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ABSTRACT

This document provides supplementary information to the “96 Eyes: Parallel Fourier Ptychographic Microscopy for high-
throughput screening,” [year], pp. [page].

Supplementary Information

Parallel FPM acquisition and reconstruction1

A parallel image acquisition technique is proposed here. Four2

(4) frame grabbers are simultaneously controlled by individ-3

ual processes in the workstation, each is run in individual4

central processor core. One of the process supervises the5

illumination system to implement step, and then sends out6

trigger signal to all other processes to perform image acqui-7

sition and storage. As shown in Figs. S1(b–c), the ratio of8

the number of image sensors to the number of running pro-9

cesses is equal to 24, that corresponds to four set of 24-to-110

multiplexers for a total of the 96 image sensors. With respect11

to target applications, such ratio can be varied to optimize12

the overall data throughput within the allowable bandwidth13

of the interface.14

Another data throughput challenge preciously not ad-15

dressed in previous studies (e.g. EmSight1) is the requirement16

of segmenting the image data into tiles on the �y. If the im-17

ages are �rst saved and segmented later, both the imaging18

system and the graphical processor(s) will be idling, thus it19

limits the overall image restoration throughput. Our study20

shows that our system can �nish writing the raw image data21

within 2minutes, yet it takes around 20minutes to reorganize22

(i.e. read, segment, and write) the raw data from/to the hard23

drive. �is challenge can be addressed with a in-memory par-24

allel data storage strategy accessible by all running processes,25

which houses a four-dimensional image data “hypercube”26

with a dimensions of “number of illumination angles” times27

“number of image sensors” times “image height” times “im-28

age width”. �e hypercube is pre-segmented into chunks29

of dimensions (in our case, it is 1× 96× 256× 256). For30

each unique illumination pa�ern, the incoming image data31

of all image sensors are simultaneously sorted, indexed, and32

segmented online by the �le system. �e individual chunks 33

of the hypercube are then wri�en to the hard drive in a lin- 34

ear layout, which facilitates the image segment loading and 35

restoration method in the next step. In short, by sorting 36

and segmenting the incoming image data on the �y, it helps 37

saving the precious data bandwidth. 38

Enabled by the data alignment of the image chunks and 39

the identical illumination pa�ern across all image sensors, 40

multiple image segments can be restored by the graphical 41

processor in a massively parallel manner. �e corresponding 42

image segments for all image sensors (i.e. at identical loca- 43

tions in the image FOV) can be processed simultaneously as 44

they possess an identical set of illumination conditions. �is 45

substantially reduces the GPU idling time because a chunk 46

in the data “hypercube” only requires one set of function 47

calls and data read/write instead of 96 (for 96 image sensors), 48

reducing the processing overhead. 49

If only a single 96-well plate is imaged and analyzed, the 50

back-to-back data acquisition (one layer of phase image plus 51

10 z-layers of �uorescence image) and processing pipeline 52

requires (90+ 30+ 120) = 240s≈ 4min to complete. How- 53

ever, if multiple plates are involved in one batch of study, the 54

acquisition stages and the reconstruction stages can be per- 55

formed simultaneously (Fig. S1), reducing the overall imaging 56

time to around 120 second per plate. 57

LED position calibration 58

Fourier ptychographic algorithm requires accurate illumina- 59

tion angles from di�erent LEDs in order to register the raw 60

images in the Fourier domain. Because of the presence of 61

liquid meniscus in the 96-well culture plate, the LEDs ap- 62

pears to be much closer to the object than they are physically 63

located, altering the incident angles of the light rays on the 64

object. Here, we present the ray tracing method to estimate 65
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Supplementary Figure S1. Parallel FPM acquisition and reconstruction process.(a) Timeline of plate image
acquisition and reconstruction processes two consecutive plates. Since the reconstruction process can be done o�ine, the
second plate can be loaded and imaged while the workstation is reconstructing the images of the �rst plate. (b) and (c) Four
(4) high-throughput frame grabbers streams raw images to the internal memory bu�ers of the workstation through the high
speed links. (d) Front view of the 96 Eyes hardware.
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the incident angles due to refraction.66

