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ABSTRACT

The dynamics of a stratified oceanic bottom boundary layer (BBL) over an insulating, sloping surface

depend critically on the intersection of density surfaces with the bottom. For an imposed along-slope flow, the

cross-slope Ekman transport advects density surfaces and generates a near-bottom geostrophic thermal wind

shear that opposes the background flow. A limiting case occurs when a momentum balance is achieved be-

tween the Coriolis force and a restoring buoyancy force in response to the displacement of stratified fluid over

the slope: this is known as Ekman arrest. However, the turbulent characteristics that accompany this ad-

justment have received less attention.We present two estimates to characterize the state of the BBL based on

the mixed layer thickness: Ha and HL. The former characterizes the steady Ekman arrested state, and the

latter characterizes a relaminarized state. The derivation ofHL makes use of a newly defined slope Obukhov

length Ls that characterizes the relative importance of shear production and cross-slope buoyancy advection.

The value of Ha can be combined with the temporally evolving depth of the mixed layer H to form a non-

dimensional variable H/Ha that provides a similarity prediction of the BBL evolution across different tur-

bulent regimes. The length scale Ls can also be used to obtain an expression for the wall stress when the BBL

relaminarizes. We validate these relationships using output from a suite of three-dimensional large-eddy

simulations. We conclude that the BBL reaches the relaminarized state before the steady Ekman arrested

state. CalculatingH/Ha andH/HL from measurements will provide information on the stage of oceanic BBL

development being observed. These diagnostics may also help to improve numerical parameterizations of

stratified BBL dynamics over sloping topography.

1. Introduction

In the abyssal ocean, enhanced shear and turbulence

occurs in a thin region near the seafloor known as the

oceanic bottom boundary layer (BBL). The BBL is an

important source of drag on mean ocean currents and

eddies and plays a key role in global oceanic energy

budgets (Wunsch and Ferrari 2004). However, significant

disagreement exists in estimates of the global energy

dissipation in the BBL. Previous studies have estimated

that energy dissipated in the BBL can range from 0.2 TW

to as large as 0.83 TW (Wunsch and Ferrari 2004; Sen

et al. 2008;Arbic et al. 2009;Wright et al. 2013), which can

be compared with the 0.8–0.9 TW of energy input from

the wind into the geostrophic circulation (Wunsch and

Ferrari 2004; Scott and Xu 2009). In addition to sparse

observations, additional uncertainty in dissipation rates

arises from a poor understanding of how stratification

and bottom slopes combine to modify ocean flows over

the seafloor.

Flow–topography interactions in the ocean may lead

to the generation of meso-/submesoscale energetic tur-

bulence (Gula et al. 2016) and internal gravity waves

(Nikurashin and Ferrari 2011). The BBL can thus be

a site of enhanced dissipation and water mass trans-

formation (Armi 1978; Ruan et al. 2017). Contrary to

classical arguments (e.g., Munk 1966), recent studies have

suggested that BBLs over sloping topography are the

primary locations for the upwelling of deep water needed

to close the global overturning circulation (De Lavergne

et al. 2016; Ferrari et al. 2016; De Lavergne et al. 2017).

These arguments point to the BBL being the primary site

of a convergent turbulent buoyancy flux needed to sup-

port diabatic upwelling. However, due to the relativelyCorresponding author: Xiaozhou Ruan, xruan@caltech.edu
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small spatial scale of the BBL and practical difficulties

associated with deep-sea observations, accurate repre-

sentation of the oceanic BBL in large-scale general cir-

culation models (GCM) remains challenging.

Stratified BBLs over a flat bottom have been exten-

sively studied in both nonrotating and rotating systems;

the latter is known as the bottom Ekman layer (BEL).

Direct numerical simulations (DNS) and large-eddy

simulations (LES) have been carried out at different

Reynolds numbers to study the structures of the BEL,

Ekman transport, Ekman veering angle, and their de-

pendence on the external stratification. As external

stratification increases, turbulence is suppressed, and

the BEL becomes thinner with a relatively unchanged

depth-integrated transport (Coleman et al. 1990;

Shingai and Kawamura 2002; Taylor and Sarkar 2008).

The Ekman veering angle is reduced as compared with

laminar theory, but the veering angle tends to increase

with increasing external stratification in the lower

part of the BEL (Taylor and Sarkar 2008; Deusebio

et al. 2014).

A sloping bottom boundary introduces additional

dynamics. In a stratified BBL, the insulating bottom

boundary condition causes density surfaces, or iso-

pycnals, to tilt downslope in the absence of an along-

slope mean flow. In steady state, an upslope convective

flux is induced to balance the vertical buoyancy diffu-

sion, as shown by Phillips (1970) and Wunsch (1970).

In a rotating system, the tilting isopycnals also induce

an along-slope geostrophic flow due to the thermal

wind relation. When rotation is combined with an im-

posed along-slope mean flow, the near-bottom cross-

slope Ekman transport is always smaller than in the

flat-bottom case. This is due to the opposing buoyancy

force in the cross-slope direction. Isopycnals tilt either

up- or downslope, depending on the orientation of

the along-slope mean flow; in this study, we only con-

sider along-slope flows that induce downslope Ekman

transport. If the buoyancy force is sufficiently large to

balance the Coriolis force in the cross-slope direction,

the system arrives at a steady state with negligible

Ekman transport. This is the so-called Ekman arrest

(MacCready and Rhines 1991), where the near-bottom

velocity shear and thus the wall stress tw are also re-

duced, compared to flat-bottom cases. Here the wall

stress is defined as

t
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›z

����
z50

5 r
0
u2

* , (1)

where r0 is a reference density, n is the molecular vis-

cosity, u(z) is velocity parallel to the bottom, and u*
is the friction velocity. Critically, the steady Ekman

arrested state has not been observed in the ocean, de-

spite efforts aimed at closing the integrated momentum

and buoyancy budget in the BBL (Trowbridge and

Lentz 1998). Our results provide some insight into

why observations of a steady Ekman arrest have been

elusive.

Besides the steady state solutions introduced above,

process studies have examined the time-dependent ad-

justment toward Ekman arrest. For studies that have not

explicitly resolved turbulence in the BBL, typically one

of two parameterizations is used. The first invokes a

constant turbulent viscosity and diffusivity, which en-

capsulates the enhanced turbulent diffusion of mo-

mentum and buoyancy. Following early numerical

studies by Weatherly and Martin (1978), MacCready

and Rhines (1991) solved for an approximate Ekman

arrest time scale tlaminar for a laminar system and found

tlaminar depends on the slope Burger number (Bu):

t
laminar

5
1

S2f cosa

�
1/s1 S

11 S

�
. (2)

Here, S5Bu2 5 (N sina/f cosa)2, where N and f are the

buoyancy and Coriolis frequencies, respectively; a is the

slope angle, and s is the turbulent Prandtl number.

The scale tlaminar represents the time required for the

cross-slope Ekman transport to arrive at the negligible

steady state value MThorpe 5k‘ cota, derived by Thorpe

(1987). Here, k‘ is the far-field diapycnal diffusivity,

which is generally smaller than the BBL diffusivity,

where vigorous mixing takes place. During Ekman ar-

rest, the stratified BBL over a slope becomes thicker

than the BEL thickness due to the diffusion of buoyancy

into the interior. The analytical solutions in the case of

constant viscosity and diffusivity pose a curious con-

clusion: the interior mean flow depends on background

parameters, such asN and a. In other words, the interior

velocity field is a part of the solution of the BBL system

and cannot be viewed as a background forcing in-

dependent of BBL processes. By shaping the back-

ground mean flow, at least close to the ocean bottom,

BBL dynamics may influence the interior circulation

beyond classic Ekman spinup and spindown processes

(Thomas and Rhines 2002; Benthuysen and Thomas

2013; Ruan and Thompson 2016).

As an alternative to a constant turbulent viscosity

and diffusivity, various parameterizations have been

applied as closures of turbulent momentum and buoy-

ancy fluxes (e.g., the simple bulk Richardson number

Rb-dependent and higher-order closure schemes). The

latter includes the Mellor–Yamada schemes and the

second-order closure implemented in a recent study ex-

amining the energy pathways in the Ekman arrest
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process (Umlauf et al. 2015). Trowbridge and Lentz

(1991) have shown that a simple Rb-dependent pa-

rameterization is able to capture the general thickness

evolution of the BBL, as compared to theMellor–Yamada

level-two turbulence closure used by Weatherly and

Martin (1978). Brink and Lentz (2010, hereafter BL10)

have tested different turbulent closure schemes and

provided more accurate empirical expressions for the

time scales associated with the Ekman arrest process.

