD images 

of the same particle(s), the first taken with a 410nm centered 10nm bandpass filter (at the resonance of the spherical 

nanoparticle) and the second with a 650nm centered bandpass filter (at the resonance of the tetrahedron).  By comparing 

the pixel peak positions of each line-scan, we arrive at a measurement of the relative position between the two PRPs. It is  

Figure 6: Filtered imaging of closely spaced plasmon resonant nanoparticles. A) Pixel intensity linescan through point source image

taken of plasmon resonant object with both 410nm and 650nm (10nm bandpass) filtered illumination, using the P.I. CCD and 50x 

objective. Inset: CCD Image of the pair under white light illumination. The dashed line is the direction of the linescan shown. B) TEM 

image of the same particle pair with the same orientation as the line-scan plot.  
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useful to have other isolated PRPs in the image area to use as fiduciary markers should the substrate move between each
filtered image, These PRP markers also act as a calibration of the microscope magnification and sample orientation
relative to fiduciaries when determined by TEM. The peak position of the diffraction limited point source is dominated
by the sphere at 410nm and by the tetrahedron at 650nm, causing the two linescans to have individual peak positions
separated by the physical spacing of the two nanoparticles in agreement with the TEM.

Bandpass filtering can also be used to enhance the imaging resolution of different sections on a composite plasmon
resonant nanowire. The plasmon resonant nanowires we describe here are fabricated using a templated plating technique,
and can be composed of arbitrary lengths of silver, gold and nickel [6, 13]. Each 25nm to 40nm diameter metal nanorod
has a unique polarization-dependent spectral signature. For example, under white light illumination polarized along the
nanowire short axis, silver preferentially scatters blue light, gold scatters green, and nickel scatters white light.
Therefore, a short segment of silver embedded in a gold nanowire is distinguishable by its unique blue response. Filtered
imaging of the composite nanowire enables the location and characterization of segments smaller than the diffraction
limit of light. Figure 6 illustrates the use of a 10nm bandpass filter centered at 410nm to highlight the scattering of a
short silver segment embedded in a gold nanowire. As described above, a pixel intensity line-scan is used to establish the
relative position of the segment. This technique becomes more important as the density of coding on the plasmon
resonant nanowires, and possibly other plasmonic devices, increases.

Figure 6: 10nm bandpass (centered at 410nm) filtered illumination (with polarization perpendicular to rod length) of composite
(~30nm diameter gold/silver/gold) plasmon resonant nanowire. Linescan through CCD image displays greater scattering from the
silver segment relative to the gold nanowire at this wavelength, allowing for improved spatial resolution of the silver segment.

3.3 Substrate Effect on Plasmon Resonance
The scattering properties of PRPs are particularly sensitive to nearby scattering objects, including the substrate on which
they are deposited. The substrate properties generally shift the plasmon resonance wavelength, and alter the far-field
scattering profile. For an extensive analysis of the effect of the substrate on the resonance wavelength of PRPs see
reference [7]. Here, we will briefly discuss the far field scattering profile only. We have used a wide range of substrates,
including glass slides, silicon wafers and formvar films on TEM grids. Those substrates that are highly conductive (or
lossy) have a striking impact on the PRP point spread function. The scattering response of a PRP can be simply
envisioned as being formed from the radiation of two dipoles excited in the PRP, one parallel to the substrate and one
perpendicular to the substrate. The parallel dipole of a PRP placed on a conductive surface will be reduced by its image
dipole, while the perpendicular dipole will be enhanced by the image dipole. We thus find that PRPs deposited on HF
cleaned silicon wafers, metal films and other conductive substrates image as “donuts”; that is, the central maximum in
the point spread function is missing. Figure 7a shows the scattering from an 80nm gold colloid on silicon (with a 100nm
Si02 layer), along with the pixel intensity line-cut through an optical CCD image of the particle. Figure 7b shows the
same for an 80nm gold colloid on conductive Hf cleaned silicon. The parallel dipole component, which is damped on a
conductive surface, is related to the horizontal physical dimension of the plasmon resonant nanostructure. Thus,
substrate effect must be accounted for in the interpretation of optical signatures from nanoparticles on surfaces. This is
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especially important for the case of asymmetric nanostructures, such as those created by lithographic techniques on 

conductive surfaces, where the strong dipole response may be significantly modified by the substrate.  

Figure 7: Color images (Coolpix 995) and P.I. CCD intensity linescans through the far field optical CCD images from: A) 80nm gold

colloid on 100nm SiO2 on silicon wafer. B) 80nm gold colloid on Hf cleaned silicon wafer. Inset drawings indicate the simple 2-

dipole approximation of the far-field pattern in which the horizontal dipole is damped on the conductive substrate resulting in a donut 

shaped far field image. 