First, we consider the case when the liquid interface is67

devoid of meniscus. Let us denote the vertical distance be-68

tween the object and the light source by ha, and the liquid69

medium (refractive index= n) height above the object by hb.70

For a light ray from a single LED passing through the �at71

air-to-liquid interface [inset of Supp. Fig. S2], the angle of72

illumination on the sample θ is governed by73

nsinθ =
xa − xb − δ√

(ha − hb)2 + (xa − xb − δ)2
Snell’s law

(S1)

sinθ =
δ√

h2
b + δ2

Geometry

(S2)

�e close form solution of sinθ exists, but it involves �nd-74

ing the root of a fourth order polynomial derived from the75

above equations. Instead, we numerically solve for δ with76

the following root-�nding algorithm77

δ0 =
(xa − xb)hb

ha
(S3)

δk+1 = g(δk)

subject to g(δ) =
1
n

 (xa − xb − δ)
√

h2
b + δ2√

(ha − hb)2 + (xa − xb − δ)2

 ,

(S4)

which guarantees to converge for |xa − xb| < ha − hb. �e78

illumination angle can be now be evaluated by substituting79

δK into Eq. S2 for a large number K.80

Next, we analyze the changes to the optical light path in81

the presence of meniscus. �e meniscus introduces a tilted82

air-to-liquid interface at an angle α(xb), which is a function83

of the lateral position xb from the center of the well on the84

culture plate. Trying to incorporate this variable to the ray-85

tracing model will add unnecessary complexity to Eq. S1.86

�erefore, we linearize the meniscus e�ect by introducing a87

parallax shi� xp, with88

xp(xb) = (ha − hb)[tan(α(xb) + θ)− tanθ] ≈ cxb, (S5)

for some constant c > 0. �e meniscus-compensated illu-89

mination angle θ is now approximated by modifying Eq. S490

with xa 7→ xa − xp(xb) ≈ xa − cxb.91

Speed improvement factor and the design criteria92

of the parallel illumination scheme93

Without parallel illumination, only a single camera is ac-94

tive at any instance of image acquisition. Let f be the95

e�ective frame rate of a single camera. For the 96-well96

plate, the total acquisition time required is equal to f−1 ×97

number of wells× number of illumination= 4704 f−1. Par-98

allel illumination scheme instead utilizes a 2D la�ice illumi-99

nation pa�ern with a source-to-source separation of m LEDs100

Supplementary Figure S2. Detailed illustration of
the parallel illumination scheme of 96 Eyes. �e
source-to-source separation is chosen to maximize the
e�ective acquisition rate, as well as avoiding interference.
�is is made possible by making sure that only one single
LED is responsible for bright�eld illumination for any
camera and for any time instance of ptychographic image
acquisition. Inset: de�nition of symbols for LED position
calibration.

with a LED-to-LED separation of ∆x. �e total number of 101

illumination is now reduced to m2. Hence, the e�ective ac- 102

quisition time is equal to f−1 ×m2 × number of cameras× 103

(number of frame grabber cards)−1 = 24m2 f−1, for four 104

frame grabber cards. �e speed improvement is given as 105

4704 f−1

24m2 f−1 = 196m−2. (S6)

In the following paragraph, we will compute the lower 106

limit of value m. For all time instances, we only allow one 107

LED to ful�ll the bright�eld illumination condition with re- 108

spect to the object (Fig. S2). Let us denote the vertical distance 109

between the object and the light source by ha, and the liquid 110

medium (refractive index= n) height of hb. �e following 111

conditions have to be ful�lled in addition to Eqs. (S1) and 112
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(S2):113

nsinθ ≥NA (S7)
xb = 0 (S8)
xa = m∆x/2 subject to m = 2M, (S9)