However, the turbulent characteristics associated with

the BBL evolution have not been examined closely in the

two approaches introduced above. This has motivated us

to carry out LES simulations, which directly resolve the

largest turbulent motions that were parameterized in

BL10. We will show that the BBL reaches a relami-

narized state in which turbulence is suppressed before

evolving to the final arrested state.

Describing the Ekman arrest process as a function of

time is useful; however, ocean observations often do

not fit neatly into this ‘‘initial value’’ approach. De-

termining the BBL’s time history, or the stage of the

BBL’s turbulent evolution as it approaches the ar-

rested state, remains difficult. Here, we provide a

framework that both classifies and identifies various

BBL stages, spanning fully turbulent flat-bottom cases

to Ekman arrested states, based on instantaneous bulk

structures. A key motivation is that this framework will

allow for more accurate parameterizations of BBL

processes in GCMs. Our theoretical derivation, de-

scribed in section 2, suggests that different BBL stages

are associated with transitions in turbulent character-

istics. Therefore, we use a suite of LES (section 3) to

simulate a stratified oceanic BBL over a slope with a

downwelling-favorable mean flow (Fig. 1) in order to

explore these regime transitions and to validate the

theoretical predictions (section 4). The mean momen-

tum and buoyancy budgets are diagnosed in section 5;

discussions and conclusions are provided in section 6.

The goals of this study are threefold: (i) to quantify the

effects of topographic slope and stratification on the

BBL turbulent characteristics, as well as the wall stress,

BBL thickness, and Ekman transport; (ii) to describe

the detailed structure of stratified BBL over a slope;

and (iii) to propose a unified description of the evolu-

tion of stratified BBL over a slope throughout all stages

toward full arrest.

2. Theoretical predictions

We begin by introducing two expressions for the

height of the bottom mixed layer (BML)—Ha and HL,

or the ‘‘arrest height’’ and ‘‘relaminarization height’’—

which can be determined from external parameters.

In this study, the BML refers to the region of weak

vertical stratification, whereas the BBL describes the

region with enhanced dissipation (e.g., a mixing

layer). We first revisit a scaling for Ha proposed by

Trowbridge and Lentz (1991; section 2a). The second

definitionHL (section 2b) is, to our knowledge, new and

based on Monin–Obukhov similarity theory. These

values of the arrest height will prove to be critical not

only for describing the arrested state, but also for clas-

sifying the approach to arrest, as shown in sections 4

and 5.

a. Momentum balance and arrest height

As shown in Fig. 1, the coordinate system is rotated

such that x, y, and z denote the downslope, along-slope,

and slope-normal directions, respectively, and u, y, and

w are the corresponding velocity components. To lead-

ing order, the boundary layer momentum equation in

the cross-slope direction is given by

›u

›t
2 f (y

total
2 y)52ab2

1

r
0

›tx

›z
, (3)

where ytotal and y (with magnitude V‘) are the total and

far-field along-slope velocities, and tx is the total stress

(molecular andReynolds). Scalings for the near-seafloor

Coriolis force (per unit mass) FC and buoyancy force

(per unit mass) FB that balance during Ekman arrest are

F
C
; fV,F

B
;ab;a2N2

‘Dx;aN2
‘H , (4)

where V is the magnitude of the boundary layer along-

slope velocity. The buoyancy force is proportional to the

displacement of the stratification. For a uniform slope,

FIG. 1. Schematic of the BBL over a slope; gray curves indicate

density surfaces. The coordinate is rotated by a slope angle a. The

barotropic mean flow is associated with a downslope Ekman

transport. The thermal wind shear generated due to the tilting

isopycnals is in the positive y direction, opposite to the mean flow.

The near-bottom velocity is the sum of the barotropic mean flow

and the opposing thermal wind shear.
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this is approximated using the cross-slope isopycnal

displacement length scale Dx (Fig. 2), where Dx’H/a,

and H is the height of the BML where stratification is

smaller than 30% of the background stratification N2
‘.

The extra slope angle a in the expression for FB in (4)

denotes the projection of an upward-pointing buoyancy

force onto the cross-slope direction. In the arrested state

where the total near-bottom flow is weak, FC and FB

balance and can be expressed as

Farrest
C 5 fV

‘
, Farrest

B ’aN2
‘Ha

. (5)

This yields an expression for the arrest height Ha:

H
a
’ fV

‘
/(aN2

‘) . (6)

The same expression was proposed by Trowbridge and

Lentz (1991) by assuming that the thermal wind shear

yz 52aN2
‘/f brings the total flow magnitude from the

far-field valueV‘ to zero near the bottom. This indicates

that increasing the slope angle and stratification and/or

reducing the mean flow magnitude leads to a reduction

in the cross-slope displacement of the stratified fluid

required to achieve Ekman arrest, or equivalently, a

reduction in Ha. Using f 5 1024 s21 and typical abyssal

oceanic parameters V‘ 5 0:05m s21, N2
‘ 5 1026 s22, and

a5 0:005, Ha must be roughly 1000m to generate a

sufficiently large buoyancy force to balance the Coriolis

force. This large value may partially explain why Ekman

arrest is rarely observed in the abyssal ocean. However,

for typical values over the continental slope where

the pycnocline intersects topography—V‘ 5 0:05m s21,

N2
‘ 5 1025 s22, and a5 0:01—an Ha ’ 50m may be

sufficient to achieve Ekman arrest.

Predictions for Ha vary by four orders of magnitude

across typical oceanic parameters (Figs. 3a–c). The

nonlinear dependence of Ha on different parameters

warrants careful examination of BBL structures in dif-

ferent regimes, which is the focus of section 4.

b. Turbulent characteristics and relaminarization
height

An alternative definition of an arrest height begins by

assuming that a complete balance between buoyancy

and Coriolis forces requires the suppression of turbu-

lence and turbulent stress. The competition between

shear production and buoyancy flux can be character-

ized by the Obukhov length scale, which is defined by

L[
2u3

*
kB

, (7)

where k5 0:41 is the von Kármán constant, andB is the

surface buoyancy flux. For an unstable BBL, where the

buoyancy flux is upward (B. 0), the Obukhov length

scale L is negative, and it characterizes the relative

importance of surface stress and convection in the

production of turbulence. For a stable BBL, where the

buoyancy flux is downward (B, 0), L is positive, and it

corresponds to the transition depth (height above

bottom) at which the stabilizing influence of stratifi-

cation begins to suppress turbulence.

In the absence of a buoyancy flux at the wall in the

oceanic BBL, (7) can be revised by replacing B with

the depth-integrated cross-slope buoyancy advection,

which results in a new length scale, here called the

‘‘slope Obukhov length’’:

L
s
[

u3

*
kUN2

‘a
, (8)

where U5
Ð ​ ‘

0
u dz is the depth-integrated cross-slope

transport. We show, using LES simulations, that the

ratio of H to LS captures the transition of the BBL

from unstable to stable states and finally to an Ekman

arrested state (section 4e). The dependence of Ls on U

can be removed by relating the steady state Ekman

transport over a slope to the friction velocity (BL10):

U5u2

*/f (11Bu2), (9)

such that

FIG. 2. Schematic of the arrest height Ha in sloping BBLs with

different stratifications. The dashed lines represent the isopycnals in

theBMLafter they are advected downslope. The dotted lines denote

the top of the BML. For the same slope angle a and mean flow

magnitudeV‘, fluidwith stronger stratificationN
2
‘ requires a smaller

Ha to generate a buoyancy force to balance the Coriolis force fV‘ in

the cross-slope direction. Here, Dx1N2
1 5Dx2N2

2 , soH1/H2 5N2
2 /N

2
1 .

Terms N2 andH are the background stratification and arrest height

associated with a weakly and a strongly stratified BBL (subscripts 1

and 2, respectively).
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L
s
5 (11Bu2)

fu*
kaN2

‘

. (10)

It has been shown that the nondimensional viscous

Obukhov length L1 5Lu*/n controls the turbu-

lent state in stratified atmospheric boundary layers,

such that for L1 , 100, turbulence collapses and the

boundary layer relaminarizes (Flores and Riley

2011). The Obukhov length L characterizes the depth

over which turbulence generation is unaffected by

stratification, and 100n/u* roughly denotes the upper

limit of the viscous wall region (including the viscous

sublayer, the buffer layer, and part of the lower

log-law layer). Thus, L, 100n/u* implies that turbu-

lence suppression by stratification has penetrated into

the viscous wall region, which results in turbulence

collapse.

The physical interpretation of the slope Obukhov

length Ls is the same as the Obukhov length L. As-

suming that turbulence in the oceanic BBL also col-

lapses when the viscous slope Obukhov length

L1
s 5L

s
u*/n5 (11Bu2)fu2

*/(nkaN
2
‘) (11)

falls below a critical value C, the squared friction ve-

locity associated with the transition from a turbulent to a

relaminarized state is

(u*)
2 5C

nkaN2
‘

f (11Bu2)
. (12)

When the friction velocity becomes smaller than the

value predicted in (12), the BBL will transition to a

laminar state. In section 4c, we show that the critical value

for the constantC in these simulations is also around 100.