3.4 Index of Refraction of Surrounding Medium 

There has been considerable interest recently in utilizing the sensitivity of the plasmon resonance spectral peak of gold 

and silver nanoparticles as an indicator of the local dielectric environment.  It has been clearly shown that the resonance  

Figure 8: Plasmon Resonance Peak shift due to changing local dielectric index. A) Typical blue (spherical) silver PRP Resonance

curve as it is shifted from a) air, to b) 1.44 index, to c) 1.48 index, to further incremental index increases of 0.04.  B) Differential

scattering % (spectrum in 1.48 index – spectrum in 1.44 index) of 1) blue (spherical) silver PRP, and 2) typical red (tetrahedron) silver 

plasmon resonant particle.
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shift from a very small local dielectric change caused by a biomolecule binding can be readily measured from both 

ensembles of PRPs [24-26] and more recently from individual PRPs [23]. We have made numerous spectral 

measurements of the effect that a change in local dielectric has on individual PRPs [14]. Instead of binding biomolecules 

to the surface of PRPs, we have incrementally altered the surrounding index using index oils. The index oils are applied, 

the spectral measurements on individual PRPs are made, and then oil is removed by a brief rinse in Xylene. We have 

found that the incremental shift caused by 0.04 in index of refraction can be readily observed from individual silver 

PRPs. Furthermore, we have found that the sensitivity to the changing index is dependent on the initial shape and color 

of the PRP. Figure 8A represents the typical plasmon resonance peak red-shift from a blue (spherical) particle as it is 

brought from a local index of 1.0 to a local index of 1.44, 1.48, 1.52, 1.56 and 1.6. Figure 8B represents the typical 

differential (i.e. spectrum in 1.48 index – spectrum in 1.44 index) resonance shift from the same blue (spherical) PRP 

and from a red (tetrahedron) as they undergo a local dielectric change from 1.44 to 1.48. Note: we have applied the 

differential spectrum analytical technique which is used by Sonnischien et al in reference [23] to highlight the 

differential shift for a 0.04 index oil change and to display the increased sensitivity characteristic of tetrahedron shaped 

PRPs. It is clear that single plasmon resonant nanoparticles can be used effectively as highly miniaturized biosensors, 

and that by studying the characteristics of the individual particles, we can potentially tune the response to maximize the 

sensitivity.              

4. CONCLUSION 

We have demonstrated that, using the proper optical microscope apparatus, plasmon resonant nanostructures can be 

studied individually and they are bright optical scatterers. The mapping of dark field optical images and spectra of silver 

and/or gold spheres, tetrahedrons, pentagons, and nanorods, to their TEM determined geometry has shown the 

dependence of the plasmon resonance to their shape and size. In addition, the plasmon resonance of these nanoparticles 

is highly sensitive to their local dielectric environment. This structure-environment relationship will provide the basis for 

a variety of future photonic applications.  

ACKNOWLEDGEMENTS 

We would like to thank The National Center for Microscopy and Imaging Research (NCMIR) at UCSD, and Andy 

Pommer of the UCSD Physics Machine Shop. We would also like to acknowledge the support of the NSF DBI 9876651, 

NIH PHS HG0195901, the NIH SBIR R43GM62097, and the Lounsbery Foundation. 

REFERENCES 

1. J.J. Mock, M. Barbic, D. Smith, D. Schultz, S. Schultz (2002). “Shape Effects in Plasmon Resonance of 

Individual Colloidal Silver Nanoparticles.” Journal of Chemical Physics 116 6755-6759 (2002). 

2. Rongchao Jin, YunWei Cao, Chad A. Mirkin, K.L. Kelly, George C. Schatz, and J.G. Zheng, “Photoinduced 

Conversion of Silver Nanospheres to Nanoprisms.” Science 294: 1901-1903 (2001). 

3. Sihai Chen and David L. Carroll, “Synthesis and Characterization of Truncated Triangular Silver Nanoplates.” 

Nanoletters 2 1003-1007 (2002). 

4. Isabel Pastoriza-Santos and Luis M. Liz-Marzan, “Synthesis of Silver Nanoprisms in DMF”. Nanoletters 2 903-

905 (2002). 

5. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner and F. R. Aussenegg “Design of multipolar 

plasmon excitations in silver nanoparticles.” Applied Physics Letters 77 3379-3381 (2000). 

6.  M. Barbic, J.J. Mock, and S. Schultz (2002). “Single Crystal Silver Nanowires Prepared by the Metal 

Amplification Method.” Journal of Applied Physics 91 9341-9345 (2002)

7. K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, “The Optical Properties of Metal 

Nanoparticles.” J. Phys. Chem. B. 107 668-677 (2003). 

8. J. D. Kottman, O. J. F. Martin, D. R. Smith and S. Schultz, “Scattering properties of nanoparticles with 

arbitrary shape.” Chem. Phys. Lett. 341 1-3 (2001). 

74     Proc. of SPIE Vol. 5221

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/27/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



9. Sihai Chen, Zhiyong Fan, and David L. Carroll, “Silver Nanodisks: Synthesis, Characterization, and Self 

Assembly.” J. of Phys. Chem. B. 106 10777-10781 (2002). 