for a given numerical aperture (NA) of the microscope ob-114

jective, and some integer M. Here a power of two is pre-115

ferred because it simpli�es the electronic design of the LED116

matrix. For our system with ha = 33mm, hb = 3mm and117

∆x = 3mm, we picked m = 8. �is implies a conservative118

speed improvement of at least 3 times. Compared to mechan-119

ical scanning system which has a much lower e�ective frame120

rate f , the speed improvement can be up to 8 times compared121

to commercially available instruments.122

Modification to the Fourier ptychography phase re-123

trieval algorithm124

Forward model for our imaging system Let us denote125

a segment of the object to be reconstructed by u ∈ Cn, a126

two-dimensional image with n1/2 × n1/2 pixels. We also127

denote the j-th illuminated low-resolution intensity image128

of the object by Ij ∈ Rm
+, with m1/2 × m1/2 pixels (u and129

Ij are both wri�en as a vector by a lexicographical order).130

It can be shown that Ij = |FHdiag(p)QjFu|2. �e pupil131

function p ∈ Cm can be considered as the circular aperture132

at the back aperture plane of the imaging system. Binary133

matrix Qj ∈Rm×n depicts the downsampling of the object134

u by cropping a region of m pixels in Fourier space cor-135

responding to the j-th position of the light source. What136

we measure is a stack of low-resolution intensity images137

Ij = |FHψi|2 = |FHdiag(p)QjFu|2 ∈ Rm
+, j = 1,2, . . . ,k,138

where the hyperscript H denotes a Hermitian conjugate. �e139

operation diag(a)b represents the element-by-element mul-140

tiplication2 between two vectors a,b.141

In reality, the measured sequence of low-resolution images142

are corrupted by (i) the ambient light level Ib > 0, (ii) angular143

dependency of LED intensity wj > 0, (iii) background inter-144

ference of suspended particulates in the liquid φdust ∈ Rn;145

and (iv) dark current and readout noise of the sensor nj ∈ Rm.146

�erefore, we modi�ed the forward model to147

Ij = wj|FHdiag(p)QjFdiag(eiφdust)u|2 + Ib + nj, (S10)

Minimizer with partial spatial coherence constraint148

Since the lens aberration is almost completely unknown, one149

has to solve a blind ptychographic phase retrieval problem150

with an amplitude constraint2151

min
{wj},p,u

N

∑
j=1

f j(wj, p,u)

⇔ min
{wj},p,u

N

∑
j=1

∥∥∥|FHdiag(p
√

wj)QjFu| −
√

Ij − Ib

∥∥∥2

2
,

(S11)

Algorithm 1 Pseudo-code of the phase retrieval algorithm
for 96 Eyes system

1. Inputs: segments of low resolution images Ij and am-
bient light level Ib of the corresponding camera.

2. Initialize local pupil functions p` for all L segments of
the object.

3. Estimate the global pupil function ∑ p/L :=
(1/L)∑L

`=1 p`.

4. FPM-EPRY algorithm: Run the phase retrieval algo-
rithm for the `-th segment with pupil function recovery.

(a) Initialize u0 :=
√

I0 − Ib,
p0 := ∑ p/L and w0

j := 1 for j ∈ [1, N].

(b) For the k-th iteration,
i. Evaluate j = mod(k, N) + 1.
ii. Object update: solve uk+1 =

argminu f j(wk
j , pk,u).

iii. Weighting update: when k ≤ 3N, solve
wk+1

j = argminw f j(w, pk,uk+1).Otherwise,
wk+1

j = wk
j .

iv. Pupil update: when k > 3N, solve
pk+1 = argminp f j(wk+1

j , p,uk+1). Other-
wise, pk+1 = pk.

(c) Repeat step (4b) until k = K.

(d) Update the object estimate u` := uK and local
pupil function estimate p` := pK.

5. Repeat steps (3)–(4) one more time.

6. Separate u from eiφdust by digitally high-passing the
phase component of u` with an inverted Gaussian
blur kernel. �e amplitude component is preserved as
|ucell

` | := |u`|.

