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ABSTRACT

The availability of large datasets with stellar distance and polarization information will enable a

tomographic reconstruction of the (plane-of-the-sky-projected) interstellar magnetic field in the near

future. We demonstrate the feasibility of such a decomposition within a small region of the diffuse
ISM. We combine measurements of starlight (R-band) linear polarization obtained using the RoboPol

polarimeter with stellar distances from the second Gaia data release. The stellar sample is brighter

than R < 17 mag and reaches out to several kpc from the Sun. HI emission spectra reveal the

existence of two distinct clouds along the line of sight. We decompose the line-of-sight-integrated stellar

polarizations to obtain the mean polarization properties of the two clouds. The two clouds exhibit
significant differences in terms of column density and polarization properties. Their mean plane-of-

the-sky magnetic field orientation differs by 60◦. We show how our tomographic decomposition can

be used to constrain our estimates of the polarizing efficiency of the clouds as well as the frequency

dependence of the polarization angle of polarized dust emission. We also demonstrate a new method
to constrain cloud distances based on this decomposition. Our results represent a preview of the

wealth of information that can be obtained from a tomographic map of the ISM magnetic field.

Keywords: techniques: polarimetric − ISM: magnetic fields − ISM: clouds

1. INTRODUCTION

Starlight polarization contains information on the

properties of the interstellar magnetic field that lies be-

tween the star and the observer. Elements of the three-
dimensional geometry of the field are encoded in the an-

gle of the linear polarization (or polarization angle, θ),

and the fractional linear polarization (p, expressed in per-

centage of the total light intensity). The first observable,
θ, depends only on the plane-of-the-sky orientation of the

magnetic field, and its variation along the line-of-sight.

The second, p, depends additionally on the inclination

of the field along the line-of-sight (Lee & Draine 1985).

While deducing these three-dimensional properties of the
field from a single stellar polarization measurement is im-

possible (without ample supplementary knowledge), the

problem is simplified by considering ensembles of stars

in conjunction with distance information.
This potential of starlight polarization was exploited

early on in the history of optical polarimetry to recon-

struct the orientation of the large-scale galactic mag-

netic field as a function of distance from the Sun. Us-

ing polarimetry and distances for thousands of stars,
Lloyd & Harwit (1973) and Fowler & Harwit (1974)

produced maps of polarization in increments of 200 pc

along the line of sight and 10◦ − 20◦ on the plane of the

sky. Their maps reached out to ∼2 kpc in the galactic
plane and out to 600 pc at |b| > 20◦ and showed correla-

tions between the polarization orientations and the local

spiral arm. Their work was extended by Ellis & Axon

(1978) to include 5000 stars (within |b| < 15◦), resulting

in a better statistical description of the magnetic field on
scales of hundreds of parsecs.

Subsequent studies have focused on reconstructing the

properties of the magnetic field within smaller regions

of space. Andersson & Potter (2005) isolated the effect
of the Southern Coalsack dark cloud on the polarization

of starlight from that of foreground material, leading to

a better estimation of the magnetic field strength within
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the cloud. Li et al. (2006) used stellar polarizations and

distances within volumes of 400 pc surrounding the Gi-

ant Molecular Cloud NGC 6334, in order to remove the

contribution of foreground/background material and iso-
late the local to the cloud magnetic field orientation. A

number of works have deduced the polarizing properties

of discrete clouds along sightlines toward young open

clusters (e.g. Breger 1986, 1987; Vergne et al. 2007;

Eswaraiah et al. 2012), where distances are well-known.
The idea of tomographic decomposition was extended to

the NIR by Pavel (2014), who, in the absence of stellar

distances, used red clump stars as standard candles.

Lack of distance information has been a major obstacle
in mapping the (plane-of-the-sky) ISM magnetic field ori-

entation in three dimensions. However, the advent of the

Gaia astrometric mission (Gaia Collaboration 2016), of-

fers an avenue to revolutionize such an exploration. With

precise parallaxes for billions of stars, it will be possi-
ble to produce such a three-dimensional map of unprece-

dented accuracy.

The second major obstacle has been the sparsity

of existing stellar polarization measurements. Fu-
ture large-scale optical polarimetry surveys promise

to fill this gap (Magalhães et al. 2012; Tassis et al.

2018, in prep). With survey depths two to three mag-

nitudes fainter than the current state of the art (Heiles

2000; Berdyugin et al. 2014), these surveys will increase
the number of stellar polarizations per unit area by or-

ders of magnitude compared to existing datasets. This

will enable mapping of the plane-of-the-sky magnetic

field orientation in 3D in the diffuse ISM down to un-
precedented physical scales.

In this work we wish to demonstrate the feasibility of

such an endeavour in a small region of the intermediate

Galactic latitude sky. To this end, we have conducted a

small-scale polarimetric survey of comparable photomet-
ric depth and polarimetric precision to that of the Polar

Areas Stellar Imaging in Polarization High Accuracy Ex-

periment (PASIPHAE, Tassis et al. 2018, in prep) to-

wards a diffuse region.
We begin by exploring the properties of the ISM in the

selected region with the help of HI spectral information

(Section 2). We then describe our observations of optical

polarization (Section 3), followed by the data reduction

and calibration (Section 4). We analyse the properties
of the measured polarizations as projected on the plane

of the sky and as a function of distance, by making use

of the recent Gaia second data release (DR2) in section

5. This information allows us to decompose the plane-of-
the-sky magnetic field orientation along the line-of sight.

We discuss our findings in Section 6 and conclude in Sec-

tion 7.

2. THE DISTRIBUTION OF GAS ALONG THE

LINE OF SIGHT

Since stellar polarization is imparted through dichroic

extinction of the light by dust grains (which are aligned

with the magnetic field), this observable preferentially
traces the magnetic field in the neutral atomic and molec-

ular phase of the ISM, which dominate the dust column.

Dust and HI are tightly correlated in the diffuse ISM

(e.g. Bohlin et al. 1978). We use the kinematic infor-

mation from HI line emission spectra to infer proper-
ties of the distribution of atomic gas (and consequently,

dust) along the line-of-sight. To this end, we employ the

publicly available spectral cube from the HI4PI survey

(HI4PI Collaboration 2016) which contains the selected
region. The region is defined as a circle of radius 0.16◦

centered on (l,b) = (104.08◦, 22.31◦). Figure 1 (bot-

tom left) shows the HI spectrum averaged within this

area. The spectrum reveals the existence of two kine-

matically distinct components of HI emission. One is
located around a velocity of -2.5 km s−1 and has a peak

brightness temperature (Tb) of 22 K. The other has a

much lower peak Tb of 12 K and is located at -50 km s−1.

This double-peaked spectrum, with components that are
well separated in velocity, implies that the neutral ISM

mass is distributed in at least two spatially distinct com-

ponents along the line of sight.

The very small velocity (compared to the local stan-

dard of rest) of the HI component that peaks at -2.5
km s−1 suggests that the emission originates nearby. We

shall refer to this component as the Low Velocity Cloud

(LVC). The second component is at velocities consistent

with the class of Intermediate Velocity Clouds (Wakker
2001) and we shall refer to it as the IVC.

The contribution of the two components to the total

atomic gas content of the target region is uneven, with

the LVC clearly dominating the emission. We calculate

the HI column density of each component, NHI, using:
NHI =

∫ vmax

v=vmin
1.823 × 1018Tb(v)dv cm−2/(K km s−1),

where Tb is the brightness temperature of the HI emis-

sion in K, dv is the spectral resolution of the HI4PI data

(1.288 km s−1) and the summation takes place over the
range of velocities [vmin, vmax] within which each compo-

nent dominates. This follows from the equations of radia-

tive transfer for the HI line under the assumption of op-

tically thin emission (e.g. Kulkarni & Heiles 1988). We

define a threshold of Tb at 4 K, which separates the spec-
trum into the two components, and integrate the emis-

sion within the velocities where Tb > 4 K: -55 to -41 km

s−1 for the IVC and -12 to 5 km s−1 for the LVC (these

ranges are shown with shaded gray regions in the spec-
trum of Figure 1). We find that the HI column density

of the LVC is a factor of ∼2 higher than that of the IVC

(NLVC
HI = 3.5× 1020 cm−2 and NIVC

HI = 1.8× 1020 cm−2).
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Figure 1. HI emission in the surveyed region from the HI4PI dataset. Top panels: 2-Cloud (black circle) and 1-Cloud

(red circle) regions are shown on the plane of the sky. The background image shows the HI column density within the
range of velocities of the LVC (left) and that of the IVC (right). Bottom panels: Average spectrum in the 2-Cloud

region (left panel) and the 1-Cloud region (right panel). The HI spectrum shows two very distinct components around

-50 km s−1 (IVC) and -2.5 km s−1 (LVC). The range of velocities of each component is marked with a gray band.

Velocities are with respect to the Local Standard of Rest (LSR).

The two clouds are not only different in terms of their

total (atomic) gas content, but they also show distinct

morphologies on the plane of the sky. The top panels
of Figure 1 show maps of NHI inferred from integrating

the emission within ∼1◦ from our target region over the

velocity range where the IVC dominates (-55 to -41 km

s−1, left panel) and where the LVC dominates (-12 to 5
km s−1, right panel). The IVC has a bubble-like shape

with a well-defined boundary towards the south-east. In

contrast, the LVC is much more spread out and exhibits

less abrupt spatial variations.

These characteristics of the two clouds allow us to de-
fine a ‘control’ region for our experiment, marked with

a red circle in the top panels of Figure 1. This region is

identical in size to the target region but is centered on

a neighbouring position where the IVC emission is sup-
pressed: (l,b) = (103.90◦, 21.97◦). This can be seen by

inspecting the spectrum within this control region (bot-

tom right panel of Figure 1). The NHI of the IVC here is

a factor of two lower compared to that in the target re-

gion. We therefore expect that in the target region, both
clouds will contribute to the stellar polarizations, while

in the control region, the effect of the IVC on starlight

polarization will be minimal. Measurements in the con-

trol region can thus be used to isolate the effect of the

LVC.
In the following we will refer to the region with signifi-

cant contribution from the IVC and LVC as the 2-Cloud

region (black circle in Fig. 1 top panels) and to that with

mainly LVC emission as the 1-Cloud region (red circle in
Fig. 1 top panels).

3. POLARIMETRIC OBSERVATIONS

We selected a sample of stars from the USNO-B1 cat-

alogue (Monet et al. 2003) with R < 17 mag which are
located in both regions. Our sample consists of 196 stars

in total (103 stars in the 2-Cloud region and 93 stars

in the 1-Cloud region), with 9.6 mag < R < 16.9 mag.

The distribution of R magnitudes (from USNO-B1) is

shown in the top panel of Figure 2. The sample is not
photometrically complete in these regions due to time

constraints.

We obtain stellar distances by cross-matching our tar-

gets with the catalogue of Bailer-Jones et al. (2018),
who provide a probabilistic estimate of the distance to

stars in Gaia DR2 (Gaia Collaboration 2018). They
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Figure 2. Properties of the observed stellar sample. Top:

Distribution of R magnitudes from the USNO-B1 cata-
logue. Bottom: Distribution of the maximum-likelihood

distances from the catalogue of Bailer-Jones et al.