Accounting for the reduction in the near-bottom, along-

slope velocity due to the thermal wind shear, the revised

expression for the wall stress using the quadratic law is

tyw/r0 5C
d
V2

b 5C
d
(V

‘
2aN2

‘H/f )
2
, (13)

where Cd is the drag coefficient, and Vb is the near-

bottom flow magnitude. An expression for the relami-

narization height is then given by

H
L
5

fV
‘

aN2
‘

2

"
Cknf

aN2
‘Cd

(11Bu2)

#1/2

, (14)

FIG. 3. (top) The predicted arrest heightHa (m; logarithmic scale, e.g., 15 10m forHa) and (bottom) the ratioHL/Ha as a function of

slope angle a, background stratification N2
‘, and mean flow magnitude V‘. Estimates of Ha and HL are based on the mean momentum

balance [(6)] and turbulent characteristics [(14) withCd 5 23 1023], respectively. The parameters that are held fixed for different cases are

(a),(d) V‘ 5 0:01m s21, (b),(e) N2
‘ 5 1026 s22, and (c),(f) a5 0:01.
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a threshold for the BML thickness above which the BBL

relaminarizes.

The scaling for Ha in (6) is recovered when the sec-

ond term in (14) is small (e.g., when the wall stress is

negligible). When the BBL reaches the relaminarized

state, the BML thicknessHL is always smaller than the

predicted Ha for steady Ekman arrest. The scales Ha

andHL become more similar for small a, weak N2, and

strong V‘ (Figs. 3d–f). Once the BBL is relaminarized,

the only mechanism for further evolution to the final

arrested state is via molecular diffusion. However,

ubiquitous background perturbations are likely to make

the relaminarized state difficult to sustain, providing

another explanation for why a steady Ekman arrested

state has not been observed.

In our LES simulations, we focus on BBL relamina-

rization, which we believe is of more oceanic relevance

than the Ekman arrested state. We also note that both

Ha and HL are likely underestimated, compared with

the true BML thickness, because of two assumptions.

First, we assume that the tilted isopycnals can be rep-

resented by straight lines (Fig. 2). In reality, the iso-

pycnals tilt smoothly toward the bottom, which yields a

larger Ha at steady state. Second, Vb is defined at the

bottom of the thermal layer rather than at z5 0. Thus,

we do not account for the thickness of the viscous layer

in Ha, including the viscous sublayer, the buffer layer,

and the lower part of the log layer.

3. Numerical methods

In the remainder of the paper, we show that the ratio

of the mixed layer depth H to HL is an important pa-

rameter for predicting relaminarization of the BBL

over a slope, whereas the ratio of H to Ha describes the

evolution of the BBL across a range of turbulent regimes

toward complete arrest. The dependence of HL on

small-scale turbulent properties of the BBL motivates

the use of LES simulations, described below.

a. Governing equations

The LES-filtered Navier–Stokes equations under the

Boussinesq approximation in a rotating frame can be

written in dimensional form as

›u

›t
1u � =u2 f y cosa52

1

r
0

›p0
d

›x
2b sina1 n=2u

2 ›
j
td1j , (15)

›y

›t
1 u � =y1 f (u cosa2w sina)52

1

r
0

›p0
d

›y
1 n=2y

2 ›
j
td2j , (16)

›w

›t
1 u � =w1 f y sina52

1

r
0

›p0
d

›z
1 b cosa

1 n=2w2 ›
j
td3j , (17)

›b

›t
1 u � =b2N2

‘(usina1wcosa)5 k=2b2= � ld, and

(18)

= � u5 0: (19)

Here, n and k are the molecular viscosity and diffusiv-

ity, respectively; N2
‘ 52(g/r0)dr/dz is the background

(nonevolving) stratification; b52gr0/r0 is buoyancy,

where r0 is the density deviation from the background

stratification; p0
d denotes the pressure deviation from the

background hydrostatic balance, which has been re-

moved from (17); and td and ld are the subgrid-scale

(SGS) stress (with 1, 2, and 3 representing the x, y, and z

directions) and buoyancy flux, respectively, which re-

quire SGS models for closure. The equations of motion

are in a reference frame moving with the along-slope

mean flow y, with magnitude V‘. Therefore (16) gives

the evolution of the perturbation velocity y where

y5 ytotal 2 y, and y52V‘ for downslope Ekman trans-

port conditions.

The dimensional variables are nondimensionalized

using

(u, y,w)5 u*(u
0, y0,w0), (x, y, z)5 d(x0, y0, z0)

5 u*/f (x
0, y0, z0),

(20)

p0
d 5 r

0
u2

*p
0, b5N2

‘db
0, t5 d/u*t

0 . (21)

The resulting nondimensional equations (with primes

dropped, except for the pressure deviation) are

›u

›t
1u � =u2 y cosa52

›p0

›x
1Ri*b sina

1Re21

* =2u2 ›
j
t
1j
, (22)

›y

›t
1u � =y1 (u cosa2w sina)52

›p0

›y
1Re21

* =2y

2 ›
j
t
2j
, (23)

›w

›t
1 u � =w1 y sina52

›p0

›z
1Ri*b cosa

1Re21

* =2w2 ›
j
t
3j
, and (24)

›b

›t
1 u � =b2 (u sina1w cosa)5Re21

* Pr21=2b2= � l ,
(25)
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= � u5 0: (26)

Three nondimensional parameters govern the system:

the friction Reynolds number (Re*), friction Richard-

son number (Ri*), and Prandtl number (Pr), where

Re*5
u*d

n
5

u2

*
fn

, Ri*5
N2

‘d
2

u2

*
5

N2
‘

f 2
, Pr5

n

k
. (27)

Relevant nondimensional parameters used in the ex-

periments are listed in Table 1. The parameters are

chosen to explore their controls on the Ekman arrest

process, ranging from a near-flat-bottom and unstrati-

fied limit to an experiment with the fastest arrest al-

lowed in themodel. The friction velocity u* that appears

in the nondimensional parameters does not include the

effects of stratification (i.e., u* is the friction velocity

before stratification is introduced; see discussion in

section 3b). The equations are solved subject to no-slip

and insulating boundary conditions:

y5V
‘
, z5 0, (28)

u5w5 0, z5 0, and (29)

›b

›z
1N2

‘ 5 0, z5 0: (30)

The far-field boundary conditions are free slip and in-

sulating for the momentum and buoyancy equations.

Again, the bottom boundary condition is set to ensure

ytotal 5 0. Throughout, the small angle approximation

(sina’a and cosa’ 1) is applied.

b. Numerical details

The simulations are performed using the computa-

tional fluid dynamics solver, DIABLO. Details of the

numerical method can be found in Taylor (2008) and

Bewley (2008). The background cross-slope density

gradient remains constant (M2
‘ 52aN2

‘) throughout the

adjustment, determined by the sloping topography cut-

ting through the vertically stratified fluid; there is no

along-slope density gradient. The model solves for

density perturbations to the background stratification.

Thus, periodic boundary conditions are used in the x and

y directions with uniform grid spacing, and the de-

rivatives in these two directions are computed with a

pseudospectral method (dealiased using the 2/3 rule).

Staggered and stretched grids are used in the slope-

normal direction with finer grid spacing close to the

upper and lower boundaries. Derivatives in the slope-

normal direction are treated with second-order finite

differences. The time-stepping algorithm uses a mixed

third-order Runge–Kutta/Crank–Nicolson method.

To examine the impact of finite stratification on the

dynamics close to the wall, the LES experiments per-

formed here are run with near-wall resolution (LES-

NWR), also called a resolved LES, which resolves at

least 80% of the energy in the flow (Pope 2001; Sagaut

2006). Near the wall, turbulent motions scale with the

viscous length dn 5 n/u*, which places strong constraints

on the model resolution. We placed the first two grid

points in the viscous layer z1 , 5, and the minimum

resolution in the slope-normal direction is D1
z 5 2; in

dimensional units, Dz 5 2n/u*. The uniform grid spacing

in the slope-parallel directions are D1
x 5D1

y ; 20. The

domain size is 30m (Lx) 3 30m (Ly) 3 60m (Lz), re-

spectively. A sponge layer of thickness 10m is placed at

the top of the domain to avoid reflection of internal

gravity waves generated from the interaction of BBL

turbulence with the pycnocline.

The background stratification can suppress the ini-

tialization of a turbulent BEL. To focus on the turbulent

state, as opposed to the transition to a turbulent state,

the simulations are spun up in multiple stages. First, an

unstratified simulation is conducted with linear damping

added to the momentum equations in the x and y di-

rections until the system reaches quasi equilibrium; the

uniform damping rate is half of the inertial frequency f.

