Hierarchical Imitation and Reinforcement Learning

A. Proofs

Proof of Theorem 2. The first term T'CZ;,, should be ob-
vious as the expert inspects the agent’s overall behavior
in each episode. Whenever something goes wrong in an
episode, the expert labels the whole trajectory, incurring
CL . each time. The remaining work is to bound the
number of episodes where agent makes one or more mis-
takes. This quantity is bounded by the number of total mis-
takes made by the halving algorithm, which is at most the
logarithm of the number of candidate functions (policies),
log [Myre | = log (| Mo [191) = log [M]|+|G]log [TT,o|.
This completes the proof. O

Proof of Theorem 1. Similar to the proof of Theorem 2, the
first term T'CZ | is obvious. The second term corresponds
to the situation where Inspectyy,, finds issues. Accord-
ing to Algorithm 2, the expert then labels the subgoals and
also inspects whether each subgoal is accomplished suc-
cessfully, which incurs C% + Hy, C!) cost each time. The
number of times that this situation happens is bounded by
(a) the number of times that a wrong subgoal is chosen,
plus (b) the number of times that all subgoals are good but
at least one of the subpolicies fails to accomplish the sub-
goal. Situation (a) occurs at most log | M| times. In sit-
uation (b), the subgoals chosen in the episode must come
from Gy, and for each of these subgoals the halving algo-
rithm makes at most log |11, o| mistakes. The last term cor-
responds to cost of Label,, operations. This only occurs
when the meta-controller chooses a correct subgoal but the
corresponding subpolicy fails. Similar to previous analy-
sis, this situation occurs at most log |II; ,| for each “good”
subgoal (g € Gop). This completes the proof. O

B. Additional Experimental Details

In our experiments, success rate and external rewards are
reported as the trailing average over previous 100 episodes
of training. For hierarchical imitation learning experiments
in maze navigation domain, the success rate is only mea-
sured on separate test environments not used for training.

In addition to experimental results, in this section we de-
scribe our mechanism for subgoal detection / terminal pred-
icate for Montezuma’s Revenge and how the Maze Naviga-
tion environments are created. Network architectures from
our experiments are in Tables 1 and 2.

B.1. Maze Navigation Domain

We compare hg-DAgger/Q with the hierarchical reinforce-
ment learning baseline (h-DQN, Kulkarni et al., 2016) with
the same network architecture for the meta-controller and
subpolicies as hg-DAgger/Q and similarly enhanced Q-
learning procedure.

hg-DAgger/Q vs. h-DQN

100% (Maze Navigation)

350K
80% =
300K 5
5
£ 60% E
: _. hg-DAeger/Q {200k 3
g sucgss rate S
8
S a0% hg"-DAgger/Q 150K &
I#level IL cost 3
B-DQN 4 100K =
20% |- success rate
h-DQN -4 50K
Hi-Tevel RL samples
0% 0K 35

I i 1 I OK
0K 50K 100K 150K 200K 250K 300K 350K 400K
RL samples at LO-level

Figure 4. Maze navigation: hybrid IL-RL (full task) versus h-
DON (with 50% head-start).

Similar to the Montezuma’s Revenge domain, h-DQN does
not work well for the maze domain. At the HI level, the
planning horizon of 10-12 with 4-5 possible subgoals in
each step is prohibitively difficult for the Hi-level reinforce-
ment learner and we were not able to achieve non-zero re-
wards within in any of our experiments. To make the com-
parison, we attempted to provide additional advantage to
the h-DQN algorithm by giving it some head-start, so we
ran h-DQN with 50% reduction in the horizon, by giving
the hierarchical learner the optimal execution of the first
half of the trajectory. The resulting success rate is in Fig-
ure 4. Note that the hybrid IL-RL does not get the 50%
advantage, but it still quickly outperforms h-DQN, which
flattens out at 30% success rate.

B.1.1. CREATING MAZE NAVIGATION ENVIRONMENTS

We create 2000 maze navigation environments, 1000 of
which are used for training and 1000 maps are used for
testing. The comparison results for maze navigation (e.g.,
Figure 2) are all based on randomly selected environments
among 1000 test maps. See Figure 5 for additional exam-
ples of the environments created. For each map (environ-
ment instance), we start with a 17x17 grid, which are di-
vided into 4 x4 room structure. Initially, no door exists in
between rooms. To create an instance of the maze naviga-
tion environment, the goal block (yellow) and the starting
position are randomly selected (accepted as long as they
are not the same). Next, we randomly select a wall sepa-
rating two different room and replace a random red block
(lava) along this wall with a door (black cell). This process
continues until two conditions are satisfied:

e There is a feasible path between the starting location
and the goal block (yellow)

e The minimum distance between start to goal is at least
40 steps. The optimal path can be constructed using

Hierarchical Imitation and Reinforcement Learning

Figure 5. Maze navigation. Sample random instances of the maze domain (different from main text). The 17 x 17 pixel representation

of the maze is used as input for neural network policies.

graph search

Each of the 2000 environments create must satisfy both
conditions. The expert labels for each environment come
from optimal policy computed via value iteration (which
is fast based on tabular representation of the given grid
world).

B.1.2. HYPERPARAMETERS FOR MAZE NAVIGATION

The network architecture used for maze navigation is de-
scribed in Table 1. The only difference between subgoal
policy networks and metacontroller network is the number
of output class (4 actions versus 5 subgoals). For our hi-
erarchical imitation learning algorithms, we also maintain
a small network along each subgoal policy for subgoal ter-
mination classification (one can also view the subgoal ter-
mination classifier as an extra head of the subgoal policy
network).