(2018).

infer the posterior probability density function (PDF) of
the distance, given the measured parallax, using an expo-

nentially decreasing space density prior. The catalogue

presents the mode of the posterior PDF for the distance

and we will refer to this value as the distance to the star.

Uncertainties are provided as the (asymmetric) bounds
of the highest density interval (equivalent to ±1σ for a

Gaussian distribution). The bottom panel of Figure 2

shows the distribution of stellar distances in our sample

from this catalogue. Three of our sources (one with R =
13.4 mag and two with R = 15.1 mag) have undefined

distances in the Bailer-Jones et al. (2018) catalogue and

are not included in the distribution. We find that the

depth of our survey is sufficient to cover a wide range of

distances.
We performed polarimetric observations of our sam-

ple during 2016, 2017, and 2018 with the RoboPol po-

larimeter (Ramaprakash et al. 2018, in prep), which is

mounted on the 1.3 m Ritchey-Chrétien telescope at the
Skinakas Observatory in Crete, Greece. The instrument

is a single-shot imaging polarimeter, which measures the

relative Stokes parameters q = Q/I and u = U/I simul-

taneously (I is the total intensity and Q, U are the ab-

solute Stokes parameters). Observations were conducted
during 13 nights from May to July 2016, during 5 nights

in July 2017, and during 6 nights in August 2018. Ob-

serving time was shared with other projects. The total

observing time for science targets was about 66 hours in
total.

Our strategy was to place each star in the central re-

gion of the instrument. In this region, a mask reduces

the sky background compared to the rest of the field

of view. Instrumental systematics are below 0.1% in

q and u within this area, while in the entire field of
view (13.6′ × 13.6′) this increases by a factor of three

(Panopoulou et al. 2015; Skalidis et al. 2018). The ex-

posure time for each target was set with the aim of ob-

taining significant measurements of stellar polarization.

The median exposure time per source was 14 minutes,
while only 5 sources required more than 50-minute ex-

posures each. We use a single-epoch observation of each

source for our analysis (measurements from a single con-

secutive series of exposures in the mask, taken on the
same night).

4. POLARIZATION DATA REDUCTION &

CALIBRATION

The data are reduced using the RoboPol pipeline

(King et al. 2014). The pipeline measures the relative

Stokes parameters q and u for each target through dif-

ferential aperture photometry. We use the version of the
code described in Panopoulou et al. (2015), which op-

timizes the aperture size for each source. By default,

the pipeline corrects the Stokes parameters according to

a model of the instrumental polarization (described in
King et al. 2014). We turn this option off when process-

ing the data in order to avoid unknown uncertainties that

may arise from the modelling. Instead, we correct for in-

strumental polarization directly using measurements of

polarization standard stars placed in the mask (where
our target stars were also placed).

We find the differences of the observed relative Stokes

parameters (qobs, uobs) of our calibrators from their (true)

literature values (q∗, u∗). These differences (residuals)
are shown in Figure 3. We only use measurements of

standards observed on the same nights as the project tar-

gets were observed. Because the 2016 observing run was

longer, there are significantly more measurements that

can be used for calibration for this run (28 - left panel)
compared to the 2017 (7 - middle panel) and 2018 (16 -

right panel) runs. The literature values of the standard

stars are shown in Table 1.

We find the weighted mean q and u for each run,
which is our best estimate for the level of instrumen-

tal polarization (qinst, uinst). We assign the standard

deviation of the measurements to be the uncertainty on

this value (systematic uncertainty, σq,inst, σu,inst). The

standard deviation most likely overestimates the system-
atic uncertainty of the instrument, but it is a conser-

vative estimator compared to the more commonly used

standard error of the mean. The instrumental polariza-

tion varies slightly between the three observing seasons.
The values for the instrumental polarization for 2016 are:

qinst = −0.01± 0.13%, uinst = −0.28± 0.08%, for 2017:
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Table 1. Literature polarization of standard stars used
for the instrument calibration.

Name p(%) θ Band Ref.

BD +32 3739 0.025±0.017 35.79◦ V 1

BD +33 2642 0.20±0.15 78◦± 20◦ R 2

BD +40 2704 0.07± 0.02 57◦ ± 9◦ ? 3

BD +59 389 6.430±0.022 98.14◦ ± 0.10◦ R 1

HD 14069 0.022 ± 0.019 156.57◦ V 1

HD 154892 0.05 ± 0.03 – B 4

HD 212311 0.034 ± 0.021 50.99◦ V 1
References. (1)Schmidt et al. (1992); (2) Skalidis et al.

(2018); (3) Berdyugin & Teerikorpi (2002); (4)
Turnshek et al. (1990)
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Figure 3. Residuals of the observed relative Stokes pa-

rameters (in the R-band) of polarization calibrator stars
from their literature values for the three observing runs

(2016, 2017, and 2018 shown in the left, middle, and

right panels, respectively). A separate color is used to

mark each calibrator star. Measurement uncertainties

are purely statistical (from photon noise error propaga-
tion). A black cross marks the weighted mean of the

measurements (mean instrumental polarization) for each

run, with corresponding error bars marking the standard

deviation (systematic uncertainty).

qinst = 0.19 ± 0.06%, uinst = −0.23 ± 0.05%, and for

2018: qinst = 0.18± 0.15%, uinst = −0.27± 0.10%.

Measurements of our target stars are corrected for the

instrumental polarization by subtracting the weighted

mean qinst, uinst (determined for its corresponding ob-
serving run) from the observed value of q and u and

propagating the systematic uncertainty to the final re-

sult. Our measurements have not been corrected for the

rotation of the instrument frame with respect to the ce-
lestial reference frame. This rotation has been measured

using polarized standards in all observing seasons and

was found to be < 1◦, which is less than the typical 1σ

uncertainty of our measurements (5◦).

The fractional linear polarization, p is calculated from

the Stokes parameters through:

p =
√

q2 + u2, σp =

√

q2σ2
q + u2σ2

u

q2 + u2
(1)

where the uncertainties on the Stokes parameters σq and

σu include both statistical and systematic uncertainties.

As p is a biased estimator of the true fractional lin-

ear polarization, p0, we correct for this bias using the
estimator proposed by Plaszczynski et al. (2014):

pd = p− σ2
p

1− e−p2/σ2

p

2p
(2)

and calculate the 68%, 95% and 99% confidence inter-

vals on p0/σp through the provided analytical expressions

(equations 26 in their paper). This estimator is superior

in correcting for the bias in the low signal-to-noise ra-

tio in p regime (Plaszczynski et al. 2014; Montier et al.
2015b) compared to the most commonly used estimator

discussed in Vaillancourt (2006).

For measurements with σq ≈ σu (as is the case in our

work), the polarization angle found through1:

θ =
1

2
arctan

(

u

q

)

(3)

is an unbiased estimator of the true θ0 (Montier et al.

2015a). We determine the uncertainty in θ, σθ, follow-

ing Naghizadeh-Khouei & Clarke (1993). We solve the

integral:
∫ 1σθ

−1σθ

G(θ;P0)dθ = 68.27%, (4)

where P0 = p0/σp and G is the probability density func-
tion defined as:

G(θ; θ0;P0) =
1√
π

{

1√
π
+ η0e

η2

0 [1 + erf(η0)]

}

e−
P2
0

2 ,

(5)

where η0 = P0/
√
2 cos 2(θ − θ0) and erf is the Gaussian

error function.

5. RESULTS

5.1. Stellar polarizations

All polarization measurements are available in the on-

line table accompanying the paper. We present the first

two rows in Table 2. We investigate the statistical prop-

erties of the measurements in Figure 4. The distribution
of p/σp (left panel, gray line) shows that the majority of

our measurements are significant detections, with 78% of

the values lying above a SNRp of 3. The σp distribution

1 The polarization angle θ is calculated using the two-argument
arctangent to lift the π ambiguity, and is measured according to
the IAU convention.
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Figure 4. Measured stellar polarizations. Left: Distribution of debiased fractional linear polarizations (pd) (bottom
axis) for the stars in the 2-Cloud region (black line) and 1-Cloud region (red line), as well as p/σp for all stars (gray line,

top axis). The errors σp contain both statistical and systematic uncertainties. Middle: Distribution of polarization

angles, θ, in the 2-Cloud region (black) and 1-Cloud region (red). Right: θ versus p for sources that lie within the

2-Cloud region (black circles) and for those in the 1-Cloud region (red squares). The green points mark the outliers
defined in section 5.1.

Table 2. Catalogue of stellar polarization measurements (full table online).

USNO-B1 ID R.A. (◦) Dec (◦) q σq u σu p σp pd θ(◦) σθ(
◦)

1620-0140825 294.78657 72.08941 0.00397 0.00820 -0.00413 0.01086 0.00573 0.00967 0.00333 -23.0 49.8

1618-0137841 295.37764 71.84215 0.00975 0.00421 -0.01561 0.00355 0.01841 0.00375 0.01803 -29.0 6.0

Note— The table lists only the first 2 sources. It is published in its entirety in machine-readable format. A portion is shown
here for guidance regarding its form and content.

(not shown) has a mean of 0.46% and a standard devi-

ation of 0.17%. Hence, our measurements are photon-

noise-limited, as the systematic uncertainty is at the

much lower level of 0.1% (section 4). Only two sources
have uncertainties for which the systematic uncertainty

has a significant contribution (their quoted uncertainty

is σp < 0.14%).

The distribution of pd in the 2-Cloud region (Figure 4,

left panel, black line) has a mean value of 1.6%, slightly
less than that found in the 1-Cloud region (1.9%, Figure

4, left panel, red line). The distribution of θ (Figure 4,

middle panel) is strongly peaked in both regions with a

standard deviation of 17◦ and 14◦ in the 2- and 1- Cloud
regions, respectively, and a mean of ∼-25◦. The mean

θ differs by only 2◦ between the two regions. There are

a few outliers which lie further than 3 standard devia-

tions from the mean and are easily identifiable as a tail

towards large angles. Such significantly divergent mea-
surements may arise if some subset of these sources is

tracing a different fraction of the total column (e.g. they

may be foreground to the clouds) and/or if there is in-

trinsic polarization associated with some of the sources.
The p-θ plane (Figure 4, right panel) enables more de-

tailed inspection of the characteristics of our measure-

ments. Sources in the 2-Cloud and 1-Cloud regions are

marked separately (black circles and red squares, respec-

tively). The majority of measurements are clustered at
high p and negative θ. There are seven sources which

clearly deviate from the bulk of the points (all at θ >

0◦). Of these sources, all but one are not significant de-

tections (p/σp < 3). The two sources marked with green

lie at distances further than 2 kpc, while the remaining
sources are all nearby (within 360 pc) and are foreground

sources (Section 5.2).