This stabilizes the flow and reduces inertial oscillations.

The linear damping is then removed, allowing the flow

to adjust to the background environment. Finally, a

stable background stratification is incorporated into the

TABLE 1. Summary of the simulation parameters. The slope Burger number Bu5N sina/f cosa, and other nondimensional parameters

Re*, Ri*, and Pr are defined in (27). The values for Ea and EL are given for the end of each experiment tendf .

Expt. a log10N
2
‘ (s22) V‘ (m s21) Bu Re* Ri* Pr Ea EL tendf

A 0.005 27 0.1 0.016 4232 10 5 0.002 0.002 53.84

B 0.01 26.5 0.1 0.056 4232 31.6 5 0.014 0.015 48.16

C 0.01 26 0.1 0.1 4232 100 5 0.041 0.046 40.73

D 0.01 25.5 0.1 0.178 4232 316 5 0.130 0.157 43.95

E 0.01 25 0.1 0.316 4232 1000 5 0.349 0.492 40.08

F 0.02 25 0.1 0.632 4232 1000 5 0.772 1.215 55.14

G 0.01 26 0.05 0.1 1352 100 5 0.058 0.070 65.95

H 0.01 25 0.05 0.316 1352 1000 5 0.503 1.060 116.59
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simulation with a thin BML (2–3m) near the bottom to

ensure the viscous sublayer is unaffected by the strati-

fication at the start (see an example initial stratification

profile for N2
‘ 5 1025 s22 in Fig. 4). The strongest strat-

ification used in these experiments is N2
‘ 5 1025 s22.

The LES-filtered governing equations are essentially

a low-pass-filtered version of the Navier–Stokes equa-

tions with the resolved velocity field used to determine

the SGS stress tensor tSGS
i,j . Similar to the SGSmodel used

by Taylor and Ferrari (2010), a constant Smagorinsky

model was used in the simulations:

tSGS
i,j 522C2D

2jSjS
i,j
. (31)

Here, C5 0:13 is the Smagorinsky coefficient, D5
(DxDyDz)

1/3 is the implicit LES filter width, and Si,j is

the rate of strain tensor. The overbar denotes the fil-

tered (or resolved) field. The SGS eddy viscosity from

the Smagorinsky model is calculated as nSGS 5C2D
2jSj

with the constant molecular viscosity explicitly used in

the resolved field. A constant SGS Prandtl number

PrSGS 5 nSGS/kSGS 5 1 is used to calculate the SGS eddy

diffusivity.

4. Identification of turbulent regimes from
large-eddy simulations

A series of experiments were conducted to examine

how topographic slope a, stratification N‘, and back-

ground flowV‘ impact the evolution and bulk structures

of the BBL. Table 1 provides the slope Burger number

(Bu), initial friction Reynolds number (Re*) and fric-

tion Richardson number (Ri*), and Prandtl number

(Pr). The ratios H/Ha and H/HL, at the end of each

simulation, are also given. These experiments span a

range of turbulent states, including some that are far

from relaminarization.

Given sufficient time and water column depth, the

adjustment of a stratified fluid over sloping topography

is always toward the steady Ekman arrested state; the

time to reach this state depends on external parameters.

For experiments across a wide range of conditions, the

nondimensional parametersEa 5H/Ha andEL 5H/HL,

which represent the extent to which the BBL has ap-

proached the arrested and relaminarized states, can be

used to classify different BBL dynamical regimes. In-

deed,Ea is equivalent to the ratio between the buoyancy

and Coriolis force:

E
a
5H/H

a
5aN

‘
/f 3N

‘
H/V

‘
5Bu/Fr’F

B
/F

C
, (32)

where Fr5V‘/(N‘H) is the Froude number. Thus,

the magnitude of Ea serves as a measure of the extent

toward Ekman arrest (e.g., when Ea � 1, the BBL is far

from the arrested state). Since the slope Burger number

Bu in the ocean rarely exceeds unity, (32) implies that

supercritical flows (Fr. 1) are almost always far from

arrest. Similarly, we can define

E
L
5H/H

L
, (33)

where HL is defined based on the critical viscous

slope Obukhov length. Thus, EL 5 1 and L1
s 5 100

will be used interchangeably later to indicate a rela-

minarized state. Below, we discuss four sequential

stages as the BBL evolves toward the steady arrested

state: (i) weakly buoyant regime (Ea ’ 0 and EL ’ 0),

(ii) buoyant regime (0,Ea , 1 and 0,EL , 1),

(iii) relaminarized regime (0,Ea , 1 and EL 5 1),

and (iv) Ekman arrested regime (Ea 5 1 and EL . 1).

A summary of the different regimes can be found in

Fig. 5.

To highlight differences among these stages, we fo-

cus on the following properties: vertical stratification,

vertical velocity profiles within the BBL, cross-slope

transport, and friction velocity used to determine the

wall stress. We discuss the connection among the newly

proposed nondimensional parameters and turbulent

characteristics in the BBL through the classic Monin–

Obukhov similarity theory in section 4e.

During all of these experiments, H is continuously

changing with time. The growth rates of the BML

are well described by power law relationships H; tb,

FIG. 4. An example initial stratification profile forN2
‘ 5 1025 s22;

Lz 5 60 m is the height of the domain. A thin mixed layer (;2m) is

constructed to avoid the direct impact of stable stratification on the

transition to turbulence in the BBL.
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although the exponent b varies between different

simulations (Fig. 6). The exponents fall between

two limits. For the smallest initial Bu, the convection

is weak, and BML growth follows a 2/9 power law,

consistent with stress-driven mixed layer growth

(Manucharyan and Caulfield 2015). For larger values

of Bu, BML growth follows a 1/2 power law, consis-

tent with a classic upright convection-driven mixed

layer development (Deardorff et al. 1969). For the

large Bu experiments, the sloping topography allows

for larger downslope advection of buoyant fluid under

heavier fluid that leads to the transition to stronger

convective mixing. The simulated BML thickness

is, overall, comparable to those in models that have

used one-dimensional turbulence closure techniques.

However, one-dimensional turbulence closure models

largely account for turbulence production due to gravi-

tational or Kelvin–Helmholtz instabilities in the bulk

BBL and do not represent shear production at the

wall (in the viscous sublayer). Additional analysis is

needed to evaluate one-dimensional turbulence closures

in simulating the Ekman arrest process.

Finally, to diagnose the vertical structure of velocity

and other variables in the LES, a time average is ap-

plied over one near-inertial period to remove the ef-

fect of near-inertial oscillations. The centers of the

averaging windows are labeled in Fig. 8 and indi-

cated in Fig. 9 by the vertical dashed lines; the same

average is applied in the figures shown below unless

otherwise noted.

FIG. 5. Schematic representing the stages (boxes) in the approach to Ekman arrest; see discussion in section 4. The axes are the

nondimensional numbers Ea 5H/Ha and EL 5H/HL, defined in section 4. Each box summarizes the leading-order terms in the mo-

mentum balance and the ratio of far-field to near-bottom velocities, following the legend to the right.

FIG. 6. The growth of theBMLwith time:H/Lz ; (tf )b. Different

colors represent different simulations given in Table 1. The dashed

and dashed–dotted lines represent the reference power laws of the

stress (b5 2/9) and upright convection-driven (b5 1/2) BBL

growth rates, respectively.
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a. Weakly buoyant regime: Ea ’ 0 and EL ’ 0

When the thickness of the BBL is small (i.e., Ea ’ 0

and EL ’ 0), the dynamics of the BBL are similar to

those described in studies of stratified BBL over a flat

bottom (Taylor and Sarkar 2008; Deusebio et al.

2014). In this regime, the buoyancy force FB is weak in

the cross-slope momentum balance [(3)]. Experiments

with a gentle slope, a weak stratification, or a large mean

flow all have large values of Ha and HL, and our LES

experiments remain in the Ea ’ 0 and EL ’ 0 regime

throughout their duration (Table 1). Note, though, that

all simulations pass through this stage at early times

since H’ 0 when the simulations are initialized.

In this stage, a strongly stratified pycnocline caps

the BML. For instance, in experiment A, the strati-

fication in the pycnocline is 3 times larger than the

background value (Fig. 7a). Furthermore, the verti-

cal structure of the horizontal velocity and veering

angle through the BBL agree with flat-bottom Ekman

layer dynamics (Figs. 8, 9a). After an initial adjust-

ment, the cross-slope transport and friction velocity

are relatively steady over the course of the simulations

(Figs. 9b, 10a); both U and u* decrease as Ea increases

(Figs. 10b, 11).

b. Buoyant regime: 0 , Ea ,1 and 0 , EL ,1

As H grows, the importance of the buoyancy force

FB in the cross-slope momentum equation begins

to modify the characteristics of the BBL. In experi-

ments with larger (initial) values of Bu, the stratifi-

cation in the pycnocline at the top of the BML is

weaker (Fig. 7b) during this stage. This occurs

because a more steeply sloping bottom or a stronger

stratification causes buoyancy transfer to transition

from being in the vertical direction to being primarily

in the cross-slope direction. This weakens the ten-

dency to form a pycnocline (see also the buoyancy

budget in section 5b). This behavior may partially

explain why the top of the BML in the ocean is not

typically associated with a strong pycnocline (Armi

1978; Ruan et al. 2017).