7. Stitch the recovered image segments u` for all ` ≤ L.

8. Outputs: amplitude and phase component of the
stitched image u, the global pupil function p̄ and the
local aberrations {p`}.
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Because of the limited number of low-resolution images (=21)152

in the measurement, the estimated pupil function pest cannot153

be e�ciently separated from the estimated object Fuestin154

the Fourier domain. �is shortcoming is compounded by155

the fact that the target biological specimen is a weak phase156

object, where most of the information in the Fourier domain157

is concentrated in that of the un-sca�ered transmi�ed light.158

To suppress the crosstalk between the two, we utilize a �nite159

number (L > 0) of overlapping segments of the object u` and160

the corresponding local pupil p` to enforce the partial spatial161

coherence constraint. �at is, the above minimizer is further162

subject to163

L

∑
`=1
‖p` −∑ p/L‖2

2 ≤ εtol, (S12)

for a “global” average pupil function∑ p/L = (1/L)∑L
`=1 p`164

and tolerance value εtol > 0.165

Background estimation To recover the average level of166

the ambient light level Ib, we capture the images when all167

light sources are switched o�. �e value of Ib for a partic-168

ular CMOS sensor is then set to be the pixel average of the169

captured dark image.170

Separation of the non-uniform illumination profile of171

LEDs and the pupil function From Eq. (S11), it is known172

that the pupil function p cannot be e�ciently separated from173

the factor wj. �erefore, the factor wj is optimized only for174

the �rst three iterations3, while the recovery of p is post-175

poned until the fourth iteration.176

Separation of cells and background interference �e177

out-of-focus suspended particulates show up as blurred shad-178

ows in the sequence of low-resolution images [Supp. Fig. S3].179

We utilize this property to estimate φdust by applying a Gaus-180

sian blur of the recovered object phase. �e morphological181

information of the cells can be extracted from the phase182

di�erence between the recovered �eld uest and eiφdust .183

It is noted that there are existing algorithms that specializes184

in separation of the object from out-of-focus noise4.185

Choice of adaptive step size for pupil recovery While186

the object update in Step 4(b)ii of Algorithm 1 is solved by187

the time-honored Gaussian-Newton algorithm5, the pupil188

update in Step 4(b)iv of Algorithm 1 is instead solved by the189

gradient descent method6, with190

pk+1 = argmin
p

f j(wk
j , p,uk)

= pk + γdiag(s̄k)×[
Fdiag

( √
Ij

|FH gj(wk, pk, sk)|

)
FH gj(wk, pk, sk)−

gj(wk, pk, sk)
]

, (S13)

where sk =Fuk and gj(wk, pk, sk) = diag(pk
√

wk
j )Qjsk for191

a step size of γ ∈ Rm
+. Because of the choice of parallel il-192

lumination in our 96 Eyes system, all of the captured data 193

are bright�eld images. For a weak phase object, most of the 194

incoming light rays remains un-sca�ered, that result in a 195

strong peak in the Fourier domain. If the step size γ is a 196

constant, the recovered pupil will be corrupted with a con- 197

stellation like artifact [Fig. S4(a)]. �erefore, we heuristically 198

adjust the step size with 199

γ =
[
diag

(
(1− β)|sk|+ β‖sk‖∞

)]−1
, (S14)

where ‖s‖∞ denotes the maximum amplitude of the complex- 200

valued signal s. E�ectively, the step size γ normalizes the 201

value of diag(s̄k). �e non-dimensional number β ∈ [0,1] 202

adjusts the relative strength of normalization of signal s̄k. 203

When β = 0, the Fourier domain of the object sk = Fuk will 204

be completely normalized. In the main text, the value is set 205

to be β = 10−6, around twice the order-of-magnitude of an 8- 206

bit image. �is helps smooth the pupil function [Fig. S4(b)] as 207

well as reduce the reconstruction residual [Fig. S4(c)], de�ned 208

Supplementary Figure S3. Particulates outside of
the focal plane introduce background interference.
(a) Phase component of the recovered complex wavefront,
showing the the U2OS cell line almost buried in the phase
�uctuation; (b) phase image of dust particles on the
underside of the well plate, reconstructed by digital
refocusing of the recovered complex wavefront.
(c) Recovered phase component of system aberration; and
(d) pupil function used for digital refocusing.
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as209