The deviant θ of the two distant sources (green points

in Figure 4, right panel) are most likely a sign of intrin-
sic polarization. We could not find auxiliary evidence

of intrinsic polarization for either source (USNO-B1 ID:

1622-0145399, R.A. = 19h 38m 12.59s, Dec: 72◦ 14′10.8′′,

and USNO-B1 ID: 1622-0145176, R.A. = 19h 36m 21.29s,

Dec = 72◦ 16′01.7′′, J2000). We treat these sources as
intrinsically polarized candidates and do not use them in

the subsequent analysis.

Figure 5 shows the measurements on the plane of the

sky. The background image is the NHI of the LVC and
the gray contour marks the edge of the IVC, defined at
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Figure 5. Stellar polarization measurements overplotted

on the NHI map of the LVC. The position of each star is
shown with a circle (black: 2-Cloud region, red: 1-Cloud

region). The θ of each star is shown by the orientation

of a line segment centered on the star. We do not show

segments for stars with p/σp < 3, which have large uncer-
tainties in θ. The length of the segments is proportional

to p. A line of p = 1% is shown on the top left corner

for scale (white segment). The gray contour outlines the

emission of the IVC, at a level of NHI = 1.35×1020 cm−2.

The large black and red circles enclose the 2-Cloud and
1-Cloud regions, respectively. The green points mark the

outliers defined in section 5.1

a level of NHI = 1.35× 1020 cm−2. To increase the num-

ber of measurements in the 2-Cloud sample, we observed

some stars that lay slightly outside the region marked

with the black circle. All stars that lie within the IVC
contour are assigned to the 2-Cloud region (shown as

black filled circles). The linear segments (for all stars

p/σp > 3) form an angle θ compared to the celestial

reference frame. As expected from the distributions of θ
(Figure 4, middle) the measured polarization angles form

an ordered pattern with no apparent variation between

the 1-Cloud and 2-Cloud regions. This is consistent with

our expectation that the LVC is dominating the signal in

polarization, as is the case in HI emission (Section 2).

5.2. Stellar polarization versus distance

Though stellar polarizations do not show marked sta-

tistical differences as a function of position on the plane
of the sky, the situation may change by adding the in-

formation of stellar distance. Figure 6 shows the debi-

ased fractional linear polarization, pd, (top) and polariza-

tion angle, θ, (bottom) versus the maximum likelihood

stellar distance from the catalogue of Bailer-Jones et al.

(2018). Stars at large distances (17 in total) are shown
at a distance of 3 kpc without their distance uncertain-

ties to facilitate visualization. The eight stars nearest

to the Sun are not significantly detected in polarization

(p/σp < 3). At further distances we find a systematic

change in both the p and θ of stars. The values of p are
systematically higher and those of θ cluster around -24◦.

This behaviour reflects the effect of the nearest cloud,

the LVC. This abrupt change allows us to pinpoint the

distance to the cloud with relatively high accuracy.
The sixth nearest star, which is at a distance of 346-

352 pc and is clearly unpolarized, sets a lower bound on

the distance to the LVC at 352 pc. Though the seventh

nearest star has p/σp = 1.8, its θ seems to agree with

that of further away stars. We cannot be certain that it
is background to the cloud. It lies at a distance of 367-

372 pc. The ninth nearest star is significantly polarized

(p/σp = 6) and lies at 366-416 pc and the tenth nearest

star lies at 387-393 pc. The LVC cannot lie further than
∼ 400 pc, otherwise these two stars should also be unpo-

larized. Therefore the distance to the LVC is determined

to be within dLV C = 352− 393 pc. For the remainder of

this work we take the coincidence of the seventh nearest

star’s θ with the rest of the polarization angles as evi-
dence that it is background to the cloud. We therefore

adopt a distance of 360 pc as the nominal distance to the

cloud.

At larger distances, there is no apparent shift in the
properties of either p or θ in the 2-Cloud region. This is

consistent with our expectation that the LVC will domi-

nate the polarization properties in the region, thus mak-

ing it very difficult to discern an effect of the IVC on

the line-of-sight-averaged polarization. The 1-Cloud re-
gion data also do not show any features with distance,

as expected.

5.3. The polarizing properties of each cloud

Having a precise distance to the nearby cloud (Section
5.2) we proceed to disentangle the effect of the two clouds

on the measured polarization signal. This cannot be done

on a star-by-star basis, so we consider ensembles of stars

to infer the average polarization properties due to each

cloud.
The task of decomposing the polarization properties

along the line-of-sight is greatly facilitated by the fact

that interstellar-induced p in the optical is small (typ-

ically < 10%). In this limit of low polarization, the
Stokes parameters q and u are additive. Suppose that

two clouds2 exist along the line-of-sight, cloud A lies fur-

2 We will refer to a polarizing medium with well-defined mean
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Figure 6. Fractional linear polarization debiased using equation 2 (pd), top, and polarization angle (θ), bottom, versus

distance for the stars in our sample. Symbols as in Figure 4. Stars with distances further than 3 kpc have been shifted
to 3 kpc for better visualization. The dashed vertical line marks our estimate for the distance of the LVC (360 pc).

Three of the 196 sources are not shown because they have undefined distances. The green points mark the outliers

defined in section 5.1. In the top panel, 2σ upper limits are shown for measurements with pd/σp < 3.

ther from the observer than cloud B. Clouds A and B in-

duce polarization (on unpolarized light passing through

a specific position of the cloud) described by Stokes pa-

rameters qA, uA and qB, uB, respectively. Then, a light
beam that is transmitted through cloud A and subse-

quently through cloud B acquires a final polarization de-

scribed by qA+ qB, uA+uB (for a more detailed analysis

of the equations leading to this conclusion, see e.g. the
appendix of Patat et al. 2010).

Since there are two dominant clouds in the 2-Cloud re-

gion, there will be three populations of stars: foreground

to both clouds (group 0), inter-cloud (group 1) and back-

ground to both clouds (group 2). The first are easy to
distinguish from their negligible p, as we have seen in

Section 5.2. With no exact distance to the second cloud,

we cannot disentangle the two remaining populations.

What we can do, is to assume a likely distance to the
second cloud and calculate the decomposed mean polar-

ization properties of each cloud under this assumption.

In the following we shall evaluate how these properties

depend on this assumption.

Let us assume a distance dIV C to the IVC. All stars

magnetic field orientation and polarizing efficiency as a ‘cloud’.

with distances in the range [360 pc, dIV C) are assigned

to group 1. All that lie further than dIV C are assigned

to group 2. We find the weighted mean q and u in

group 1 (〈q〉LV C , 〈u〉LV C) and in group 2 (〈q〉IV C+LV C ,
〈u〉IV C+LV C). Then the mean q and u associated with

the IVC only are:

〈q〉IV C = 〈q〉IV C+LV C − 〈q〉LV C

〈u〉IV C = 〈u〉IV C+LV C − 〈u〉LV C . (6)

These are used to calculate the mean polarization an-

gle and fractional linear polarization (and associated un-

certainties) of the LVC (〈θ〉LV C , 〈p〉LV C) and the IVC
(〈θ〉IV C , 〈p〉IV C), from equations (1), (3) and (4).

The first assumed dIV C is set so that 10 stars are as-

signed to group 1 in order to obtain a statistically mean-

ingful result for the mean polarizing properties of the

LVC. Subsequent dIV C are assumed in steps of 10 stars.
The results remain within the uncertainties if we instead

select a step value of 5 or 15 (however, the uncertain-

ties in the first case are larger). We perform the same

analysis on the 1-Cloud sample.
The inferred properties of the mean polarization of

each cloud for all assumed dIV C are shown in Figure
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Figure 7. Average polarization properties of the LVC (left) and IVC (right) after decomposition for different adopted

distances to the IVC (dIV C). From top to bottom: signal-to-noise ratio of 〈p〉d, 〈p〉d, 〈θ〉. Black points refer to the
2-Cloud region while red refer to the 1-Cloud region. In the top panels, dashed and dotted lines show the effect of the

uncertainty of 〈p〉d on the SNR〈p〉d, assuming a constant 〈p〉d as described in the text (red corresponds to the 1-Cloud

region and black to the 2-Cloud region). In the middle panel, significant measurements of 〈p〉d are shown with their

1σ uncertainties, while 2σ upper limits are shown for measurements with SNR〈p〉d < 3. Black solid lines show the

〈p〉d (middle panel) and 〈θ〉 (bottom panel) found in the 2-Cloud region for the dIV C where SNR〈p〉d is maximum,
while the gray bands mark the corresponding uncertainty.

7. The assumed distances of the IVC are in the range of

620 pc to 3.1 kpc. At distances less than 620 pc there

are too few stars to be assigned to group 1, while at dis-
tances larger than 3.1 kpc there are too few stars to be

assigned to group 2.

For all dIV C , we find a highly significant (debiased)

mean fractional linear polarization of the LVC, 〈p〉LV C
d ,

(top left panel, Figure 7). The signal-to-noise ratio of

〈p〉LV C
d (SNR〈p〉LV C

d ) is higher than 18. This is the case

for calculations done with 2-Cloud sample stars (black

circles) and with 1-Cloud sample stars (red circles). The

〈p〉LV C
d remain constant for all dIV C (middle left panel).

The same holds for the 〈θ〉LV C (bottom left panel). Our

choice of dIV C does not affect the mean polarization

properties of the LVC. We note that the two regions dif-

fer in their 〈p〉LV C
d . This is consistent with the fact that

in the 1-Cloud region the LVC NHI is slightly higher

than that in the 2-Cloud region (see also Section 6.1).

The increase of SNR〈p〉LVC
d with dIV C (top left panel,

Figure 7) is caused by the reduction of the uncertainty

on 〈p〉LV C
d . At larger dIV C , more stars are assigned to

group 1, resulting in a reduced error on the ensemble

average. We show that this is indeed the case in the

top left panel of Figure 7. We assume a constant value
for 〈p〉LV C

d (equal to that found at the distance where

the maximum SNR〈p〉LVC
d is achieved: at ∼ 3100 pc for

both regions) and show the ratio of this value over the

measured uncertainty of 〈p〉LV C
d at each dIV C (dashed

lines). The measurements (circles) coincide with these

lines, supporting our conclusion.

The right panels of Figure 7 show the mean polariza-

tion properties inferred for the IVC using equations (6),

(1) and (3) for different assumed dIV C . Here we find a
significant difference between the two samples. From the

2-Cloud sample we find a signal-to-noise ratio of 〈p〉IV C
d

(SNR〈p〉IV C
d ) that depends strongly on dIV C (top right

panel, black circles). At small dIV C , the 〈p〉IV C
d is in-

significant. As dIV C approaches ∼1.5 kpc, we find in-

creasingly significant 〈p〉IV C
d (up to an SNR〈p〉IV C

d of

∼ 4). Then, at larger distances, the SNR〈p〉IV C
d de-

creases. In contrast to this behaviour, the 1-Cloud sam-

ple does not yield any significant detection of 〈p〉IV C
d (top



10

+21.0◦

+22.0◦

+23.0◦

G
a
la
ct
ic

L
a
ti
tu
d
e

103.0◦104.0◦105.0◦
Galactic Longitude

1%

0.6 0.7 0.8 0.9 1.0 1.1

NHI(cm
−2) ×1020

103.0◦104.0◦105.0◦
Galactic Longitude

1%

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

NHI(cm
−2) ×1020

Figure 8. A tomographic view of the mean orientation of the plane-of-the-sky magnetic field in each region. Line

segments show the orientation of the field in the LVC (left, in both regions) and in the IVC (right, in the 2-Cloud
region) and have length proportional to each cloud’s 〈p〉d. The values used are for the dIV C where max SNR〈p〉IV C

d

is achieved (see Figure 7). Circles mark the 2-Cloud (black) and 1-Cloud (red) regions. The background images show

NHI: (left) of the peak LVC emission (from integration within the range [-3.8,-1.2] km s−1), and (right) of the IVC

emission (within the range [-55,-41] km s−1). A line of length 1% is shown on the top right corner of each panel for
scale.

right panel, red circles).