As Ea and EL become larger than 0.1, the cross-slope

velocity profile penetrates deeper into the water column

FIG. 7. Temporal evolution of the plane-averaged stratificationN2/N2
‘ in experiments (a) A,

(b) D, and (c) F, corresponding to initial values of Bu of 0.016, 0.178, and 0.632, respectively.

The evolution of the nondimensional parameters Ea and EL are given by the blue and red

curves, with the corresponding axis on the right in blue.
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(Figs. 8a, 9c), the cross-slope transport decays (Fig. 9d),

and the friction velocity decreases (Fig. 10a), all as

compared to the weakly buoyant regime (section 4a).

In this regime, the deflection of isopycnals in the

Ekman layer generates a thermal wind shear that

opposes the along-slope velocity (Fig. 8b). This in

turn reduces the velocity shear at the bottom, which

leads to a smaller wall stress and friction velocity.

Finally, the veering angle near the bottom decreases

in response to the reduced wall stress, resulting in a

smaller degree of turning of the along-slope flow,

consistent with a weaker Ekman transport (Fig. 8c).

While the veering angle is reduced, the thickness of

the ‘‘veering layer’’ increases. This occurs because

the thermal wind shear penetrates deeper than the

Ekman layer. The Coriolis force FC then deflects

the along-slope momentum into the cross-slope di-

rection. This penetration of along-slope momentum

is not entirely due to turbulent diffusion, but involves

the buildup of the thermal wind shear—this is the

‘‘slow diffusion’’ process discussed by MacCready

and Rhines (1991).

For all simulations, both u* and U collapse onto a

single curve when plotted against Ea (Figs. 10b, 11).

As FB strengthens as compared to FC, u* decreases

linearly with Ea. While U also decreases with increasing

Ea, this modification is not linear in Ea due to the

quadratic relationship given in (9).

c. Relaminarized regime: 0 , Ea ,1 and EL 5 1

For experiments where Ea approaches 1 but EL ’ 1,

the BBL dynamics enter a state that we refer to as a

relaminarized stage; the distinction between this state

and the arrested state has not previously been docu-

mented. The relaminarized stage can be identified

when properties are averaged over a time comparable

to the inertial period. However, at subinertial time

scales, the simulations exhibit strong oscillations in

all turbulent properties. Earlier studies have shown

similar results (e.g., Umlauf et al. 2015), although

these features were not discussed. We begin by sum-

marizing the time-averaged characteristics of this

stage, and then provide further details on the near-inertial

resonant behavior.

For cases where the buoyancy force is of leading or-

der, the pycnocline does not sharpen noticeably during

the evolution of the BML—the ratio of pycnocline

stratification to background stratification is roughly 1

(Fig. 7c). Not only does the pycnocline remain weak, but

the background stratification also penetrates from the

top of the BML downward when EL approaches 1

(Fig. 7c). This restratification is related to the viscous

FIG. 8. The plane-averaged (a) cross-slope velocity, (b) along-slope velocity, and (c) Ekman veering angle at the beginning (dashed)

and late stages (solid) of experiments A, D, and F. The centers of the averaging windows are provided in (b) and correspond to the

vertical dotted lines in Figs. 9a, 9c, and 9e. The along-slope velocity satisfies the no-slip boundary condition with the addition of

y52V‘ 520:1m s21.
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slope Obukhov length L1
s and is discussed further below.

The total cross-slope transport arrives at a negligible, but

nonzero, value; for example, in experiment F, this occurs

after tf 5 20 (Fig. 9f). The friction velocity continues to

decrease linearly with Ea, but remains finite even when

L1
s approaches 100 (Fig. 10a, 12b), as predicted in section

2b. In experiment F, when L1
s approaches 100, the near-

bottom velocity Vb is smaller than 0.05ms21, which

is half of the along-slope mean flow magnitude

V‘ 5 0:1m s21 (Fig. 8b). A reduction in the near-bottom

velocity by a factor of 2 results in a reduction of the wall

stress by a factor of 4 [(13)] and a reduction in the bot-

tom dissipation rate by a factor of 8, as compared with

the predictions using the far-field mean flow V‘.

From the mean momentum budget [(6)], the pre-

dicted arrest height for experiment F isHa ’ 50m. This

value is larger than the simulated BML thickness in the

relaminarized stage, ;30m, consistent with Ea , 1. The

use of (14), however, requires an estimate of the drag

coefficient Cd. We evaluate Cd 5 2:23 1023 at the be-

ginning of experiment F before stratification is intro-

duced, using

C
d
5 u2

*/V
2
b . (34)

Plugging in the value of Cd and the relaminarization

constantC diagnosed earlier, the predictedHL is 31.7m,

which matches the simulated height well. This demon-

strates that the BBL relaminarization condition is met

before the traditional complete Ekman arrested state.

As experiments F and H reach EL ’ 1, the boundary

layer relaminarizes with negligible turbulent kinetic

energy (TKE; e.g., at tf 5 50 in experiment F; Fig. 12a).

The value of L1
s that corresponds to this relaminariza-

tion is roughly 100 in both cases, which is the same value

reported by Flores and Riley (2011) using the viscous

Obukhov length scale Lu*/n (Fig. 12b). With C5 100,

the predicted friction velocities in the arrested boundary

FIG. 9. The evolution of (left) cross-slope velocity (m s21) and (right) depth-integrated transport U (m2 s21) for

simulations (a),(b) A, (c),(d) D, and (e),(f) F. The corresponding Ea and EL for each simulation are shown in blue

and red curves in the transport panels, respectively, with the corresponding axis on the right in blue. The vertical

dotted lines in the cross-slope velocity panels represent the centers of the time-averaging windows (of a near-

inertial period) used to generate the vertical structures of the velocity variables and other components in the

momentum and buoyancy budgets.
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layer from (12), using parameters from experiments F

and H, are u*5 1:713 1023 and u*5 1:373 1023 m s21,

respectively, which agree with the simulated values of u*
in Fig. 10a. The arrested wall stress and friction velocity

remain finite, as predicted from section 2b.

Another prominent feature of the large EL regime is

the appearance and growth of strong oscillations and

resonant behavior. These appear in almost all of the

properties discussed above. For instance, both cross-

slope transport and TKE oscillate, and the amplitude of

these oscillations grows with time (Figs. 9f, 12a). The

friction velocity oscillates at a near-inertial frequency,

but the amplitude does not grow with time. These

growing oscillations in cross-slope transport give rise to

bursts in TKE (Figs. 9f, 12a). Even though the cross-

slope transport averaged over each near-inertial cycle is

decaying toward the arrested value, the maximum am-

plitude of U continues to grow. This indicates an un-

derlying resonant interaction between the stratification

and turbulent motions. Analysis of the phase relation

among the stratification, TKE, and turbulent momen-

tum flux shows that each time the isopycnals tilt down-

slope, the stabilizing effect from the stratification

vanishes, resulting in a burst of TKE and turbulent

momentum flux convergence in the BML. This then

advects the isopycnals farther downslope. When the

near-inertial oscillation advects the isopycnals upslope,

turbulence becomes suppressed at the same time that

the stratification strengthens, which results in negligible

TKE. The intrinsic frequency can be identified as

v5 (f 2 1a2N2
‘)

1/2
; (35)

the inertial frequency is modified by the slope angle and

background stratification (BL10). In the relaminarized

stage, background turbulence becomes weak, such that all

of the key properties that influence the BBL (e.g., thermal

wind shear, cross-slope transport, and wall stress) oscillate

at the same frequencyv (Figs. 7c, 9f, 10a), and resonance is

likely to occur. In the ocean, resonant behavior may be

disrupted or suppressed by temporal variability in themean

flow arising from surface forcing, tides or internal waves, or

background dissipation associated with wave breaking.

Although u* decreases as Ea increases, leading to a

larger viscous length scale n/u*, the near-bottom log-law

layer, in fact, becomes shallower (Fig. 13). The log-law

layer disappears when z1 5 zu*/n reaches 150 in the

arrested BBL, whereas it remains intact to at least

z1 5 2000 in other stages. These values of z1 correspond

FIG. 10. (a) The evolution of friction velocity u* (m s21) as a function of time. (b) The evolution of friction

velocity u*, nondimensionalized by the initial friction velocity u*0, as a function of Ea [H/Ha. Different colors

represent different simulations in Table 1.

