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A theoretical treatment of space charge effects in beam-type magnetron amplifiers and oscillators is given. 
It is assumed that the beam is relatively thin and that the magnetic field is large. The "cyclotron waves" 
are not treated. A space charge parameter appears in this theory of magnetron-type traveling-wave inter­
action in a manner which is analogous to the manner in which QC appears in ordinary traveling-wave inter­
action. A distinctive feature of the space charge waves in the magnetron case is that one increases along the 
beam and the other decreases along the beam. A simple physical explanation of this effect is given. 

This theory is then used to determine the starting conditions of an M-type backward wave oscillator. It 
is found that when the tube is long in space charge wavelengths there is an appreciable reduction of starting 
current. When the space charge parameter approaches zero, the solutions found here reduce to the usual 
two-wave solutions. 

I. INTRODUCTION 

I N the last few years the interest in magnetron-type 
traveling-wave tubes has increased considerably be­

cause of the possibility of combining the wide-band 
characteristics of the traveling-wave tube with the high 
efficiency characteristics of the magnetron. Success in 
this direction with the M-type backward wave oscillator 
has been outstanding.1 There remain, however, a few 
characteristics of these tubes which are not so well 
understood, such as negative electrode current, reduced 
starting current, and a tendency toward noisiness and 
the generation of spurious signals. It is now generally 
believed that the growing space charge wave propagated 
by a slipping stream of electrons (diocotron effect)2 
plays an important role in these phenomena. This 
paper presents a simplified small signal theory of the 
space charge waves on a relatively thin electron beam 
focused by crossed electric and magnetic fields and the 
interaction of such a beam with a nearby circuit which 
supports a slow electromagnetic wave. The slow wave 
circuit is represented by an admittance wall whose 
admittance depends on the propagation constant, an 
extension of Fletcher's method.3 The end result is 
similar to that obtained by Pierce4 in his analysis of 
the magnetron amplifier, except that here the mutual 
interaction between various electrons of the beam is 
included. The theory is then used to calculate the effect 
of space charge on the starting conditions of the M-type 
backward wave oscillator. 

II. THIN BEAM DYNAMICS 

A number of assumptions have been made which 
simplify the analysis. Perhaps the most restrictive is 
that the electron beam is taken to be very thin so that 
the same fields act on all electrons and all electrons are 

* Work supported by the Office of Naval Research. 
1 \yarnecke, Guenard, Doehler, and Epsztein, Proc. Inst. 

RadlO Engrs. 43, 413 (1955). 
2 MacFarlane and Hay, Proc. Phys. Soc. (London) B63 409 

(1950). ' 
3 R. C. Fletcher, Proc. Inst. Radio Engrs. 38, 413 (1950). 
• J. R. Pierce, Traveling Wave Tubes (D. Van Nostrand Com­

pany, Inc., New York, 1950), Chap. XV. 

assumed to have the same unperturbed velocity, Uo, 
in the z direction. The latter assumption is clearly in 
violation of slipping stream steady flow condition, but 
as we shall see in Sec. IV, this apparently crude model 
does give a good description of the space charge waves 
which propagate on a thin slipping stream. The width 
of the interaction region is taken as w, and all quan­
tities are assumed to be independent of the x coordinate, 
so that the problem is essentially two dimensional. The 
state of the electron beam shown in Fig. 1 may then 
be described by giving simply its surface charge density, 
CT=UO+CTl(CTl«CTO), and its displacement from the equi­
librium position, Yl (/3Yl«l). A subscript zero will 
denote the steady or dc part of a quantity, and the 
subscript 1 will denote the small ac perturbation from 
the steady value. Waves whose dependence on time and 
the z coordinate is given by ei(wt-~z) will be assumed. 

The linearized equations for the y and z components 
of ac electron velocity are 

e 
j(w-/3UO)Vly= --(E1y+VIzBo), (1) 

m 

e 
j(w-{3UO)Vlz= --(Elz-VlyBo). (2) 

m 

The electric field (E1y,E1z) which acts on the electrons 
is taken to be the average of the field above the beam 
and the field below the beam 

EIU=![(EIu)++(Ely)-], (3) 

E1z =![(E1zh+(Elz)-J, (4) 
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FIG. 1. Schematic diagram of interaction region of thin 
beam magnetron amplifier or oscillator. 
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the + sign denoting the field at y = 0+ E: and the - sign 
denoting the field at y=O-~(e----,>O). It is necessary to 
use this average field since, because of the space charge, 
the electric field above the beam is different from the 
electric field below the beam. 