We investigate whether the observed behaviour of

SNR〈p〉IV C
d is a result of changes in the uncertainty of

〈p〉IV C
d as a function of assumed cloud distance. We set

the value of 〈p〉IV C
d equal to that found at the dIV C where

SNR〈p〉IV C
d is maximum (for each region separately) and

calculate the ratio of this value over the measured uncer-

tainty of 〈p〉IV C
d at each dIV C . The ratio is shown by the

dashed lines in the top right panel of Figure 7. By com-

paring the points in the 2-Cloud region (black circles) to

the black dashed line it is clear that the observed varia-

tion of SNR〈p〉IV C
d cannot be explained by a change in

the uncertainties (which result from the distribution of

stars along the line of sight). In particular, between 1

and 2 kpc the uncertainty remains approximately con-

stant, while the SNR〈p〉IV C
d increases significantly from

2 to 4. This would result from the presence of the IVC

affecting the polarization of stars at these distances.

In order to determine whether it is indeed the IVC

that is causing the significant detection of 〈p〉IV C
d , we

look to the results in 1-Cloud region. Here, we do not
detect significant 〈p〉IV C

d for any dIV C . The dotted red

line in the top right panel of Figure 7 shows the ratio of

〈p〉IV C
d found in the 2-Cloud region at the dIV C where

SNR〈p〉IV C
d is maximum (〈p〉IV C

d = 0.29 ± 0.08(%) at
dIV C = 1695 pc) over the uncertainty on 〈p〉IV C for each

dIV C in the 1-Cloud region. If the IVC were to induce

〈p〉IV C
d at the level found in the 2-Cloud region, we would

expect to find a 3σ detection within 1.5 kpc. This is not
the case, as the observed SNR〈p〉IV C

d are below 2 for all

dIV C . Since the IVC HI emission is significant in the

2-Cloud region but suppressed in the 1-Cloud region, we

conclude that we have detected the signature of the IVC

in the 2-Cloud region.
The middle and bottom panels on the right (Figure 7)

show the 〈p〉IV C
d and 〈θ〉IV C for different dIV C . For the

2-Cloud region, both quantities are consistent within 1

σ for all assumed distances to the IVC. The 〈p〉IV C
d is

at the level of 0.29% (for the dIV C where SNR〈p〉IV C

is maximal), a mere 18% of that caused by the LVC in

the 2-Cloud region (1.65%). With such a difference in

amplitude, it is not surprising that the effect of the IVC
was not obvious when inspecting individual stellar polar-

izations with distance in Figure 6. Only upper limits on

〈p〉IV C can be placed in the 1-Cloud region.

The IVC differs not only in p from the LVC, but

also in θ. With 〈θ〉IV C 36◦± 8◦ (for the dIV C where
SNR〈p〉IV C

d is maximal), the IVC mean plane-of-the-

sky magnetic field in the 2-Cloud region forms an angle

of ∼ 60◦ with that of the LVC (-27◦±1◦). Figure 8 shows

the mean polarization properties of each cloud (after de-
composition) on the plane of the sky. On the left, the line
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segments have length proportional to 〈p〉LV C
d (found in

each region) and show the orientation of the mean (plane-

of-the-sky) magnetic field of the LVC, as measured by

θLV C . We use the values for 〈p〉LV C
d and 〈θ〉LV C found

at the dIV C with the maximally significant detection of

〈p〉IV C
d . The segment on the right shows the mean mag-

netic field orientation of the IVC (〈θ〉IV C
d ) and is on the

same scale as the segments in the left panel.

The 〈θ〉LV C and 〈θ〉IV C give the orientation of the
mean plane-of-the-sky magnetic field in each cloud. This

can be compared to the cloud morphology seen in NHI.

The orientation of the HI emission of the IVC in the 2-

Cloud region seems to follow the mean (plane-of-the-sky)
magnetic field of the IVC. In the case of the LVC, we find

the 〈θ〉LV C in both regions to be aligned with the mor-

phology of the emission within the velocity range where

the HI spectrum peaks [-3.8,-1.2] km s−1. The back-

ground image in the left panel of Figure 8 shows the NHI

from integrating within ±1 velocity channel from the lo-

cation of the Tb peak.

These findings are in agreement with the statistical

alignment found between elongated structures in the dif-
fuse ISM and the plane-of-the-sky magnetic field orienta-

tion (with data covering a large sky fraction Clark et al.

2014; Planck Collaboration 2016a). Measures of the

magnetic field orientation used in these works integrate

along the line-of-sight (partially for starlight polarization
and out to infinity for the polarization of dust emission).

As a result, part of the observed spread in the relative

orientation between matter and the magnetic field results

from line-of-sight confusion. By applying a decomposi-
tion of the plane-of-the-sky magnetic field as a function

of distance, as we have presented in this analysis, in a

much larger sky fraction, this statistical correlation may

become stronger.

5.4. Distance to the IVC from maximum SNR〈p〉IV C
d

In Section 5.3 we found that the SNR〈p〉IV C
d varies

with the assumed distance to the IVC. The gradual in-
crease of SNR〈p〉IV C

d in the 2-Cloud region as a function

of dIV C and its subsequent decline (as well as the absence

of this effect in the 1-Cloud region) makes it possible to

constrain the distance to the IVC.
In Appendix A we show analytically that the maxi-

mum SNR〈p〉IV C occurs when the assumed distance to

the IVC coincides with the true distance to the cloud

(assuming a simplified distribution of measurement un-

certainties). This can be understood intuitively, as at
the true distance to the IVC the following two condi-

tions are met: (a) the sample of stars used to determine

the polarization properties of the IVC is free of contam-

ination from sources that are foreground to the cloud
(which are erroneously assigned to background sources,

or group 2, at smaller assumed cloud distances), and (b)
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Figure 9. Evaluation of the maximum SNR〈p〉IV C as a

predictor of the true properties of the IVC from 5000 re-
alizations of the two-cloud model described in the text.

Distributions of the difference between the predicted and

true (top) distance to the cloud, (middle) mean fractional

linear polarization, and (bottom) mean polarization an-

gle. In all panels the solid gray line marks the median of
the distribution and the dashed lines bracket the range

within ± 1 standard deviation.

the maximum number of stars that are truly background

to the cloud are used to calculate the ensemble average
(at larger assumed cloud distances some stars that are in

fact background to the IVC are erroneously assigned to

the sample of foreground stars, or group 1).

In this section, we evaluate the SNR〈p〉IV C
d as a dis-

tance indicator. To this end, we perform Monte Carlo

simulations by creating mock observations of starlight

polarization in the presence of two clouds with known

distances. The first cloud is taken to lie at the distance

of the LVC (360 pc). The second cloud is placed at dis-
tances in the range [700 pc, 2500 pc] in steps of 200 pc.

The first and second cloud are taken to have mean 〈p〉
and 〈θ〉 equal to those found for the LVC and IVC, re-

spectively (Section 5.3). We assume that p and θ do not
vary within the cloud, so that any variation will arise

from measurement uncertainties.
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In each iteration of the model, we generate 103 mea-

surements of starlight p and θ (corresponding to the same

sample size as in the 2-Cloud region) as follows. The stars

are assigned the same distances and the same total un-
certainty in q and u as in the observed sample. Each star

i that is background to the first cloud, but foreground to

the second cloud is assigned a qLV C
i (and uLVC

i ) drawn

from a Gaussian distribution with mean equal to 〈q〉LV C

(〈u〉LV C) and standard deviation equal to σq,i (σu,i).
Each star that is background to both clouds is assigned

a total qi = qLV C
i + qIV C

i (and ui = uLVC
i + uIV C

i ). We

draw qLV C
i (uLV C

i ) from a Gaussian distribution with

mean equal to 〈q〉LV C (〈u〉LV C) and standard deviation
equal to σq,i/

√
2 (σu,i/

√
2). The qIV C

i (uIV C
i ) are drawn

from a Gaussian with mean 〈q〉IV C (〈u〉IV C) and stan-

dard deviation equal to σq,i/
√
2 (σu,i/

√
2). We select

the standard deviation of the distribution so that the fi-

nal uncertainty of this measurement (
√

σ2
q,i/2 + σ2

q,i/2)

is equal to the observed σq,i (and similarly for σu,i).

Then, we follow the process outlined in Section 5.3:

we assume different distances to the second cloud (in

distance steps of 10 stars), assign stars to two groups,
and compute the ensemble average 〈q〉 and 〈u〉 of each

group. Finally, we find the mean polarization proper-

ties of the first and second cloud (decomposed along

the line of sight). For each iteration, we find the as-

sumed distance to the second cloud, dIV C
pspmax, where the

SNR〈p〉IV C
d of the mock dataset is maximum, as well as

the fractional linear polarization and polarization angle

of the second cloud at that assumed distance (〈p〉IV C
pspmax

and 〈θ〉IV C
pspmax).

We compare these quantities with the true properties

of the second cloud (dIV C
true , 〈p〉IV C

true , 〈θ〉IV C
true ) in Figure 9,

which shows results from 5000 iterations of the model.

The distance where SNR〈p〉IV C
d is maximum is a good

indicator of the true distance for our simulations (top
panel, Figure 9). The distribution of dIV C

pspmax− dIV C
true has

a median of -13 pc and a standard deviation of 440 pc.

The standard deviation is slightly larger than the typical

sampling of ∼ 200− 300 pc in dIV C (corresponding to a
step of 10 stars in our sample).

The average polarization properties of the second cloud

are accurately recovered at the assumed distance dIV C
pspmax

(middle and bottom panels, Figure 9). The standard de-

viation of the distribution of 〈p〉IV C
pspmax−〈p〉IV C

true is compa-
rable to the uncertainty of the observed 〈p〉IV C (0.082%

compared to 0.075%). In the case of the distribution of

〈θ〉IV C
pspmax − 〈θ〉IV C

true , the standard deviation is twice as

much as the uncertainty of 〈θ〉IV C (16◦ compared to 8◦).
The spread of the distribution of dIV C

pspmax−dIV C
true can be

used as an estimate of the accuracy of the method in de-

termining the true distance to the cloud. This spread de-

pends slightly on the choice of distance sampling. When

performing the tomographic decomposition, we assumed

cloud distances with a step of 10 stars. If we change

this value to 30 stars, the standard deviation of the dis-

tribution of dIV C
pspmax − dIV C

true increases by 15%, as one
would expect due to the coarser sampling. The median

of the distribution shifts by 100 pc (from -13 to -96 pc).