FIG. 11. Plane-averaged cross-slope transportU, nondimensionalized

by the initial transport U0, as a function of Ea [H/Ha. A running

mean filter is applied with an averaging window of 5/f to remove

the large near-inertial oscillations in U. Different colors corre-

spond to the experiments listed in Table 1.
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to 4.4 and 21.6m in dimensional units with the updated

viscous length scale. This places constraints on the first

grid point in the near-wall modeling when wall models

are applied.

d. Ekman arrested regime: Ea 5 1 and EL . 1

Simulations presented in this study did not achieve

steady Ekman arrest because of the long adjustment by

molecular diffusion needed to reach this state. This

regime transition was not identified in studies that pa-

rameterized BBL turbulence. Also, although the av-

eraged quantities over a near-inertial period (e.g., U,

u*, and TKE) continue to decay slowly, the oscillations

appear to grow stronger, especially for U and TKE

(Figs. 9, 12). It is unknown if these large oscillations will

interrupt the Ekman arrested state. Finally, the fully

arrested state has been shown to be susceptible to

instabilities (e.g., symmetric instability; Allen and

Newberger 1998) that may also generate turbulent

motions and drive the BBL away from the arrested state.

e. BBL turbulence

As discussed in section 2b, the Monin–Obukhov

length scale L [(7)] describes the evolution of tur-

bulent characteristics in the BBL under both stable

and unstable conditions. Previous work has shown

that for H/L, 0, the boundary layer is unstable; for

0,H/L, 1, the boundary layer remains neutral;

for 1,H/L, 10, the boundary layer is stable; and

forH/L. 10, the boundary layer turbulence becomes

intermittent (Holtslag and Nieuwstadt 1986).

In these LES, we find that EL (5H/HL) is directly

related to H/Ls, where the latter nondimensional pa-

rameter is defined using the new slope Obukhov length

Ls (Fig. 14). The BBL is unstable from the start of the

simulation where an upward buoyancy flux is generated

by the downslope advection of light fluid (Fig. 15a). The

buoyancy flux becomes intermittent later in the experi-

ment with positive pulses only evident in the downslope

phase of the growing near-inertial oscillations (Fig. 15b).

The oscillations feature periods with a stabilized BBL;

the transition occurs near EL ; 0:2 andH/Ls ; 1. This is

different from the classic Monin–Obukhov scaling since

H/Ls does not change sign between unstable and stable

BBLs. The impact ofH/Ls on the BBL evolution will be

the focus of future studies. We conclude this section by

summarizing the various stages in the Ekman arrest

process based on nondimensional parameters (Ea and

EL), the momentum balance, and the near-bottom ve-

locity magnitude Vb (Fig. 5).

5. Momentum and buoyancy budgets

We now present plane-averaged budgets of momen-

tum and buoyancy to further illustrate the transition in

BBL evolution across the weakly buoyant, buoyant, and

relaminarized regimes. The same time average window

over a near-inertial period is applied as in section 4

unless otherwise noted.

FIG. 12. The evolution of (a) TKE (m2 s22) for simulation F and

(b) viscous slopeObukhov lengthL1
s [(11)] for simulations F (blue)

and H (red). The dashed line represents L1
s 5 100.

FIG. 13. The magnitude of the nondimensional total along-slope

velocity jy1totalj5 (V‘ 2 y)/u*, as a function of the nondimensional

height above the bottom z1 5 zu*/n, in simulations (a) A, (b) D,

and (c) F. The dashed black and blue curves denote the linear and

logarithmic velocity profiles. The red curve is the simulated jy1totalj,
with each dot representing a grid point.
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a. Momentum budget

The plane-averaged horizontal momentum equations

in the boundary layer can be written as

›hui
›t

2 f hyi52ba1 n=2hui2 ›hu0w0i
›z

, (36)

›hyi
›t

1 f hui5 n=2hyi2 ›hy0w0i
›z

, (37)

where angle brackets denote an average along x and y

directions, and hu0w0i and hy0w0i are the vertical turbu-

lent fluxes of horizontal momentum, or the Reynolds

stresses. The tendency terms in the momentum equa-

tions are small, indicating that the simulations are in

quasi equilibrium even as the BML grows diffusively,

and the viscous terms only become important in the

viscous sublayer.

For the cross-slopemomentum equation [(36)], three

terms may contribute based on the magnitude of EL:

the Coriolis force, the buoyancy force, and the Rey-

nolds stress convergence. For small EL, the buoyancy

force is negligible, and the classic flat-bottom Ekman

balance dominates with the Coriolis force balanc-

ing the Reynolds stress convergence (Fig. 16a). As

EL transitions to O(0:1), the Coriolis, buoyancy, and

Reynolds stress convergence terms are all of leading

order (Fig. 16b). Since the BML is, by definition,

relatively well mixed, the buoyancy force decays

roughly linearly with height above bottom (Fig. 16b).

Compared to the small EL case, the magnitude and

vertical structure of the Reynolds stress convergence

FIG. 14. The relationship between Ea [H/Ha and H/Ls. Different

colors represent different simulations in Table 1.

FIG. 15. The evolution of the vertical buoyancy flux as a function of time in simulations (a) A and

(b)E.Theevolutionof thenondimensional parametersEa andEL are givenby theblueand red curves,

respectively, with the corresponding axis on the right in blue. The BBL is unstable with small EL in

simulationAand transitions fromunstable to stable in simulationEaround tf 5 5 whenEL exceeds0.2.
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term remains largely unchanged, but the Coriolis force

has a nonnegligible contribution farther away from

the bottom. This is consistent with the penetration of the

thermal wind shear away from the boundary and farther

into the interior. Throughout the BML, FC and FB have

the same sign. In this case, the BML remains turbulent,

and the cross-slope transport and friction velocity are

reduced. The momentum balance changes dramatically

as EL approaches 1 and the boundary layer reaches a

relaminarized state (Fig. 16c). Now, FC and FB approxi-

mately balance in the BML, outside of the thin viscous

layer near z5 0. Turbulence and turbulent fluxes are

suppressed in the relaminarized state.

A buoyancy force equivalent to FB does not appear in

the along-slope momentum equation [(37)]. Thus, the

leading-order balance between Coriolis and Reynolds

stress convergence is independent of EL (figure not

shown). However, the magnitude of these terms varies

significantly both across experiments and during indi-

vidual experiments. As EL increases, the suppression of

turbulence and the reduction in cross-slope Ekman ve-

locity reduces the magnitude of both terms.

b. Buoyancy budget

The evolution of the plane-averaged buoyancy is de-

scribed by

›hbi
›t

5 huiaN2
‘ 1 k=2hbi2 ›hw0b0i

›z
, (38)

where hw0b0i is the plane-averaged vertical turbulent

buoyancy flux. Outside of the viscous sublayer, all terms

contribute to the buoyancy budget other than the

molecular diffusion term. The cross-slope buoyancy

advection occurs mainly in the Ekman layer, which

is thinner than the BML (Figs. 17a,b). For these

downslope favorable conditions, cross-slope advection

generates a local tendency to increase buoyancy. The

vertical turbulent buoyancy flux diverges in the lower

part of the BBL, opposing the cross-slope advection.

However, the turbulent buoyancy flux converges in the

upper part of the BBL and, without a contribution from

the cross-slope advection, produces a positive buoyancy

tendency. Finally, there is a narrow region of divergence

of the turbulent buoyancy flux in the pycnocline.

Within a single experiment, the magnitude of buoy-

ancy advection decreases as EL increases, although the

advection also penetrates deeper into the interior.

However, the buoyancy advection term also depends

on the background cross-slope buoyancy gradient

M2
‘ 52aN2

‘, which is related to the initial Bu. Thus,

from experiments A to D, the magnitude of the buoy-

ancy advection terms become larger (Figs. 17a,b).

When relaminarization occurs in the boundary layer,

FIG. 16. The momentum balance in the cross-slope direction given in (36) for experiments (a) A, (b) D, and (c) F. The same averaging

window is used here as in Fig. 9. The blue curve is the momentum tendency, red curve the Coriolis force, orange curve the buoyancy force,

purple curve the molecular friction, and green curve the Reynolds stress convergence.
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the cross-slope velocity and total cross-slope buoyancy

advection are significantly reduced, although they re-

main finite (Figs. 8a, 17c). As EL approaches 1, the

turbulent buoyancy flux convergence becomes negli-

gible in the buoyancy budget due to the suppression of

turbulence.