Completing the dynamic equations is a one-dimen­
sional continuity equation,S 

(5) 

and the relation between the displacement Yl and the 
Y component of ac velocity, Vl y, I; 

(6) 

These relations are sufficient to determine the motion 
of the electron beam when the electric field is given. The 
determination of the ac electric field from Y1 and 0"1 is 
discussed in the next section. 

First, one more simplifying assumption is made. If 
the above equations of motion are used, we find four 
waves in the absence of the slow wave circuit. In low 
current beams, two of these waves have a phase ve­
locity approximately equal to the electron velocity 

/32. 3 ""'wluo, 

while the other two "cyclotron waves" have propaga­
tion constants given by 

The presence of the circuit adds another wave, 

The additional simplifying assumption is one which 
eliminates waves 4 and 5 from the problem, and it is 
made simply to reduce the complexity of the expressions 
which will be obtained. The approximation should be 
reasonably good for most beam-type tubes. The sim­
plest way in which to make this approximation is to 
neglect j(w-/3UO)VlY in comparison with (elm)Eovlz in 
Eq. (1) and j(w-/3UO)V1z in comparison with (e/m)BovlY 
in Eq. (2). Since VlY and VIz are of the same magnitude, 
this is equivalent to assuming that 

The resulting equations of motion 

VII/ = E lz/ Eo, 

Vlz= -ElI/lEo 

(7) 

(8) 

(9) 

say that the electrons drift at right angles to the electric 
field, the rotational component of velocity which usu­
ally accompanies the drift being neglected. This is 
generally pexmissible when the magnetic field is large. 
With this approximation, one can easily solve for Yl and 

• Reference 4, Eqs. 15.14 and 15.17. 

0"1 in terms of Ely and Elz from Eqs. (5), (6), (8), and 
(9) : 

Yl 
Eo j(w-/3uo) 

(10) 

0"0f3 Ely 
0"1 = (11) 

Eo (w-/3uo) 

Note that transverse displacements are produced by 
the longitudinal electric field and longitudinal bunching 
is produced by the transverse electric field. 

III. DETERMINATION OF THE ELECTRIC FIELD 

We have the problem of computing the electric field 
in the regions above and below the beam, given 0"1 and 
Yl. When the displacement of the beam from equi­
librium is given by Yle i (wt-{3z) and the surface charge 
density is given by 0"= O"O+O"lei (wt-{3zl, the potential be­
low the beam may be expanded in harmonics: 

The first term is the de part of the potential, while the 
remaining terms make up the ac part and are propor­
tional to /3Yl, 0"1/0"0 or various powers thereof. When /3Yl 
is small compared with unity, only the n=O and n=l 
terms need to be considered. The n=O or dc part of 
the potential is conveniently eliminated by super­
imposing a charge distribution which is just the negative 
of charge distribution of the unperturbed beam. Thus, 
to find the ac fields we consider the charge distribution 
shown in Fig. 2. When /3Yl«l, this charge distribution 
is equivalent to a surface charge density O"lei (wt-{3z) and 
a double layer whose dipole moment per unit area is 
0"0Y1. In passing through such a charge distribution, the 
potential is discontinuous by an amount (0"0/ ~O)Yl' and 
the normal derivative is discontinuous by -0"1/ ~o. 
Hence, the discontinuities in the two components of 
of electric field may be written 

(Ely)+ - (Ell/)_= 0"1/ EO, (13) 

(Erz)+ - (Erz)_= j/3YlO"ol ~o. (14) 

These two equations tell us how to match the ac fields 
at the electron beam. 

In carrying out this matching procedure it is con­
venient to introduce the concept of normalized E-mode 

y=d --+ --E' U

o 
H, <:::::::::::::= ~ 

CT = -CTo 

y= 0 

y=-o---------------------------
zoo 

FIG. 2. Charge distribution giving rise to ac electric fields. 
The charge distribution and field are assumed to be independent 
of the x coordinate. 
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surface admittance, YEO = Ely/ E iz• Y EO is proportional to 
the usual E-mode surface admittance Y E= - H IX/ E Iz , 

6 

since Hh;= - (wEo/{3)Ely. The normalized admittance 
of free space is easily shown to be ±j, and the admit­
tance just below the electron beam of the space be­
tween the beam and the conducting plane at y= -a is 
j coth{3a. Eliminating eTl and Yl from (13) and (14), 
through the use of (10) and (11), and using (3) and (4) 
for Ely and Elz yields 

(14a) 

(15) 

Thus, 

(16) 

The normalized surface admittance of the slow wave 
circuit is a function of the propagation constant, {3. 
Since the propagation constants of interest in this 
problem do not differ much from the circuit propagation 
constant, {31, the circuit admittance at the plane of the 
slow wave circuit may be expanded in a Taylor series. 