The median and standard deviation of the distribution

of 〈p〉IV C
pspmax−〈p〉IV C

true and 〈θ〉IV C
pspmax−〈θ〉IV C

true vary by less

than 15%.
he accuracy of dIV C

pspmax as an indicator of the true dis-

tance to the cloud depends on dIV C
true . At small dIV C

true ,

the distribution of dIV C
pspmax − dIV C

true is asymmetric with a

long tail towards larger values. The opposite happens at
large dIV C

true (a tail develops towards smaller values). This

is most likely due to the distribution of stellar distances

in our sample, which peaks at ∼ 1 kpc. To evaluate

the accuracy of this method in situations with different

cloud properties, and different stellar distance distribu-
tions, further work is needed.

The tests presented here show that, for the specific

case of the observed 2-Cloud region, the dIV C
pspmax can be

used to constrain the true distance to the IVC. Since the
maximum SNR〈p〉IV C is found at ∼ 1700 pc, and our

tests show a typical uncertainty (standard deviation of

dIV C
pspmax − dIV C

true ) of 440 pc, we conclude that the IVC is

most likely located within the range ∼[1250 - 2140] pc.

6. DISCUSSION

6.1. Mean polarizing efficiency of the two clouds

Measurements of p for individual stars are bounded

by an upper envelope with respect to reddening, E(B-V)

(Hiltner 1956):

pmax = 9E(B−V)(%/mag), (7)

which describes the maximum polarizing efficiency of

the ISM per unit dust column. Recently, Skalidis et al.

(2018) presented evidence that this upper envelope differs

at very low extinction. The upper envelope was revised

by Planck Collaboration (2018a) using the polarization
measurements of Berdyugin et al. (2014) for stars within

600 pc at high-Galactic latitude and Planck3 sub-mm po-

larization. They propose pmax = 13E(B−V)(%/mag).

With our tomographic decomposition of the polariza-
tion properties of the IVC and LVC, we can compare the

effectiveness of these two individual clouds in polarizing

starlight to the aforementioned line-of-sight-integrated

relations. We will therefore compare the average p found

3
Planck (http://www.esa.int/Planck) is a project of the Euro-

pean Space Agency (ESA) with instruments provided by two scien-
tific consortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors provided
through a collaboration between ESA and a scientific consortium
led and funded by Denmark, and additional contributions from
NASA (USA).
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Table 3. Properties of the clouds in the 2-Cloud and 1-Cloud regionsa

Region (vel. component) Velocity range NHI × 1020 E(B− V)HI E(B− V)d
E(B−V)HI

E(B−V)d,los
fmol

(km s−1) (cm−2) (mag) within 2mmag (mag) ±0.01

2-Cloud (IVC) [-55, -41] 1.8 0.02 ≥ 0.02 0.10 ≥ 0

2-Cloud (LVC) [-12, 5] 3.5 0.04 ≤ 0.16 0.19 ≤ 0.75

2-Cloud (entire los) [-600, 600] 8.2 0.09 0.21 0.45 −

1-Cloud (IVC) [-55, -41] 0.9 0.01 0.01 0.05 ∼ 0

1-Cloud (LVC) [-12, 5] 4.0 0.05 0.18 0.20 0.75

1-Cloud (entire los) [-600, 600] 7.8 0.09 0.23 0.40 −
aE(B-V)HI is the reddening derived from NHI, and E(B-V)d is the total reddening for the specified component, and E(B− V)d,los is the

total reddening of the sightline. For details see appendix B.

in section 5.3 to the average reddening in the observed

regions.

In the diffuse ISM, reddening is well correlated with

the hydrogen column density, NHI (e.g. Bohlin et al.
1978). We can therefore use the HI emission data from

the HI4PI survey (Section 2), to obtain an estimate of

the reddening caused by each cloud separately. By in-

tegrating the HI emission over the range of velocities

of the IVC, and the LVC, we find NHI of the order of
∼ 1020cm−2 for both clouds. This column density is

where the transition from atomic to molecular hydrogen

is found to occur (e.g. Gillmon et al. 2006). For this

reason, deriving an estimate of the reddening solely from
NHI may bias the result to lower reddenings. We take

into account auxiliary information from FIR dust emis-

sion from Planck and derive limits on the reddening of

each cloud in Appendix B. The properties of the two

clouds are listed in Table 3.
The unknown distance to the IVC introduces an un-

certainty in the value of 〈p〉 for the LVC and IVC. We

take this into account as follows: We only use the statisti-

cally significant values shown in Figure 7 (〈p〉 /σ〈p〉d
≥ 3).

We show the range of values from min {〈p〉d} − σ〈p〉 to

max {〈p〉d}+ σ〈p〉. In Figure 10, the light blue rectangle

covers the range in 〈p〉d of the IVC. The range of values

for the LVC are shown in black for the 2-Cloud region

and in red for the 1-Cloud region.
We find that both clouds seem to be highly efficient

in polarizing starlight as they fall between the origi-

nal upper envelope of Hiltner (1956) and the revised

one from Planck Collaboration (2018a). These measure-
ments refer to the mean polarization induced by each

cloud. Therefore, each cloud is potentially capable of in-

ducing p higher (and lower) than pmax. The mean polar-

izing efficiencies of the two clouds depend on the molecu-

lar content of the IVC. If the IVC has nonzero molecular
content, its reddening will move towards higher values

while the LVC reddening will be pushed to lower values

(and thus the LVC will be pushed to higher polarizing

efficiencies).
The fact that both clouds are very efficient in polariz-

0.00 0.05 0.10 0.15 0.20

E(B-V) (mag)

0.0
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Figure 10. Polarizing efficiency per cloud. Debiased av-

erage fractional linear polarization 〈p〉d for each cloud
versus average reddening. The extent of the symbols

covers the range of possible values. Light blue: IVC

in the 2-Cloud region. Red: LVC in the 1-Cloud re-

gion. Black: LVC in the 2-Cloud region. The relations

pmax = 9E(B − V) and pmax = 13E(B − V) are shown
with dashed and dotted lines, respectively.

ing starlight can help us constrain some of the physical

properties of the clouds. As shown by Lee & Draine

(1985), ISM-induced p follows the relation:

p = pmaxR
3

2
(
〈

cos2 θ
〉

− 1

3
) cos2 γ, (8)

where pmax reflects the polarizing capability of the dust

grains due to their geometric and chemical characteris-

tics, R quantifies the degree of alignment of the grains
with the magnetic field, γ is the inclination angle be-

tween the magnetic field and the plane of the sky, and

θ is the angle between the direction of the field at any

point along the line of sight and the mean field direction.
The angular brackets denote an average along the line of

sight.
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Table 4. Comparison between properties of polarized thermal dust emission measured by Planck at 353 GHz and
starlight polarization.

Region p353 SNRp353 χgal,353 + 90◦ mean θgal,far Cloud 〈θ〉gal
a

2-Cloud 10% 1.7 45◦ ±18◦ 47◦ ± 1◦ 42◦ − 44◦ (LVC)

87◦ − 132◦ (IVC)

1-Cloud 10% 2.0 43◦ ±15◦ 45◦ ± 1◦ 42◦ − 45◦ (LVC)
aAll angles are measured with respect to the Galactic reference frame (IAU convention), specified by the subscript ‘gal’.

The high mean p of the IVC and LVC therefore sug-

gests that in both clouds the depolarizing factors are min-
imal. First, the 3D magnetic field orientation must lie

close to the plane of the sky (γ ∼ 0). Second, any tan-

gling of the field (variation of the orientation along the

los) must be small. The ordered component of the field

within each cloud must dominate over the random com-
ponent (otherwise fluctuations in the orientation would

be significant). This agrees with our finding that the

magnetic field, as projected on the plane of the sky, is

ordered: the distribution of polarization angles is narrow
Figure 4. Since the LVC is dominating the signal, the or-

dered polarization segments seen in Figure 5 reflect the

strength of the magnetic field in this cloud.

6.2. Comparison to polarized thermal dust emission

from Planck

Since the polarization of starlight in absorption is con-

nected to the polarized thermal emission from dust in the

ISM, we wish to compare our measurements of the mean

optical polarization in the observed regions to those of
the emission from the Planck mission at 353 GHz.

We use the Planck-HFI full mission data at 353 GHz

(Planck Collaboration 2018b), which have a native res-

olution (beam FWHM) of 4.8′ and are sampled on a
HEALPix grid with NSIDE 2048. At this native resolu-

tion, the Planck uncertainties are high. To increase the

SNR, we smooth each map using the SMOOTHING util-

ity of the healpy python library, which performs smooth-

ing in spherical harmonic space. The final angular reso-
lution of the maps is 15′ (FWHM). We downgrade these

smoothed maps from the native NSIDE 2048 to NSIDE

512, resulting in a final pixel angular size of 6.6′. When

smoothing the maps we have not taken into account the
rotation of the celestial reference frame in each pixel,

as discussed in appendix A of Planck Collaboration

(2015a). The effect on the smoothed values of the Stokes

parameters is minimal, as the field under examination

is far from the Galactic poles (b = 22◦) and small in
angular extent.

In each pixel we find the polarized intensity:

P =
√

Q2 + U2, and the polarization angle with re-

spect to the North Galactic Pole (NGP): χgal =
0.5 arctan(−U/Q) (IAU convention), where we use the

two-argument arctangent that lifts the π ambiguity. The

uncertainties on these quantities are found using equa-

tions (B5) and (B4) of (Planck Collaboration 2015a).
Finally, we construct a map of p = P/I353, where I353 is

the total intensity at 353 GHz.

We report the (weighted) mean value of each quan-

tity within the 2-Cloud and 1-Cloud regions in Table 4.

We compare with values obtained from starlight polar-
ization by converting θ to angle with respect to the NGP,

θgal, following Panopoulou et al. (2016). As the Planck

data are integrated along the line of sight, to make a fair

comparison with the optical polarization data we average
over the furthest stars in each region (with distances > 2

kpc). The Table columns are: (1) fractional linear polar-

ization of thermal dust emission (p353 = P353/I353) and

(2) its signal-to-noise ratio (SNRp353 = p353/σp,353); (3)

polarization angle of dust emission, χgal,353 (rotated by
90◦); (4) starlight polarization angle averaged over stars

further than 2 kpc, θgal,far; (5) most likely mean polar-

ization angle of each cloud (〈θ〉gal) from section 5.3.

The SNR in Planck p = P/I353 is quite low (∼2).
The polarization angle found by Planck remains constant

(within the uncertainties) between the two regions. By

rotating by 90◦ to compare with the starlight polariza-

tion data, we find that the Planck polarization angle is

in agreement with the mean θgal found in the two re-
gions. It is also consistent with the mean value found for

the LVC. This is not surprising, as the LVC dust column

is as much as twice that of the IVC (Table 3) and was

found to dominate the signal in starlight polarization.