εk =
∑N

j=1

∥∥∥|FH gj(wk, pk, sk)| −
√

Ij − Ib

∥∥∥2

2

∑N
j=1 ‖

√
Ij − Ib‖2

2
. (S15)

Improving the dynamic range of fluorescence im-210

ages with two-stage digital averaging211

Because of the limited photo-sensitivity and bit depth of our212

choice of consumer-grade CMOS sensor, we adopted the dig-213

ital averaging approach to enhance the signal-to-noise ratio214

of the sensor. �e digital averaging technique is also known215

as dithering in audio digitization community7–9, where the216

band-limited signal of interest is mixed with an arti�cial217

out-of-band noise on the input side of the analog-to-digital218

conversion circuit to reduce the quantization error. Our tech-219

nique is also very similar to hal�oning of digital images10,220

where an arti�cial pepper noise is added to simulate grayscale221

images out of a black-and-white display device. In contrast,222

Supplementary Figure S4. Adaptive step size
improves pupil function recovery. (a) Recovered phase
component of pupil function with a constant step size, i.e. at
β = 1, compared to (b) at β = 10−6. Symbols (ρx,ρy) are
the local coordinates of the pupil function. (c) Comparison
of reconstruction residuals by applying phase retrieval to all
segments (L = 80) of the cell sample captured from one
camera. With our method, the residual reduces by around
one-third (a�er k/N = 200 iterations) with a much smaller
spread, demonstrating a more robust object and pupil
co-recovery.

the noise source for our CMOS sensors in the 96 Eyes system 223

cannot be precisely controlled. Notably, similar digital aver- 224

aging approaches has been proposed before for radiometry 225

studies11. However, the underlying principle is poorly under- 226

stood. Here, we provide a theoretical framework to o�er to 227

explain the dynamic range improvement of our �uorescence 228

images with digital averaging. 229

Forward model For a �uorophore concentration c(x,y) 230

illuminated by an uniform intensity I0, the imaging system 231

in the �uorescence channel is empirically modeled as 232

I(x,y, t) = bgampηc(x,y)I0 + gampndark(x,y, t) + namp(t)c
= gampηc(x,y)I0 + namp(t)+

gampndark(x,y, t) + ε(x,y, t), (S16)

where the non-dimensional factor η is a product of (i) quan- 233

tum e�ciency of the �uorophore, (ii) photon collection e�- 234

ciency of the microscope objectives, and (iii) quantum e�- 235

ciency of the photosensing circuit in the CMOS sensor. �e 236

ampli�er with gain gamp > 0 naturally comes with an addi- 237

tive power-line noise namp(t). �e round-o� operator b·c de- 238

notes the quantization process, which in turn can be modeled 239

as an additive quantization error ε(x,y, t) ∈ [−0.5,+0.5). 240

Here, the photon noise is assumed to be negligible compared 241

to dark current noise. 242

In rolling shu�er mode, rows of pixels are read out at a 243

traversal rate of v, so the ampli�er noise is mapped to the 244

vertical axis of the j-th image Ij(x,y). 245

Ij(x,y) = gampηc(x,y)I0 + namp(y, j)+

gampndark(x,y, j) + εj(x,y), (S17)

where ndark(x,y, j) = ndark(x,y, t)|t=tj+y/v and 246

namp(y, j) = namp(t = y/v + jH/v) for H rows of 247

pixels in the CMOS sensor. 248

Suppressing both dark current noise and quantization er- 249

ror with digital averaging Consumer-grade CMOS sensors, 250

designed for daylight applications, have a much higher quan- 251

tization error than the dark current noise. For a ampli�er 252

gain value gamp at unity, the dark current noise component 253

is typically always rounded-o� to zero. In other words, direct 254

digital averaging of multiple frames Ij at unity gain usually 255

do not result in reduction of quantization error. However, typ- 256

ical biological specimen is known to have a low �uorophore 257

concentration. Concerns about photobleaching also limit the 258

illumination intensity I0. �erefore, the ampli�er gain gamp 259

must be boosted su�ciently to utilize the full quantization 260

range of the CMOS sensor. 261

�e dark current noise is known to possess a Gaussian 262

distribution12, i.e. ndark(t) ∼N (0,σ2
dark) (symbols x,y are 263

omi�ed for clarity). �is also applies to the power-line noise, 264

where namp(t) ∼ N (0,σ2
amp). For a su�cient gain with 265

gσdark� 0.5, the probability density function of Ij is given 266
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as267