YE(}=VEO! +OVEOI ({3_{3I)+~02VEOI ({3-{3I)2 
Ih o{3 PI 2 iJ{32 PI 

+.... (17) 

This is a useful representation of the circuit admittance 
since generally only the first two terms are required. 
It has been shown that7 

(18) 

(19) 

where the upper sign is for forward wave circuits and 
the lower sign is for backward wave circuits K is the 
interaction impedance, EIN2{32P (taken to be positive), 
and w is the width of the circuit. This is essentially an 
extension of the result of Fletcher3 and it applies to 
space harmonic structures if E iz is taken to be the 
amplitude of the appropriate space harmonic field 
component and P is taken to be the total power flow of 
the wave. 

The normalized admittance presented by the circuit 
to the upper surface of the electron beam may be ex­
pressed in terms of the admittance at the circuit plane 

6 C. K. Birdsall and ]. R. Whinnery, ]. App!. Phys. 24, 314 
(1953). 

7 R. W. Gould, "A field analysis of the "'If-type backward wave 
oscillator," California Institute of Technology Electron Tube and 
Microwave Laboratorv. Tech. Rept. No.3 (September, 1955). 

(y= d) by means of the admittance transformation 
formulas 

V EO (d) - j tanh{3d 
V EO (0+) (20) 

1 +j tanh,8dY EO (d) 

The normalized admittance presented by the space 
below the beam to the lower surface of the beam is 

coth{3a. (21) 

IV. CHARACTERISTIC WAVES OF THE SYSTEM 

We may combine Eqs. (16), (20), and (21) of 
the previous section into a single equation, called the 
characteristic equation, which determines the values of 
the propagation constant {3 corresponding to the free 
waves of the system. In writing the characteristic 
equation we follow PierceS and Muller9 in introducing 
the incremental propagation constant a by means of the 
definition 

w 
(3=-(1 + jDa). (22) 

Uo 

D is an interaction parameter analogous to the pa­
rameter C of ordinary traveling wave interaction theory, 
and it is defined by 

w loKa Ey 
D2=- __ , a=-, 

We 2Vo E. 
(23) 

where K and a are to be evaluated at the electron beam. 
Introducing a space charge parameter, 

-eTo 1 
S=----, (eTo<O), 

2EoBouo D 
(24) 

and letting {3I = (w/uo) (1 + Db~ jDd), the characteristic 
equation may be written 

(a+jb±d) (b2+2jgSb-S2) = ±b, (25) 

where the upper sign applies for forward wave inter­
action and the lower sign applies for backward wave 
interaction. D has been assumed to be small in com­
parison with unity, and 

tanh(wd/uo)-tanh(wa/uo) 
g ,(26) 

tanh (wd/uo) +tanh(wa/uo) 

g is a purely geometrical parameter. It should be 
pointed out that the space charge parameter S, as 
defined here, is not analogous to Q since it is not inde­
pendent of beam current. 

When the electron beam is far from synchronism with 
the slow wave circuit (b»1), Eq. (25) reduces to 

(27) 

8 Reference 4, Chap. 8. 
9 M. Muller, Proc. Inst. Radio Engrs. 42, 1651 (1954). Our 

notation coincides with the notation of this reference. 
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FIG. 3. Illustration of the growth mechanism. 

The incremental propagation constants which are solu­
tions of this equation describe the space charge waves 
which propagate as a beam between two conducting 
planes. Consider, for simplicity, that the beam is equi­
distant from both planes (a=d) so that g=O. The solu­
tions of (27) are given by 0= ±S so that the propaga­
tion constants are given by 

w ( ITO) W /3=- l±j-- =-±jh, 
Uo 2eoBouo Uo 

(28) 

where h plays the role of a plasma wave number. One 
space charge wave increases along the beam and the 
other decreases. Since the surface charge density, ITo, is 
proportional to volume charge density, po, and the 
beam thickness, t, (of a beam of small but finite thick­
ness), the rate of growth or decay of the space charge 
waves may also be written 

W 2 (wt) h=Imaginary Part (!3)=±-P- - . 
2wcuo Uo 

(29) 

This rate of growth is in agreement with that predicted 
by the analysis of a thin (wt/uo<O.4) slipping stream.2•7 

A careful study of slipping stream results, specialized 
to the thin beam limit, shows that the average trans­
verse displacement of the beam, the linear charge 
density, and the components of electric field above and 
below the beam are related in exactly the way indicated 
by the analysis of this paper. Thus the two methods of 
analysis describe the same physical phenomenon. 