6.3. Frequency dependence of the dust emission

polarization angle

As the dust emission provides line-of-sight integrated

information, there is no way of detecting the presence of
the two distinct clouds at a single frequency. However,

the existence of these two strikingly different sources of

polarized signal could manifest itself as a variation of the

polarization angle as a function of frequency. This effect,

which has a well-known counterpart in the optical (e.g.
Serkowski 1962; Treanor 1963; Coyne 1974; Martin

1974), has been pointed out by Tassis & Pavlidou (2015)

and discussed in the context of CMB-foreground sub-

traction by various works (e.g. Poh & Dodelson 2017;
Hensley & Bull 2018; Planck Collaboration 2018c). For

a significant difference between the polarization angle at
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different frequencies to occur, two conditions must be

met: the magnetic fields of the two clouds must have sig-

nificantly different orientations projected on the plane of

the sky and the dust temperatures and/or dust emission
spectral indices of the two clouds must not be identical.

The first condition is met in our selected 2-Cloud region:

we have found a difference of ∼ 60◦ between the IVC and

LVC polarization angle.

We can investigate whether the second condition is also
met by invoking supplementary information. To this end,

we use the map of dust temperature, Td, presented in

Planck Collaboration (2016b). This map was derived

by fitting a modified black body (MBB) to each pixel of
the component-separated multi-frequency maps of dust

emission (obtained through the Generalized Needlet In-

ternal Linear Combination −GNILC− method). This

is the highest resolution map of Td and is free of con-

tamination from cosmic infrared background anisotropies
Planck Collaboration (2016b).

Figure 11 (left) presents Td within 1 degree centred

on the 2-Cloud region. The middle panel shows NHI de-

rived from integrating the emission in the area within the
velocity range [-55, -41] km s−1 (where the IVC domi-

nates). The two maps show some degree of spatial corre-

lation (Pearson correlation coefficient = 0.45). The IVC

is outlined by the central gray contour. With further in-

spection one can notice the outline of the IVC towards
the center and right of the field also in the Td image.

The Td map shows a prominent feature running ver-

tically throughout the left portion of the area, outside

the two regions observed in this work. We have searched
for a counterpart in the HI emission, and have found one

within the range of velocities [-30, -20) km s−1. We show

the NHI map of emission integrated in this range in the

right panel of Figure 11.

Both the IVC and this last component seem to have
influenced the single-MBB fit towards yielding higher

temperatures. We note that the LVC covers the entire

area shown in this map. This is a strong indication that

the two clouds appearing in the NHI maps of Figure 11
have Td that is higher from that of the local emission.

One possible interpretation is the existence of abundant

molecular material in the LVC (in contrast to the IVC),

which must produce stronger shielding from the inter-

stellar radiation field compared to the IVC. The anal-
ysis by Planck Collaboration (2011) for a large sample

of IVCs also found these clouds to have higher Td than

local clouds.

Since the IVC is significantly subdominant compared
to the LVC in our selected sightline, the effect of rotation

of the polarization angle with frequency may be difficult

to detect. A more promising case may be that of the

prominent feature at velocities [-30,20) km s−1, as its

effect on the MBB fit is more pronounced than that of the

IVC. This cloud, however, lies outside the areas where we

have measured starlight polarization in this work.

Having found evidence that the temperature of the IVC

differs from that of the LVC, we proceed to estimate the
frequency dependence of the dust emission polarization

angle. We model the total intensity and polarized emis-

sion of each cloud and derive an expression for the po-

larization angle as a function of frequency, ν, and cloud

parameters (namely, the dust temperature and spectral
index in each cloud, TC1

d ,TC2

d , βC1 , βC2 , and the ratio of

polarized intensities of the two clouds rν = PC1

ν /PC2

ν ) in

Appendix C.

We shall examine the frequency dependence of the
polarization simply by estimating the difference be-

tween the polarization angle at two frequencies: 70

GHz and 353 GHz. The former frequency is rel-

evant for CMB-foreground subtraction, as it coin-

cides with the minimum contribution of foregrounds
to the polarized signal of the CMB, as modelled by

Planck Collaboration (2016c). The latter frequency is

that for which the properties of the polarized dust emis-

sion are best understood through measurements from
Planck (Planck Collaboration 2018a). From equation

C6, the difference between the polarization angle of emis-

sion between these two frequencies is:

χ353 − χ70=
1

2
arctan

r353 sin 2χ
IV C + sin 2χLVC

r353 cos 2χIV C + cos 2χLV C

−1

2
arctan

r70 sin 2χ
IV C + sin 2χLV C

r70 cos 2χIV C + cos 2χLV C
.(9)

We have measured the fractional linear polarization p

(in the optical) in each cloud (Section 5.3), which can be

used to infer r353 by means of the ratio of polarized inten-

sity P353 at 353 GHz over p measured in the optical, con-
sidering the following. Recently, Planck Collaboration

(2018a) showed that starlight fractional linear polar-

ization in the V band (pV ) and P353 towards thou-

sands of diffuse sightlines are well correlated: P353/pV =

5.38±0.03 MJy/sr. Thus, when considering ensembles of
sightlines, starlight pV can be used to predict P353. This

relation cannot, however, be taken to hold exactly when

studying individual clouds (two in the case of our se-

lected region). Even in the line-of-sight-integrated data
used in Planck Collaboration (2018a), deviations from

the relation can be seen. There are two factors that can

be causing the observed scatter: (a) a star may not be

tracing the entire sightline and (b) a specific sightline

may contain different dust properties (e.g. temperature,
spectral index) than the sky-averaged values. Factor (a)

is most likely subdominant for the sample used in their

work, as stars were shown to trace ∼80% of the column

of the sightline. Another piece of evidence that supports
the view that P353/pV depends on the specific character-

istics of a cloud is that it is shown to vary as a function
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Figure 11. Evidence for differences in dust temperature along the line of sight. Left: Dust temperature from

Planck Collaboration (2016b). Middle: Column density of HI from the HI4PI data, for the range of velocities of
the IVC [-55, -41] km s−1. Right: Column density of HI, from the HI4PI data for the range of velocities [-30,-20) km

s−1, where a third component of emission is present in part of the map. The gray contour outlines the emission from

the IVC while the black and red circles mark the two regions observed in this work.

Table 5. Values of r353 found by assuming different

relations between P cloud
353 and 〈p〉cloudR .

P cloud
353 (MJy sr−1) r353

PLV C = 5.38 〈p〉LV C

R

P IV C = 5.38 〈p〉IV C

R
0.17

PLV C = 5.38 〈p〉LV C

R
− 0.015

P IV C = 5.38 〈p〉IV C

R
− 0.015 0.001

PLV C = 5.38 〈p〉LV C

R
+ 0.015

P IV C = 5.38 〈p〉IV C

R
− 0.015 0.001

PLV C = 5.38 〈p〉LV C

R
+ 0.015

P IV C = 5.38 〈p〉IV C

R + 0.015 0.29

PLV C = 5.38 〈p〉LV C

R
− 0.015

P IV C = 5.38 〈p〉IV C

R + 0.015 0.41

of column density (for low column densities, Figure 27 of
Planck Collaboration 2018a).

To take the aforementioned into account, we will as-

sume the following two scenaria:

Case A : The ratio of P353/pV is the same in both

clouds and equal to the mean value measured

by Planck Collaboration (2018a) for diffuse sight-

lines: PC1

353/p
C1

V = PC2

353/p
C2

V = 5.38± 0.03 MJy/sr

Case B : The ratio of P353/pV is different in each cloud.

P353 can take values within the range observed for
a given pV (5.38pV±0.015 MJy/sr from Figure 27

of Planck Collaboration 2018a).

Since starlight polarization measured in
the R and V bands varies within 10%

(Serkowski, Mathewson & Ford 1975), we will take

pR = pV for simplicity. We use the subscript R from

now on to refer to optical measurements and distinguish

from the ratio of polarized intensity over total intensity
in emission at frequency ν (pν). We assume that the

ratio P353/pR does not vary within a single cloud, so

that the mean 〈p〉cloudR (measured in Section 5.3) can be

used to predict the mean P cloud
353 .

For case A: PLV C/ 〈p〉LV C
R = P IV C/ 〈p〉IV C

R , and

equation C5 gives r353 = 〈p〉IV C
R / 〈p〉LV C

R = 0.28/1.65 =

0.17. For case B, we take all four combinations of the ex-

treme cases of P cloud353 = 5.38 〈p〉cloudR ± 0.015 MJy/sr.
The values of r353 for all cases are summarized in Table

5.

To evaluate the model, we must assume values for

the dust temperature and spectral index in each cloud.

The dust temperature in the LVC is taken to lie
within the range of observed Td in the 1-Cloud re-

gion TLVC
d,min = 17.3K,TLVC

d,max = 17.9 K. The IVC must

have a higher dust temperature, so TIVC
d,min = TLVC

d,max.

A reasonable upper limit on the dust temperature for

the IVC can be taken from the studies of IVCs in
Planck Collaboration (2011, 2014a): TIVC

d,max = 24 K.

The LVC spectral index can be constrained by use of the

maps published by Planck Collaboration (2016c) and
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Figure 12. Left: Difference between predicted polarization angles of dust emission measured at 353 GHz and at 70

GHz, as a function of the temperature difference between the two clouds. Values are from 1000 realizations of the model
described in Section 6.2. Colours correspond to different values of the difference of cloud spectral indices βIV C−βLV C .

Right: 68 (circles) and 95 (squares) percentiles of the distribution of angle differences between 353 GHz and 70 GHz

for different values of r353, arising from different assumptions for the ratio of polarized intensity in emission over p in

the optical. The case shown on the left panel corresponds to r353 = 0.17.

Planck Collaboration (2016b). In the first map, which

was constructed using the COMMANDER component

separation method, we find a range of values of β in the

1-Cloud region: βLV C
min , βLV C

max = 1.49, 1.58, and a mean

value of 1.53. In the second map, constructed using the
GNILC method, we find βLV C

min , βLV C
max = 1.63, 1.68, and a

mean of 1.64. We thus constrain the βLV C to be in the

range [1.49, 1.68]. For the IVC, we can use values of the

spectral index from Planck Collaboration (2014a). We
take βIV C to be within two standard deviations from

the mean found in Planck Collaboration (2014a), i.e.

βmin, βmax = 1.3, 1.8.

We calculate equation 9 103 times, for r353 = 0.17 (i.e.

for the case where both clouds are taken to have the same
ratio P353/pR. In each realization, the temperature and

spectral index of each cloud are drawn from a uniform

distribution within the aforementioned ranges of values.

Figure 12 (left) shows the results of these calculations.
We find angle differences between −3.6◦ and 1.95◦, with

the 68 and 95 percentiles of the distribution of the ab-

solute difference |χ353 − χ70| being 1.25◦ and 2.3◦, re-

spectively. The angle difference depends slightly on the

temperature difference, TIVC
d − TLVC

d : for a given differ-
ence in β, the angle difference can vary up to is ∼2◦.