6. Discussion and conclusions

The bulk structure of a stratified oceanic BBL

over a smooth slope is explored using both scaling

analyses and LES. The key conclusions include the

following:

1) We provide expressions that predict the height of

the bottom mixed layer (BML) H in a state of

Ekman arrest based on the momentum budget

Ha ’ fV‘/(aN
2
‘) (see also Trowbridge and Lentz

1991) and on the relaminarization condition

H
L
5

fV
‘

aN2
‘

2

"
Cknf

aN2
‘Cd

(11Bu2)

#1/2

.

We find that HL is always less than Ha. Two

nondimensional parameters, Ea 5H/Ha [(32)] and

EL 5H/HL [(33)], can be used to determine the

sequential stages of the BBL as it approaches full

Ekman arrest.

2) We present a new length scale, the slope Obukhov

length Ls, which characterizes the relative impor-

tance of turbulence production and cross-slope buoy-

ancy advection [(10)]. Its nondimensional form, the

viscous slope Obukhov length L1
s , can be used to

predict the relaminarization condition for the turbu-

lent BBL (L1
s ’ 100).

3) We predict the wall stress and friction velocity [(12)]

when the BBL becomes laminar and the turbulence

is suppressed. This can be used to estimate the

integrated BBL energy dissipation rate at the

relaminarized state.

4) We argue that the complete Ekman arrested state is

unlikely to be observed in the real ocean because (i)

Ha andHL are expected to be large, based on typical

deep ocean parameters, which inevitably leads to a

long adjustment time scale; (ii) the BBL relaminari-

zation is always achieved before the steady arrested

state, and the subsequent molecular adjustment is

prone to external perturbations; and (iii) in the rare

event of full Ekman arrest, the steady arrested BBL

is unstable to symmetric instability (see Allen and

Newberger 1998).

FIG. 17. The buoyancy budget given in (38) for experiments (a) A, (b) D, and (c) F. The same averaging window is used here as in Fig. 9.

The blue curve is the buoyancy tendency, red curve the cross-slope buoyancy advection, orange curve the turbulent diffusion, and purple

curve the molecular diffusion.
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5) We show that the nondimensional parameter Ea

describes the evolution of the cross-slope transport

and wall stress across different regimes in a suite of

simulations that vary several parameters, including

the slope angle a, the background vertical stratifica-

tion N2
‘, and the mean flow magnitude V‘. The

relaminarization stage is determined from EL. The

parameters Ea and EL are closely related to the BBL

turbulence through the classic Monin–Obukhov

similarity theory (H/Ls), and this framework is

used to analyze changes in the momentum and

buoyancy budgets across different stages toward the

arrested state. The potential vorticity evolution will

be discussed in a future study.

AsEL increases, the BML differs from the flat-bottom

case in the following ways: (i) the pycnocline at the top

of the BML weakens; (ii) the cross-slope velocity pen-

etrates deeper due to the thermal wind shear near the

bottom; and (iii) the velocity shear near the wall, and

thus the wall stress, weakens, resulting in a decay of the

friction velocity, cross-slope transport, and Ekman

veering angle near the bottom. When the BBL relami-

narizes, the mean velocity departs from the log-law

closer to the bottom.

These results suggest that the interaction between

stratification and sloping topography could reduce the

contribution of bottom friction to the dissipation of ki-

netic energy in the ocean. Global quantification of the

bottom dissipation rate, using either observations from

deep ocean current meters or from numerical models

(that typically apply uniform drag coefficients), has not

accounted for themodification of near-bottom flows due

to the presence of stratification and topographic slopes

(Wunsch and Ferrari 2004; Sen et al. 2008; Arbic et al.

2009; Wright et al. 2013). Additionally, recent work has

suggested that the ocean’s abyssal circulation may be

influenced by the thermal wind shear associated with

tilting isopycnals at the seafloor (Callies and Ferrari

2018). However, this work typically assumes that the

global BBL is largely in the Ekman arrested state. De-

termining the spatial distribution of Ea and EL, which

can be calculated from observable ocean properties,

could shed additional light on the BBL’s influence over

global dissipation rates and the abyssal circulation.

The BBL over topographic slopes has recently been

highlighted as the key region where dense waters can

be transformed to lighter density classes to close the

overturning circulation (De Lavergne et al. 2016;

Ferrari et al. 2016; De Lavergne et al. 2017). Water

must also be exchanged between the ocean interior

and the boundary layer in order to maintain stratifica-

tion and sustain this water mass modification. Earlier

studies have not accounted for dynamics that will affect

mixing rates and BBL–interior exchange. The Ekman

arrest process, for instance, could act as a barrier for

such exchange via mass flux out of and into the BBL

due to mass convergence/divergence when strong

near-bottom mean flows or (sub)mesoscale eddies are

present. Finally, Ekman arrest characteristics may be

sensitive to along-isobath variations that are not con-

sidered in this study (Brink 2012). Other factors, such as

the level of background turbulence or temporal vari-

ability associated with tidal fluctuations in the abyssal

ocean, need to be addressed in future studies to estimate

the extent to which Ekman arrest is achieved in

the ocean.

Acknowledgments. We thank two anonymous re-

viewers as well as Georgy Manucharyan for helpful

comments that improved this manuscript. We gratefully

acknowledge support from NSF Awards OPP-1246460

and OPP-1644172.

REFERENCES

Allen, J., and P. Newberger, 1998: On symmetric instabilities

in oceanic bottom boundary layers. J. Phys. Oceanogr.,

28, 1131–1151, https://doi.org/10.1175/1520-0485(1998)028,1131:

OSIIOB.2.0.CO;2.

Arbic, B. K., and Coauthors, 2009: Estimates of bottom flows and

bottom boundary layer dissipation of the oceanic general

circulation from global high-resolution models. J. Geophys.

Res., 114, C02024, https://doi.org/10.1029/2008JC005072.

Armi, L., 1978: Some evidence for boundary mixing in the deep

ocean. J. Geophys. Res., 83, 1971–1979, https://doi.org/10.1029/

JC083iC04p01971.

Benthuysen, J. A., and L. N. Thomas, 2013: Nonlinear stratified

spindown over a slope. J. Fluid Mech., 726, 371–403, https://

doi.org/10.1017/jfm.2013.231.

Bewley, T. R., 2008: Numerical Renaissance: Simulation, Optimi-

zation, and Control. Renaissance Press, 801 pp.

Brink, K. H., 2012: Buoyancy arrest and shelf–ocean exchange.

J. Phys. Oceanogr., 42, 644–658, https://doi.org/10.1175/

JPO-D-11-0143.1.

——, and S. J. Lentz, 2010: Buoyancy arrest and bottom Ekman

transport. Part I: Steady flow. J. Phys. Oceanogr., 40, 621–635,

https://doi.org/10.1175/2009JPO4266.1.

Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circu-

lation driven by bottom-intensified mixing on slopes.

J. Phys. Oceanogr., 48, 1257–1282, https://doi.org/10.1175/

JPO-D-17-0125.1.

Coleman, G. N., J. Ferziger, and P. Spalart, 1990: A numerical

study of the turbulent Ekman layer. J. Fluid Mech., 213, 313–

348, https://doi.org/10.1017/S0022112090002348.

Deardorff, J. W., G. E. Willis, and D. K. Lilly, 1969: Laboratory

investigation of non-steady penetrative convection. J. Fluid

Mech., 35, 7–31, https://doi.org/10.1017/S0022112069000942.

De Lavergne, C., G.Madec, J. Le Sommer, A. G. Nurser, andA. C.

Naveira Garabato, 2016: On the consumption of Antarctic

Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46,

635–661, https://doi.org/10.1175/JPO-D-14-0201.1.

486 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49

https://doi.org/10.1175/1520-0485(1998)028<1131:OSIIOB>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<1131:OSIIOB>2.0.CO;2
https://doi.org/10.1029/2008JC005072
https://doi.org/10.1029/JC083iC04p01971
https://doi.org/10.1029/JC083iC04p01971
https://doi.org/10.1017/jfm.2013.231
https://doi.org/10.1017/jfm.2013.231
https://doi.org/10.1175/JPO-D-11-0143.1
https://doi.org/10.1175/JPO-D-11-0143.1
https://doi.org/10.1175/2009JPO4266.1
https://doi.org/10.1175/JPO-D-17-0125.1
https://doi.org/10.1175/JPO-D-17-0125.1
https://doi.org/10.1017/S0022112090002348
https://doi.org/10.1017/S0022112069000942
https://doi.org/10.1175/JPO-D-14-0201.1


——, ——, F. Roquet, R. Holmes, and T. McDougall, 2017:

Abyssal ocean overturning shaped by seafloor distribution.

Nature, 551, 181–186, https://doi.org/10.1038/nature24472.

Deusebio, E., G. Brethouwer, P. Schlatter, and E. Lindborg,

2014: A numerical study of the unstratified and stratified

Ekman layer. J. Fluid Mech., 755, 672–704, https://doi.org/

10.1017/jfm.2014.318.

Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and

J.-M. Campin, 2016: Turning ocean mixing upside down.

J. Phys. Oceanogr., 46, 2239–2261, https://doi.org/10.1175/

JPO-D-15-0244.1.

Flores, O., and J. Riley, 2011: Analysis of turbulence collapse in

the stably stratified surface layer using direct numerical

simulation. Bound.-Layer Meteor., 139, 241–259, https://

doi.org/10.1007/s10546-011-9588-2.

Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topo-

graphic generation of submesoscale centrifugal instability and

energy dissipation. Nat. Commun., 7, 12811, https://doi.org/

10.1038/ncomms12811.

Holtslag, A., and F. Nieuwstadt, 1986: Scaling the atmospheric

boundary layer. Bound.-Layer Meteor., 36, 201–209, https://

doi.org/10.1007/BF00117468.

MacCready, P., and P. B. Rhines, 1991: Buoyant inhibition of

Ekman transport on a slope and its effect on stratified spin-

up. J. Fluid Mech., 223, 631–661, https://doi.org/10.1017/

S0022112091001581.

Manucharyan, G. E., and C. Caulfield, 2015: Entrainment and

mixed layer dynamics of a surface-stress-driven stratified

fluid. J. Fluid Mech., 765, 653–667, https://doi.org/10.1017/

jfm.2015.5.

Munk,W. H., 1966: Abyssal recipes.Deep-Sea Res. Oceanogr. Abstr.,

13, 707–730, https://doi.org/10.1016/0011-7471(66)90602-4.

Nikurashin, M., and R. Ferrari, 2011: Global energy conversion

rate from geostrophic flows into internal lee waves in the deep

ocean.Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/

2011GL046576.

Phillips, O., 1970: On flows induced by diffusion in a stably strati-

fied fluid.Deep-Sea Res. Oceanogr. Abstr., 17, 435–443, https://

doi.org/10.1016/0011-7471(70)90058-6.

Pope, S. B., 2001: Turbulent Flows. Cambridge University Press,

771 pp.

Ruan, X., and A. F. Thompson, 2016: Bottom boundary potential

vorticity injection from an oscillating flow: A PV pump.

J. Phys. Oceanogr., 46, 3509–3526, https://doi.org/10.1175/

JPO-D-15-0222.1.

——, ——, M. M. Flexas, and J. Sprintall, 2017: Contribution of

topographically generated submesoscale turbulence to

Southern Ocean overturning. Nat. Geosci., 10, 840–845,

https://doi.org/10.1038/ngeo3053.

Sagaut, P., 2006: Large Eddy Simulation for Incompressible Flows:

An Introduction. Springer, 558 pp.

Scott, R. B., andY.Xu, 2009:An update on thewind power input to

the surface geostrophic flow of the World Ocean. Deep-Sea

Res. I, 56, 295–304, https://doi.org/10.1016/j.dsr.2008.09.010.

Sen, A., R. B. Scott, and B. K. Arbic, 2008: Global energy dissi-

pation rate of deep-ocean low-frequency flows by quadratic

bottom boundary layer drag: Computations from current-

meter data. Geophys. Res. Lett., 35, L09606, https://doi.org/

10.1029/2008GL033407.

Shingai, K., and H. Kawamura, 2002: Direct numerical simulation

of turbulent heat transfer in the stably stratified Ekman layer.

Therm. Sci. Eng., 10, 1–9.

Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bot-

tom boundary layer. Ph.D. dissertation, University of California,

San Diego, 230 pp., https://escholarship.org/uc/item/5s30n2ts.

——, and S. Sarkar, 2008: Stratification effects in a bottom Ek-

man layer. J. Phys. Oceanogr., 38, 2535–2555, https://doi.org/

10.1175/2008JPO3942.1.

——, and R. Ferrari, 2010: Buoyancy and wind-driven convection

at mixed layer density fronts. J. Phys. Oceanogr., 40, 1222–
1242, https://doi.org/10.1175/2010JPO4365.1.

Thomas, L. N., and P. B. Rhines, 2002: Nonlinear stratified spin-

up. J. Fluid Mech., 473, 211–244, https://doi.org/10.1017/

S0022112002002367.

Thorpe, S., 1987: Current and temperature variability on the con-

tinental slope. Philos. Trans. Roy. Soc. London, 323A, 471–

517, https://doi.org/10.1098/rsta.1987.0100.

Trowbridge, J., and S. Lentz, 1991: Asymmetric behavior of

an oceanic boundary layer above a sloping bottom.

J. Phys. Oceanogr., 21, 1171–1185, https://doi.org/10.1175/

1520-0485(1991)021,1171:ABOAOB.2.0.CO;2.

——, and ——, 1998: Dynamics of the bottom boundary layer

on the Northern California shelf. J. Phys. Oceanogr., 28,

2075–2093, https://doi.org/10.1175/1520-0485(1998)028,2075:

DOTBBL.2.0.CO;2.

Umlauf, L., W. D. Smyth, and J. N. Moum, 2015: Energetics of

bottom Ekman layers during buoyancy arrest. J. Phys. Ocean-

ogr., 45, 3099–3117, https://doi.org/10.1175/JPO-D-15-0041.1.

Weatherly, G. L., and P. J. Martin, 1978: On the structure and

dynamics of the oceanic bottom boundary layer. J. Phys.

Oceanogr., 8, 557–570, https://doi.org/10.1175/1520-0485

(1978)008,0557:OTSADO.2.0.CO;2.

Wright, C. J., R. B. Scott, D. Furnival, P. Ailliot, and F. Vermet,

2013: Global observations of ocean-bottom subinertial current

dissipation. J. Phys. Oceanogr., 43, 402–417, https://doi.org/

10.1175/JPO-D-12-082.1.

Wunsch, C., 1970: On oceanic boundary mixing.Deep-Sea Res.

Oceanogr. Abstr., 17, 293–301, https://doi.org/10.1016/

0011-7471(70)90022-7.

——, and R. Ferrari, 2004: Vertical mixing, energy, and the general

circulation of the oceans.Annu. Rev. FluidMech., 36, 281–314,

https://doi.org/10.1146/annurev.fluid.36.050802.122121.

FEBRUARY 2019 RUAN ET AL . 487

https://doi.org/10.1038/nature24472
https://doi.org/10.1017/jfm.2014.318
https://doi.org/10.1017/jfm.2014.318
https://doi.org/10.1175/JPO-D-15-0244.1
https://doi.org/10.1175/JPO-D-15-0244.1
https://doi.org/10.1007/s10546-011-9588-2
https://doi.org/10.1007/s10546-011-9588-2
https://doi.org/10.1038/ncomms12811
https://doi.org/10.1038/ncomms12811
https://doi.org/10.1007/BF00117468
https://doi.org/10.1007/BF00117468
https://doi.org/10.1017/S0022112091001581
https://doi.org/10.1017/S0022112091001581
https://doi.org/10.1017/jfm.2015.5
https://doi.org/10.1017/jfm.2015.5
https://doi.org/10.1016/0011-7471(66)90602-4
https://doi.org/10.1029/2011GL046576
https://doi.org/10.1029/2011GL046576
https://doi.org/10.1016/0011-7471(70)90058-6
https://doi.org/10.1016/0011-7471(70)90058-6
https://doi.org/10.1175/JPO-D-15-0222.1
https://doi.org/10.1175/JPO-D-15-0222.1
https://doi.org/10.1038/ngeo3053
https://doi.org/10.1016/j.dsr.2008.09.010
https://doi.org/10.1029/2008GL033407
https://doi.org/10.1029/2008GL033407
https://escholarship.org/uc/item/5s30n2ts
https://doi.org/10.1175/2008JPO3942.1
https://doi.org/10.1175/2008JPO3942.1
https://doi.org/10.1175/2010JPO4365.1
https://doi.org/10.1017/S0022112002002367
https://doi.org/10.1017/S0022112002002367
https://doi.org/10.1098/rsta.1987.0100
https://doi.org/10.1175/1520-0485(1991)021<1171:ABOAOB>2.0.CO;2
https://doi.org/10.1175/1520-0485(1991)021<1171:ABOAOB>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<2075:DOTBBL>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<2075:DOTBBL>2.0.CO;2
https://doi.org/10.1175/JPO-D-15-0041.1
https://doi.org/10.1175/1520-0485(1978)008<0557:OTSADO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1978)008<0557:OTSADO>2.0.CO;2
https://doi.org/10.1175/JPO-D-12-082.1
https://doi.org/10.1175/JPO-D-12-082.1
https://doi.org/10.1016/0011-7471(70)90022-7
https://doi.org/10.1016/0011-7471(70)90022-7
https://doi.org/10.1146/annurev.fluid.36.050802.122121