:3 

~ 2 

\ 
1 

LY 
:3 -2 ~~ --K 

1 2 3 

I~ 
~ i>( I?--I _ 

-2 
1\1 

"" -3 

FIG. 4. Forward wave incremental propagation constants, 
o,=X.+jYi, for no space charge, S=O, and beam midway between 
circuit and sole, g=O. 

The growing space charge waves which have been 
found here have a simple physical explanation. Con­
sider a perturbation of the beam of the type shown in 
Fig. 3. If this perturbation is viewed in a coordinate 
system moving with the electrons at velocity uo, the 
dc electric field disappears, and the magnetic field is 
unaltered. Electrons at phase a experience an upward 
force caused by all other electrons (and image forces 
when the planes are nearby), and similarly electrons in 
phase b experience a downward force. Were it not 
for the strong magnetic field, these forces would im­
mediately augment the original perturbation. Because 
of the magnetic field the electric field causes the elec­
trons to move in the direction indicated by the arrows 
and thus become bunched in phase c and spread out 
in phase d. This bunching causes a longitudinal elec­
tric field which, because of the strong magnetic field, 
causes the original perturbation to be augmented. 

3 

I\Y3 
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FIG. 5. Forward wave incremental propagation constants, 
Oi=X.+jyi, for moderate space charge, S=1, and beam midway 
between circuit and sole, g=O. 

Thus, the growing and decaying space charge waves 
embody a combination of transverse displacement and 
longitudinal bunching. Because the drift velocities are 
inversely proportional to the magnetic field, the rate at 
which the perturbation builds up is decreased by in­
creasing the magnetic field. 

We have solved Eq. (25) for the three values of 0, 
as a function of b, for several values of Sand g with 
d=O. Figure 4 shows the solution for forward wave 
interaction when g= 0 and S= 0 (negligible space 
charge). In this case Eq. (25) may be factored 

0=0, (o+jb)o=l. (30) 

Figure 5 shows the solution for forward wave inter": 
action when g=O and S= 1. A comparison of Figs. 4 
and 5 shows that the effect of space charge is to increase 
the rate of gain in forward wave interaction, whereas 
exactly the opposite is true in ordinary traveling wave 
interaction. When g=O, maximum Xl occurs for b=O 
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and (XI)m",,= (1+.)2)!. Figure 5 also shows the growing 
space charge waves away from synchronism. Figure 6 
shows the incremental propagation constants for back­
ward wave interaction when g=O and S=O (negligible 
space charge). It may be seen that there are no growing 
waves in this case. Figure 7 is also for backward wave 
interaction but for g=O and S= 1/v'J. Growing space 
charge waves are present away from synchronism, but 
they are suppressed by the strong interaction with the 
circuit near synchronism. 

V. EXCITATION OF THE WAVES AND THE 
BACKWARD-WAVE OSCILLATOR 

STARTING CONDITIONS 

The amplitude of each of the three waves is deter­
mined by specifying the z component of the electric 
field, E lz ; the beam displacement, YI; and the ac charge 
density, <TI; at the beginning of the interaction region 
(z= 0). Since the approximations made have already 

3 
~ xI =x2 =x3=Y3- 0 

'" 2 
~ 

~I 
-------~ -

~ -2 -I 1 2 3 r-----.:r---. 
---------

-I 

~ 
~ -2 

"" -3 ~ 
FIG. 6. Backward wave incremental propagation constants, 

Oi=Xi+jyi, for no space charge, S=O, and beam midway between 
circuit and sale, g=O. 

eliminated the two cyclotron waves (as well as a circuit 
wave with phase velocity in the negative z direction), 
we have too few linearly independent solutions to be 
able to specify Vly and Vlz, as well as the above three 
quantities. We could instead choose to specify Vly and 
VIz and not to specify YI and <TI. This amounts to specify­
ing the rate of change of YI and <TI with time (in the 
electron's coordinate system), and it appears to be the 
poorer of the two alternatives. In the case of the back­
ward wave oscillator where the beam enters unmodu­
lated, requiring Yl(O) and <TleO) to be zero does not 
guarantee that Vly(O) and Vlz(O) will be zero. Conversely, 
requiring Vly(O) and Vlz(O) to be zero does not guarantee 
that Yl(O) and <TI(O) will be zero. Here it is perhaps 
clearer that we should specify YI(O) and <Tl(O). 