There is a much stronger dependence on the difference

in spectral index, βIV C −βLVC : for a given temperature

difference, the angle difference between frequencies can
be as high as ∼5◦.

We investigate how the situation changes when we

loosen our assumption that both clouds share a common

ratio P353/pR in Figure 12 (right). We show the 68 and

95 percentiles of the distribution of |χ353−χ70|, found by

evaluating equation 9 103 times for each of the 5 values

of r353 from Table 5. When the P353/pR is such that it
reduces the contribution of the IVC to the total emission

(r353 < 0.1), we find negligible values for the angle dif-

ference. At higher r353, the relative contribution of the

IVC is increased and this is reflected in the distribution
of angle differences.

Our results show that for the observed region, the dif-

ference between the polarization angle measured at 353

GHz and that at 70 GHz will be at most ∼ 8◦, if the

IVC and LVC have properties within the assumed pa-
rameter ranges. Such a difference cannot be seen with

the existing measurements from Planck, as the statisti-

cal uncertainties are around a factor of 1.5 higher at 353

GHz (Table 4).

6.4. Other estimates for the distance to the LVC and

IVC

In section 5.2 we found the distance to the LVC to be

∼ 360 pc. We wish to compare this estimate with in-
dependent existing data. The 3D dust extinction map

produced by Green et al. (2015, 2018) using a Bayesian

method on Pan-STARRS1 (Kaiser et al. 2010) data al-

lows us to do this.
We selected 19 sightlines, spaced regularly every 10′

(comparable to the typical resolution of dust map at
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Figure 13. Indications for two dust components in the

three-dimensional stellar reddening map of Green et al.
(2018). The inset marks the selected sightlines on the in-

tegrated emission of the IVC HI component. Top panel:

‘Best-fit’ E(B-V) as a function of distance for a number

of sightlines towards the IVC cloud. Bottom panel: Dif-

ferential reddening (∆E(B−V)) for the same sightlines.

these latitudes) in Galactic l and b, to cover the area

of the IVC. As the method used by Green et al. (2018)
is probabilistic, we must choose an estimator to probe

the E(B-V) as a function of distance. We select to show

the ’best-fit’ estimate for each pixel. The uncertainty

is captured by sampling different sightlines. The results

are shown in Figure 13. The method provides a mini-
mum reliable distance, after which there are enough stars

to make a statistically significant inference. This varies

within the sightlines selected. The maximum value found

is 400 pc. On the other end of the distance scale, the
maximum reliable distance is further than 5000 pc.

The presence of a cloud appears as a step in the E(B-

V) versus distance curve (Fig. 13, top panel). As the

reddening of this sightline is quite low, there is significant

variation between the selected sightlines. However, the
majority of sightlines agree on the position of the first

such step. In the bottom panel, we show the numerical

derivative of the E(B-V) curve, ∆E(B−V). A step will

appear as a peak in this plot. There is a clear over-
density of high-∆E(B-V) peaks at ∼ 300 pc. This is most

likely the signature of the LVC and agrees well with our

estimate of the distance to the cloud. The peak E(B-V)

is found to be 0.12-0.14 mag, consistent with our upper

limit of 0.16 in the 2-Cloud region (Table 3).

In most sightlines, secondary peaks are evident. These,
however, do not agree on the magnitude or distance of

the dust component they are probing. Since the IVC has

a very low reddening of 0.02-0.03 mag, this is comparable

with the 25 mmag uncertainty on the optical reddening

values Schlafly et al. (2014). The existence of a sec-
ondary peak in many of the sightlines supports the exis-

tence of the IVC, even if the exact properties of the cloud

cannot be pinpointed. From these sightlines, it appears

that the IVC most likely does not lie further than ∼ 1500
pc (where there are no peaks observed). This is consis-

tent with our estimation of the IVC distance based on

the distance where the maximum SNR〈p〉IV C is found

([1250 - 2140] pc, Section 5.4).

7. SUMMARY

In this work we have demonstrated the technique of

tomographic decomposition of the plane-of-the-sky mag-
netic field using precise starlight polarization measure-

ments in combination with stellar distances inferred from

Gaia. For this demonstration, we selected a region to-

wards the diffuse ISM which contains two distinct clouds
along the line of sight (as evidenced by HI emission). We

have tailored our experiment so that our starlight polar-

ization traces not only the region with two clouds, but

also a control region in which only one cloud is expected

to produce a signal.
With a combination of diverse datasets, we are able

to constrain a number of properties of the clouds. The

local cloud lies at a distance of 352-393 pc, has a mean

fractional linear polarization of 1.65± 0.04 % and a mean
polarization angle of -27◦± 1◦ and causes a mean redden-

ing E(B−V ) ≤ 0.16−0.18 mag. The far cloud is located

at a distance 1250−2140 pc, has a mean fractional linear

polarization of 0.28±0.08%, a mean polarization angle of

36◦± 8◦, and E(B-V)≥ 0.02 mag.
We have presented a new method of estimating the

distance to the far cloud in this region, based on the

dependence of the SNR of the mean fractional linear po-

larization on distance. We have evaluated the accuracy
of the method in recovering the true distance and polar-

ization properties of the far cloud.

Finally, we note that the stark differences between the

properties of the two clouds pose a challenge to the task

of decomposing the magnetic field along the line of sight.
The local cloud dominates the signal (in both extinction

and polarization) making it impossible to distinguish the

effect of the further cloud by simple inspection of the

measurements as a function of distance. By providing
a significant detection of the polarization of the further

cloud, we demonstrate that our method performs well
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even in this particularly difficult situation.
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APPENDIX

A. SNR〈P 〉 AS A PROBE OF THE DISTANCE TO THE FAR CLOUD

In Section 5.3 we inferred the polarization properties of the near (LVC) and far (IVC) clouds averaged over stellar
ensembles. We found the ensemble average Stokes parameters 〈q〉, 〈u〉 resulting from the effect of each cloud (separately)

on starlight and calculated the mean fractional linear polarization 〈p〉 and polarization angle 〈θ〉 with their associated

uncertainties. Since we had no knowledge of the distance to the far cloud, this was performed for different assumed

distances, dIV C . As discussed in Section 5.4, one expects that the maximal confidence in the measurement of the
polarization properties of the far cloud should be obtained when the assumed dIV C coincides with the true distance

to the cloud.

In this appendix we support this intuitive picture with a simplistic mathematical proof. We consider the case of

two clouds lying along the line of sight, as illustrated by the cartoon in Figure 14. The cloud that is nearest to the

observer, Cloud 1 in Figure 14, is denoted as ‘C1’ and that which is further away, Cloud 2 in Figure 14, is denoted as
‘C2’. Stars belong to three groups: Group 0 (foregrounds), Group 1 (between C1 and C2) and Group 2 (backgrounds).

We begin by making a few simplifying assumptions to facilitate the calculations. First, we assume that the ensemble

averages (〈q〉C1, 〈u〉C1) found using stars in Group 1 are a good descriptor of the distribution of q, u generated by Cloud

1, so that 〈q〉C1 = qC1 (and similarly for uC1). Similarly, for stars in Group 2, we assume that 〈q〉C1+〈q〉C2 = qC1+qC2

(equivalently for uC1 + uC2). Second, we make the following assumptions for the measurement uncertainties. Due to

the way that stellar polarizations are measured, a usually valid approximation is that the uncertainty of each stellar

measurement in q is equal to that in u so that: σq,i = σu,i = σi. This is the case for our data as well, with 90% of

measurements having |σq,i−σu,i| < 0.1%. We will be using the common average instead of the weighted average of stars

in Groups 1 and 2 for the following calculations, as this facilitates the interpretation of the final result. The implicit
assumption here is that all stellar measurements are equal, i.e. σi = σ. This seems as a rather crude approximation:

our measurement uncertainties in q and u are distributed with a mean of 0.46% and a standard deviation of 0.2%.

However, the error that we make with this assumption is insignificant, as the mean for both groups is at the level of

1%. As a result of the aforementioned assumptions we obtain:

〈q〉Group
=

N
∑

i=1

qi
N

, 〈u〉Group
=

N
∑

i=1

ui

N
, (A1)

where N is the number of stars in the group under consideration.

We now wish to investigate how the assumed distance to Cloud 2 affects the polarizing properties we infer for this

cloud if we follow the process of decomposition outlined in Section 5.3. We consider the following two cases: (A)

The assumed distance is less than the true distance (e.g. left vertical dashed line in Figure 14) and (B) the assumed
distance is larger than the true distance (e.g. right vertical dashed line in Figure 14).

A.1. Case A: Assumed distance to Cloud 2 is less than true distance

In this case, a number K of stars which in reality lie in Group 1 will be erroneously assigned to Group 2. The mean

properties we find for Cloud 1 will be:

〈q〉C1,A
=

N−K
∑

i=1

qi
N −K

(A2)

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
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Figure A14:. Schematic of the distribution of stars towards a line of sight with 2 clouds (Cloud 1, Cloud 2). The
observer lies towards the left edge of the figure. Each star belongs to one of three groups according to its position

relative to the clouds. Vertical dashed lines mark the two cases discussed in the appendix: A, the assumed distance

to Cloud 2 is less than the true distance and B, the assumed distance is larger than the true distance. Horizontal

brackets in the bottom are labelled by the number of stars in the corresponding distance range. The magnetic fields

of the two clouds are shown with smooth black lines, marked B1 and B2.

(and similarly for u). For Cloud 2 we will find:

〈q〉C1+2,A =
M+K
∑

i=1

qi
M +K

⇒ 〈q〉C1+2,A =
K
∑

i=1

qi
M +K

+
M
∑

i=1

qi
M +K

(A3)

From equation A1 we find
∑K

i=1 qi = K 〈q〉C1. Note that if K is small, the ensemble average will not necessarily equal

the true 〈q〉C1
. However, in this case the effect of the first term in equation A3 will not be significant compared to

the second term which will arise from a much larger number of stars. For Group 2 stars we will have
∑M

i=1 qi =

M(〈q〉C1
+ 〈q〉C2

). Substituting these two expressions into equation A3, we find:

〈q〉C1+2,A =
K 〈q〉C1

M +K
+

M(〈q〉C1
+ 〈q〉C2

)

M +K
(A4)

Next, we calculate the mean Stokes parameters of Cloud 2 only, as in Section 5.3:

〈q〉C2,A
= 〈q〉C1+2,A − 〈q〉C1,A ⇒ 〈q〉C2,A

=
M

M +K
〈q〉C2

, (A5)

where we have used equations A2 and A4. It is easy to see that when the distance to Cloud 2 is chosen correctly
(K=0), we recover the correct value of 〈q〉C2. In fact, when this is the case the final expression obtains its maximum

(absolute) value.