10. C. Sonnichsen, T Franzl, T Wilk, G von Plessen, an d J Feldman, “ Plasmon resonances in large noble-metal 

clusters.” New Journal of Physics 4 93.1-93.8 (2002).  

11. Xiao-Hong Nancy Xu, Jun Chen, Robert B. Jeffers, and Sophia Kyriacou, “Direct measurement of sizes and 

dynamics of single living membrane transporters using nanooptics.” Nanoletters 2 175-182 (2002). 

12. Michael P. Mallin and Catherine J. Murphy, “Solution-Phase Synthesis of Sub-10 nm Au-Ag Alloy 

Nanoparticles.” Nanoletters 2 1235-1237 (2002). 

13. J.J. Mock, S.J. Oldenburg, D.R. Smith, D.A. Schultz, S. Schultz, “Composite Plasmon Resonant Nanowires.” 

Nanoletters 2 465-469 (2002). 

14. Jack J. Mock, David R. Smith, and Sheldon Schultz, “Local Refractive Index Dependence of Plasmon 

Resonance Spectra from Individual Nanoparticles.” Nanoletters 3, 485-491 (2003). 

15. Traci R. Jensen, Michelle Duval Malinsky, Lance Kelly, Anne A. Lazarides, George C. Schatz, and Richard P. 

Van Duyne, “Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon 

Resonance of a Periodic Array of Silver Nanoparticles.” J. Phys. Chem. B 103, 9846-9853 (1999). 

16. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, 

F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles 

using total internal reflection microscopy.” Applied Physics Letters 77, 2949-2951 (2000). 

17. K.-H. Su, Q.-H. Wei, X. Zhang, J.J. Mock, D.R. Smith, and S. Schultz, “Interparticle Coupling Effects on 

Plasmon Resonances of Nanogold Partticles.” Nanoletters (In Press). 

18. W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B Lamprecht, and F.R. Aussenegg, “Optical properties of 

two interacting gold nanoparticles.” Optics Communications 220 137-141 (2003). 

19. Hiroharu Tamaru, Hitoshi Kuwata, Hideki T. Miyazaki, Kenjiro Miyano,  “Resonant light scattering from 

individual Ag nanoparticles and particle pairs.” Applied Physics Letters 80 1826-1828 (2002). 

20. Nordin Felidj, Jean Aubard, and Georges Levi, “Discrete dipole approximation for ultraviolet-visible extinction 

spectra simulation of silver and gold colloids.” J. of Chem. Phys. 111 1195-1208 (1999). 

21. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Spectrally coded optical data 

storage by metal nanoparticles.” Optics Letters 25 563-565 (2000). 

22. S. Schultz, D.R. Smith, J.J. Mock, and D.A. Schultz, “Single molecule detection with nonbleaching multicolor 

optical immunolabels.” Proc.  Natl. Acad. Sci. U.S.A. 97 996-1001 (2000). 

23. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T.A. Klar, and J. Feldman, “Biomolecular Recognition 

Based on Single Gold Nanoparticle Light Scattering.” Nanoletters (2003). 

24. Amanda J. Haes and Richard P. Van Duyne,” A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an 

Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver 

Nanoparticles.” JACS 124, 10596-10604 (2002). 

25. Nidhi Nath and Ashutosh Chilkoti, “A Colorimetric Gold Nanoparticle Sensor to Interrogate Biomolecular 

Interactions in Real Time on a Surface.” Anal. Chem. 74 504-509 (2002). 

26. Takayuki Okamoto, Ichirou Yamaguchi and Tetsushi Kobayashi, “Local plasmon sensor with gold colloid 

monolayers deposited upon glass substrates.” Optics Letters 25 372-374 (2000). 

27. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains 

of silver nanoparticles.” Optics Letters 23 1331-1333 (1998). 

28. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface 

plasmon polaritons.” Applied Physics Letters 81 1762-1764 (2002). 

29. C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas des Francs and 

C. Girard, “Imaging the Local Density of States of Optic Corals.” Physical Review Letters 88 097402-1 (2002). 

30. Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater, “Observation of coupled plasmon-polariton modes in Au 

nanoparticle chain waveguides of different lengths: Estimation of waveguide loss.” Applied Physics Letters 81

1714-1716 (2002). 

31. Yoshihisa Ohko, Tetsu Tatsuma, Tsoyushi Fujii, Kenji Naoi, Chisa Niwa, Yoshinobu Kubota, and Akira 

Fujishima, “Multicolor photochroism of TiO2 films loaded with silver nanoparticles.” Nature Materials 2, 29-

31 (2003). 

32. D.A. Schultz, “Plasmon resonant particles for biological detection.” Current Opinion in Biotechnology 14, 13-

22 (2003).  

Proc. of SPIE Vol. 5221     75

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/27/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