The field above the electron beam is the superposition 
of three waves: 

~ 
3 

b.,. 

"" 
2 

~ 
1 

~ 
XI 

x2 -2 --=1----. ~ YI Y3 
3 

Y2 Y3 ~~ '-I 2 3 - r--- X3 

x3 
-I 

~ 

"" -2 

"" 
-3 ~ 

FIG. 7. Backward wave incremental propagation constants, 
o;=X;+jYi, for moderate space charge, S=l/v'J, and beam mid­
way between circuit and sale, g=O. 

3 

E h = L Ei[COSh/1,(y-d) 
i=I 

3 

Ely = L E;[sinh.Bi(y-d) 
i=1 

- jY EiO cosh.Bi(y-d)]e-j,siz (32) 

where YEP is normalized:surface admittance for the ith 
wave at the slow wave circuit (y=d) and Ei is the 
amplitude of the z component of electric field of the 
ith wave at the circuit. Thus, at the circuit, 

3 

El;= L Eie-ifJiz 
i=1 

=exp(-j~z)~ Eiexp(~DOiZ). (33) 
Uo >=1 Uo 

Using the equations of the previous section and then 
making the small D approximation, the transverse 
displacement and the ac surface charge density can be 
written in terms of the wave amplitudes E I , E 2, and E3: 

~1=A exp(-j~z) 
110 110 

3 Oi-jS (W) XL Ei exp -Doiz , 
i= l o?+2jgSOi-.)2 Uo 

(34) 

<Tl wa ( W) 
-= A coth- exp - j-z 
0"0 110 Uo 

3 (h+jS (W) XL Ei exp -Doiz 
i=IOi2+2jgSOi-.)2 flo 

(35) 
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where 

A 
1 

w 
sech--d 

Uo 

D Bouo W W 

1 +tanh-d coth-a 
Uo Uo 

(36) 

When the longitudinal electric field at the circuit, the 
transverse displacement, and ac surface charge density 
are known at z= 0, the amplitude of the ith wave is 
given by 

W 0"0 

ZA coth-a 
Uo 

(37) 

where i, j, and k are cyclical permutations of 1, 2, and 
3. With these equations it is possible to express the 
field at the circuit, the displacement of the beam, or the 
ac surface charge density of the beam at any z co­
ordinate in terms of the values of these three quantities 
at z=O. 

As an application of this result the start-oscillation 
conditions for an N-type backward wave oscillator 
have been found. In the backward wave oscillator the 
beam enters the interaction region with no modulation, 
hence Yl(O)=O"I(O)=O. Using (33) and (37), the electric 
field at the circuit becomes 

3 Oi2+2jgSOi-52 (W ) 
XL: exp -DOiZ • 

;:'1 (Oi-OJ (Oi-Ok) Uo 
(38) 

In the backward wave oscillator, the collector end of 
the tube (z= L) is terminated in such a way that the 
electric field vanishes there and the power output is 
taken from the gun end of the tube (z=O). The starting 
conditions are found by solving 

(39) 

for the length, L, and the velocity difference parameter, 
b. Sand g are constants which are assumed to be known. 
Equations which are very similar to Eqs. (39) and (25) 
arise in the theory of the longitudinally focused back-

ward wave oscillator, and a more detailed discussion of 
the interpretation and method of solution of these 
equations is to be found in the literature.1O- 12 

An analytical solution of Eqs. (39) and (25) has been 
obtained for a special case, g=d=O, which corresponds 
to an electron beam halfway between a lossless slow 
wave circuit and the conducting plane at y= -a. 
Assume that b= 0 will solve this pair of equations. 
Then the solutions of (Z5) are 

01 = + (52-1)!, 02= - (SZ-1)1, 03= O. (40) 

For S> 1, one wave amplitude increases exponentially 
with distance, one decreases exponentially with dis­
tance, and the amplitude of the third is constant. When 
S< 1, all three waves have constant amplitude. For this 
special case, the solution of Eq. (39) may be written 

w cosh-l52 
-LD 52>1 
Uo (52-I)! 

cos-l52 
(41) 

S2<1. 
(I-52)! 