P(Ij = a)

=

 1
A
∫ a+0.5

a−0.5 exp
(

−(I−gampηcI0)
2

(σ2
amp+g2

ampσ2
dark)

√
2

)
dI if a is an integer,

0 otherwise.
(S18)

�e scaling factor A is de�ned such that
∫ ∞
−∞ P(Ij = a)da =268

1. By averaging a su�cient number of frames, i.e.269

I1(x,y) :=
1
N

N

∑
j=1

I(x,y, tj), (S19)

both the dark noise and the quantization error can be re-270

duced. For instance, it can be shown that limN→∞ I1(x,y) =271 ∫ +∞
−∞ a P(Ij = a)da = gampηc(x,y)I0, which is independent272

of both noise terms.273

Suppressing the power-line noise For our digital-274

averaged �uorescence signal captured by the 96 Eyes system,275

we can still observe the presence of row-wise intensity �uc-276

tuation [Supp. Fig. S5(b)] originated from the power-line277

noise above the quantization level, modeled as I1(x,y) ≈278

gampηc(x,y)I0 + namp(y). �is is caused by the power-line279

noise in the 96-in-1 camera board.280

Supplementary Figure S5. Improving the dynamic
range of �uorescence images with digital averaging.
(b) Single frame at gain gamp = 8; (c) averaging 10 frames at
gain gamp = 8; Suppressing the band-like pa�ern noise for
(c) a single frame, and (d) the digital average of 10 frames.
All images are contrast-stretched to highlight the
background noise and artifacts. Scale bar: 20µm.

�e size constraint of the 96-well culture plate limits the 281

available real estate on the printed-circuit board for electronic 282

�lters, especially the decoupling capacitors. To further sup- 283

press such row-wise �uctuations, we apply the same digital 284

averaging technique to isolate it from the �uorescence signal 285

c(x,y). Here, we assume that the �uorophore concentration 286

possesses a Gaussian distribution c(x,y) ∼ N (µc,σ2
c ) for 287

µc > 0, σc� µc. By taking a row-wise average of pixels of 288

I1(x,y), we have 289

I2(y) :=
1

W

W

∑
i=1

I1(xi,y) ≈ gampηµc I0 + namp(y), (S20)

for W pixels along individual rows of the image. Since we 290

only care about the morphology of the biological cells stained 291

with the �uorophore, the average �uorophore concentration 292

µc can be eliminated as well. Hence, the recovered �uores- 293

cence image is given as 294

cest(x,y) := c(x,y)− µc ≈
I1(x,y)− I2(y)

gampη I0
. (S21)

In practice, the signal c(x,y) does not �t well with the Gaus- 295

sian process assumption. �e row-wise averaging operation 296

Eq. S20 is replaced with row-wise median operation to reduce 297

sensitivity to extreme values in c(x,y). 298
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Supplementary Figure S6. Surface �atness of the polystyrene samples, analyzed by the scienti�c-grade FPM.
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Supplementary Figure S7. Computationally refocused phase images at o�-axis locations. (a) Raw intensity
image of the entire �eld-of-view of the U2OS cell line. Also shown are the FPM Phase reconstruction (b) halfway from the
edge of the �eld-of-view; and (c) close to the edge of the �eld-of-view.
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Supplementary Figure S8. Spectra of laser, �uorophore (eGFP) and �lter set for �uorescence microscopy. �e
multimode diode laser (Nichia NUBM07) is �ltered with a laser clean up �lter of a 5nm bandwidth (Semrock FF01-465/5).
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