A.2. Case B: Assumed distance to Cloud 2 is larger than true distance

Next, we repeat the analysis for Case B, when the assumed distance to Cloud 2 is larger than the true distance. In

this case there are L stars from Group 2 mis-attributed to Group 1. Following the same reasoning as in case A, we

obtain for the mean of Cloud 1:

〈q〉C1,B
=

N+L
∑

i=1

qi
NL

⇒ 〈q〉C1,B
N+L
∑

i=1

qi
N + L

+

L
∑

i=1

qi
N + L

⇒ 〈q〉C1,B
=

N

N + L
〈q〉C1

+
L

N + L
(〈q〉C1

+ 〈q〉C2
) (A6)
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The mean of Group 2 stars will simply be:

〈q〉C1+2,B
=

M−L
∑

i=1

q

M − L
(A7)

We shall assume here that the average of a random subsample of Group 2 is equal to the average of the whole sample.
This assumption of course will break down in the limit of small numbers. But in this case, M-L=0 and there are very

few stars left to evaluate the properties of Cloud 2. With this assumption, we can rewrite the previous equation as:

〈q〉C1+2,B = 〈q〉C1 + 〈q〉C2 (A8)

Finally, we subtract the effect of Cloud 1 to obtain the mean properties of Cloud 2:

〈q〉C2,B
= 〈q〉C1+2,B − 〈q〉C1,B ⇒ 〈q〉C1+2,B

=

(

1− L

N + L

)

〈q〉C2
(A9)

Once again, the correct value is of course recovered when the assumed distance is equal to the true distance, hence L=0.

But also, it is plain to see that the expression reaches a maximum when this happens. In summary, we have found

that the mean Stokes parameters of Cloud 2 achieve their maximum (absolute) values when the assumed distance to

the cloud is the correct one.

A.3. SNR〈p〉IV C
as a function of assumed cloud distance

The average Stokes parameters are expected to reach their maximum (in absolute value) at the true distance to

the IVC. It follows from equation 1 that the same will hold for the fractional linear polarization. The associated
uncertainties on these values vary by less than 0.06% throughout the range of assumed distances. As a result, the

maximum of the SNR in p is expected to lie at the true distance of the cloud (within our sampling error of 200-300

pc).

In practice, however, we must (and do) include the uncertainties of the measurements in the calculation of the Stokes
parameters for the IVC. The weighted average is not necessarily maximal at the same distance as the unweighted one

used to derive the previous expressions. It is the weighted averages (〈q〉IV C
, 〈u〉IV C

) that go into the calculation

of 〈p〉IV C
. In addition to this, we have ignored the effect of bias on the 〈p〉IV C

, which could have an effect on the

location of the maximum SNR if 〈p〉IV C
were not significantly detected. Section 5.4 evaluates the effectiveness of the

maximum SNR〈p〉IV C
d in detecting the true distance to the cloud without the simplifying assumptions made in this

section.

B. ESTIMATION OF REDDENING FOR THE IVC AND LVC

In this appendix we derive estimates of the mean reddening caused by the IVC and LVC in both observed regions,

used in section 6.1.

In the 2-Cloud region, the IVC has NHI of ∼ 2×1020cm−2, which corresponds to the transition from atomic to

molecular hydrogen (e.g. Gillmon et al. 2006). Consequently, the IVC in this region may contain small amounts of

H2. Evidence for this comes from the fact that the western part of the IVC partially overlaps with cloud number
141 in the catalogue of candidate molecular-IVCs from Roehser et al. (2016) (l= 103.6◦, b=22.5◦). With a molecular

fraction fmol = 2NIVC
H2

/NIVC
H = E(B−V)IVC

H2 /E(B−V)IVC (the ratio of the reddening due to the molecular component

over the total reddening of the IVC), we can write the reddening of the IVC as:

E(B−V)IVC = E(B−V)IVC
HI

1

1− fmol
, (B1)

where E(B−V)IVC
HI is the E(B-V) derived from converting the NIVC

HI to reddening. To this end, we use the relation from

Lenz, Hensley & Doré (2017), which holds for NHI < 4 × 1020cm−2: E(B − V ) = NHI/(8.8 × 1021)mag/cm−2. The
molecular IVCs in the Northern hemisphere sample of Roehser et al. (2016), have low molecular fractions (median

fmol ∼0.5). For lack of additional information on the specific IVC, we choose to place only a lower limit on the reddening

of this cloud, given by fmol = 0. Thus, we obtain for the IVC in the 2-Cloud region: E(B − V)IVC > 0.02mag. The

typical scatter in the conversion from NHI to E(B−V) is 5 mmag and is therefore negligible compared to the uncertainty
introduced by fmol.

With NLVC
HI = 3.5 × 1020cm−2 (3.6 ×1020cm−2 in the 1-Cloud region), the LVC most likely contains a significant

amount of molecular material. The reddening caused by the LVC alone will therefore be:

E(B−V)LVC = E(B−V)LVC
H2

+ E(B−V)LVC
HI , (B2)
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where E(B − V)LVC
H2

is the reddening that arises from the molecular component of the LVC. We can use the total

reddening, inferred for example from thermal dust emission (E(B − V)d), to estimate the reddening that arises from

molecular gas throughout the sightline, E(B−V)H2
:

E(B−V)H2
= E(B− V)d − E(B−V)HI (B3)

where all the values refer to material integrated over the entire line of sight. We note here that in equation B3, we

assume that all the material that is not traced by HI is molecular. Hence we ignore the effect of optically thick HI

emission (as shown by Murray et al. 2018, this is a valid assumption for the local ISM).

We obtain the total extinction AV from the map presented in Planck Collaboration (2016d) and convert to reddening
(E(B−V)d) assuming a ratio of total to selective extinction of RV = 3.1. The map has a pixel size of 1.7′(sampled on a

HEALPix grid of NSIDE 2048) and we use the average extinction within a circular disk centred on both regions with a

radius of 0.16◦. We find E(B−V)d = 0.21mag in the 2-Cloud region (0.23 mag in the 1-Cloud region). Therefore, the

E(B−V)HI of 0.09 mag (integrated over all velocities) accounts for less than half the total reddening of the sightline.
The remaining reddening must arise from the HI-dark (molecular) material. This material is certainly not associated

with the diffuse HI emission that is not part of the IVC or LVC components. While the column density associated with

this emission is comparable to that of the LVC, its source is highly spread out in (velocity) space so that significant

shielding from the radiation field (necessary for the creation of molecular hydrogen) cannot be attained. If the IVC has

zero fmol, then E(B−V)LVC
H2

= E(B−V)H2
and we obtain an upper limit on the reddening of the LVC by substituting

from equation B3 into equation B2: E(B−V)LVC ≤ E(B−V)H2
+E(B−V)LVC

HI . The resulting values for both regions

are shown in Table 3.

In the 1-Cloud region, we can better constrain the reddening of the two components, as the IVC exhibits too low

a column density (NIVC
HI = 0.9 × 1020cm−2) to harbor a significant amount of H2. We can attribute the entirety of

the molecular material in this sightline to the LVC. From the results, shown in Table 3, we deduce that the LVC

has a molecular fraction of fLVC
mol = 0.75. This is in agreement with other LVCs at similar total column densities

(1.6×1021cm−2) found in the study of Planck Collaboration (2011) (their Fig. 20). The molecular fraction found in

the 2-Cloud region (using the upper limit on E(B-V)LV C) is only 1% lower than that found in the 1-Cloud region.

C. DUST EMISSION POLARIZATION ANGLE IN THE CASE OF TWO CLOUDS

In this Appendix we derive the expression used in Section 6.3 for the polarization angle of thermal dust emission in

the case of two components (clouds) lying along the line of sight4. The total intensity of cloud Ci at frequency ν (ICi
ν ,

where i = 1,2) is modelled as a modified gray-body, following e.g. Planck Collaboration (2014b):

ICi

ν ∝ cCi(
ν

ν0
)β

Ci
NCi

H B(ν, TCi), (C1)

where cCi is the dust-to-gas mass ratio in the cloud, ν0 is a reference frequency, βCi is the spectral index of the

power-law dust emissivity, NCi

H the cloud hydrogen column density, and B(ν, TCi) the Planck function for dust at
temperature TCi.

The Stokes parameters QCi
ν and UCi

ν for cloud Ci at frequency ν are given by:

QCi
ν = pCi

ν ICi
ν cos 2χCi, UCi

ν = pCi
ν ICi

ν sin 2χCi5, (C2)

where pCi
ν is the fractional linear polarization of cloud Ci at frequency ν (pCi

ν =
√

(QCi
ν )2 + (UCi

ν )2/ICi
ν ), and χCi

is the polarization angle of the emission (which depends only on the plane-of-sky orientation of the magnetic field
threading the cloud and therefore does not have a frequency dependence).

The emission reaching the observer will have Stokes parameters given by the sum of the signals coming from both

clouds:

Qν = QC1

ν +QC2

ν , Uν = UC1

ν + UC2

ν , (C3)

and so the polarization angle observed will be:

χν =
1

2
arctan

Uν

Qν
⇒ χν =

1

2
arctan

pC1

ν IC1

ν sin 2χC1 + pC2

ν IC2

ν sin 2χC2

pC1

ν IC1

ν cos 2χC1 + pC2

ν IC2

ν cos 2χC2

(C4)

4 Our derivation differs from that of Tassis & Pavlidou (2015) in
that we do not assume the same spectral index for both clouds and
we use the ratio of polarized intensities of the two clouds instead
of the ratio of total intensities.

5 The angle χ is measured according to the IAU convention.
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We define the ratio of the polarized intensities (P =
√

Q2 + U2) of the two clouds as:

rν =
PC1

ν

PC2
ν

=
pC1

ν IC1

ν

pC2
ν IC2

ν

, (C5)

and use this to re-write equation C4 as:

χν =
1

2
arctan

rν sin 2χ
C1 + sin 2χC2

rν cos 2χC1 + cos 2χC2

. (C6)

It is now plain to see from equation C6, that the difference between the polarization angle at two frequencies ν1, ν2
depends on the parameters: χC1 , χC2 , rν1 , rν2 . Since we have measured the plane-of-sky magnetic field orientation in

each cloud (Section 5.3), the first two parameters are known:

χC1 = θLV C + 90◦, χC2 = θIV C + 90◦. (C7)

The parameters rν1 and rν2 depend on pC1

ν , pC2

ν , TC1, TC2, βC1 , βC2 . We can use supplementary information to re-

duce the number of free parameters. Measurements from Planck (Planck Collaboration 2015b) and BLASTPol

(Ashton et al. 2018) show that pν is constant for a wide range of frequencies. Therefore we will take pCi
ν1 = pCi

ν2 .
Since pν = Pν/Iν , equation C5 becomes:

rν2 =
PC1

ν2

PC2

ν2

⇒ rν2 =
PC1

ν1

IC1
ν2

I
C1
ν1

PC2
ν1

I
C2
ν2

I
C2
ν1

⇒ rν2 = rν1
IC1

ν2 IC2

ν1

IC2

ν2 IC1

ν1

⇒

rν2 = rν1
B(ν2, T

C1)

B(ν1, TC2)
(
ν2
ν1

)β
C1 B(ν2, T

C2)

B(ν1, TC2)
(
ν1
ν2

)β
C2

, (C8)

where we have made use of equation C1, under the assumption that the gas-to-mas ratio between the two clouds is

the same (cC1 = cC2).
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