Equations (Z5) and (39) reduce to the corresponding 
two-wave equations9 : 

when the space charge parameter, S, is equal to zero. 
The start-oscillation conditions for values of g other 

than zero have been found by solving Eqs. (25) and 
(39) on the Electrodata Datatron digital computer. In 
all cases, the circuit is assumed to be lossless (d=O). 
The results of these computations are summarized in 
Figs. 8 and 9 where [(wLD/27rUo)]start and (/31-/3.)Lstart 
are plotted vs the parameter (w/uo)LDS=hL. The 
latter is essentially the length of the tube in space 
charge wavelengths, since an increase of this parameter 

0.30 r---r----r---r--_-~ 

o .20 t----N'~-+---____+_-_l_-~ 

(ON)stort 

0.10 I---t--____+_~~--~-.....j 

o 
o 2 4 6 8 10 

hL 

FIG. 8. M-type backward .wave oscillator starting condition, 
[(wLD/2lTuo)].tart'liS hL. hL IS the length of the tube in plasma 
wavelengths, as defined in the text. 

10 H. Heffner, Proc. Inst. Radio Engrs. 42, 930 (1954). 
11 H. R. Johnson, Proc. Inst. Radio Engrs. 43, 684 (1955). 
\2 L. R. Walker, J. App!. Phys. 24, 854 (1953). 
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by one unit corresponds to the distance in which the 
amplitude of the space charge waves of a free beam in­
crease by a factor e, or 8.6db. Only the results for 
positive values of g are shown since [(wLD/271'Uo)].tart 
is an even function of g and [(/3l-/3.)L].tart is an odd 
function of g. 

The results of this calculation may be summarized 
by saying that the effect of mutual interaction between 
various parts of the beam (commonly called the effect 
of space charge) is to decrease the starting length for 
a fixed current and hence the starting current for a 
fixed length, by an appreciable factor. 

The theory presented here may also be used to find 
the effect of space charge on a thin beam magnetron 
amplifier. For the special case g=b=d=O, Eq. (38) 
becomes 

Elz(L) = Elz(O) exp ( - j :oL) 

COSh[:~ D(l +52)! ]+52 

X----------------
1+52 

(42) 

In the notation of Pierce,4 

A = -20 loglO[2(1+52)]; B=S4.6(1+52}!. 

Thus, space charge increases the rate of growth of the 
wave along the beam but decreases the initial amplitude 
of the growing wave. 

VI. CONCLUSIONS 

A simple approximate theory of space charge effects 
in linear magnetron interaction has been developed. 
One explicit result is a prediction of the rate of growth 
and decay of the space charge waves which is in agree­
ment with a more detailed analysis of wave propagation 
on a thin slipping stream of electrons. A comparison, 
not given in this paper, of the two methods of analysis 
shows that the one presented here gives other details 
in agreement with the slipping stream theory. Thus, 
both describe the same physical phenomenon. The 
simple theory has the advantage of leading to a clearer 
physical understanding of the growing space charge 
wave. 

An application of the theory developed here to the 
M-type backward wave oscillator shows that the effect 

16.---r---.---'---~--~ 

12r---+---+---1----r~~ 

(~I-~.)L 
8r---+---~~~---+--~ 

4 r---t:.o"---+------:::i=--~g = O. 5 
I 
g=O 

2 4 6 8 10 
hL 

FIG. 9. M-type backward wave oscillator starting condition, 
[(I'I,-I'I.)LJ .... rt vs hL. hL is the length of the tube in plasma 
wavelengths as defined in the text. 

of space charge may reduce the starting length or cur­
rent by an appreciable factor. The measured starting 
currents of M-type backward wave oscillatorsl are 
generally lower than predicted by the theory which 
neglects space charge effects, but it is not yet known 
whether the theory presented here satisfactorily ac­
counts for the measurements. The feature of the experi­
mental arrangement which is not taken into account 
here and which may also affect the results significantly 
is the lack of straight line trajectories. 

In the future it may be of interest to apply this theory 
to the M-type backward wave amplifier with one or 
two circuits and to study the effect of loss on the 
starting current of a M-type backward wave oscillator. 
It would also be of interest to study the higher order 
modes of osciIIation,lO,ll and it may be of interest to 
extend the theory to include all six waves. 
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