The contextual input (state) to the policy networks consists
of 3-channel pixel representation of the maze environment.
We assign different (fixed) values to goal block, agent lo-
cation, agent’s trail and lava blocks. In our hierarchical
imitation learning implementations, the base policy learner
(DAgger and behavior cloning) update the policies every
100 steps using stochastic optimization. We use Adam op-
timizer and learning rate of 0.0005.

Table 1. Network Architecture—Maze Domain

32 filters, kernel size 3, stride 1
32 filters, kernel size 3, stride 1

: Convolutional Layer
: Convolutional Layer

1

2

3: Max Pooling Layer pool size 2

4: Convolutional Layer 64 filters, kernel size 3, stride 1
5: Convolutional Layer 64 filters, kernel size 3, stride 1
6: Max Pooling Layer pool size 2

7: Fully Connected Layer 256 nodes, relu activation

8: Output Layer softmax activation

(dimension 4 for subpolicy,
dimension 5 for meta-controller)

B.2. Montezuma’s Revenge

Although the imitation learning component tends to be sta-
ble and consistent, the samples required by the reinforce-
ment learners can vary between experiments with identical
hyperparameters. In this section, we report additional re-
sults of our hybrid algorithm for the Montezuma’s Revenge
domain.

For the implementation of our hybrid algorithm on the
game Montezuma’s Revenge, we decided to limit the com-
putation to 4 million frames for the LO-level reinforcement
learners (in aggregate across all 4 subpolicies). Out of 100
experiments, 81 out of 100 successfully learn the first 3
subpolicies, 89 out of 100 successfully learn the first 2 sub-
policies. The last subgoal (going from the bottom of the
stairs to open the door) proved to be the most difficult and
almost half of our experiments did not manage to finish
learning the fourth subpolicy within the 4 million frame
limit (see Figure 7 middle pane). The reason mainly has to
do with the longer horizon of subgoal 4 compared to other
three subgoals. Of course, this is a function of the design
of subgoals and one can always try to shorten the horizon
by introducing intermediate subgoals.

However, it is worth pointing out that even as we limit the
h-DQN baseline to only 2 subgoals (up to getting the key),
the h-DQN baseline generally tends to underperform our
proposed hybrid algorithm by a large margin. Even with
the given advantage we confer to our implementation of h-
DQN, all of the h-DQN experiments failed to successfully
master the second subgoal (getting the key). It is instructive
to also examine the sample complexity associated with get-
ting the key (the first positive external reward, see Figure 7
right pane). Here the horizon is sufficiently short to appre-
ciate the difference between having expert feedback at the
HI level versus relying only on reinforcement learning to
train the meta-controller.

The stark difference in learning performance (see Figure 7
right) comes from the fact that the Hi-level expert advice ef-
fectively prevents the LO-level reinforcement learners from

Hierarchical Imitation and Reinforcement Learning

Figure 6. Montezuma’s Revenge: Screenshots of the environment with 4 designated subgoals in sequence.

Best 10 Trials
(hg-DAgger/Q vs. h-DQN)
—— hg-DAgger/Q
h-DQN

—~4.0
<
5 35
5
33.0
o 25
b
3_2.0
E1s
o
1.0
3
80 0.5
e)

>
o

h-DQN

external rewards

1.0M 1.5M 2.0M

]
0.5M
LO-level reinforcement learning samples

0—
0.0M

Subgoals Completion over 100 Trials
(hg-DAgger/Q vs. h-DQN)

—— hg-DAgger/Q

0.0
0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M
LO-level reinforcement learning samples

Learning Curve for Getting Key
(hg-DAgger/Q vs. h-DQN over 100 trials)

80 —— hg-DAgger/Q

h-DQN media
60

40

external rewards

20

0.8M 1.0M

0.6M
LO-level reinforcement learning samples

0 —_— -
0.0M 0.2M 0.4M

Figure 7. Montezuma’s revenge: hybrid IL-RL versus hierarchical RL. (Left) Median reward, min and max across the best 10 trials. The
agent completes the first room in less than 2 million samples. The shaded region corresponds to min and max of the best 10 trials.
(Middle) Median, first and third quartile of subgoal completion rate across 100 trials. The shaded region corresponds to first and third
quartile. (Right) Median, first and third quartile of reward across 100 trials. The shaded region corresponds to first and third quartile.
h-DQN only considers the first two subgoals to simplify the learning task.

Learning Progression (random trial)

Learning Progression (random trial)

Learning Progression (random trial)

100%

100%

2 80% 2 80% 2 80%
g g g
9 60% 2 60% 2 60%
8 a0% 8 a0% & a0%
3 20% 3 20% 3 20%

0% 0% 0%
8 1800K 8 1000K
g%ﬁggﬁ Subgoal 1 Subgoal 1 £ 800K Subgoal 1
a %588& —— Subgoal 2 (key) & 600K —— Subgoal 2 (key)
T %88& —— Subgoal 3 T 400K ——
£ 400K Subgoal-4 ’%ﬁ 2 200K Subgoa door)
S oK 9 S K

OK 1K 2K 3K 4K 5K 6K 7K 8K 0K 1K 2K 3K 4K 5K 0K 1K 2K 3K 4K 5K 6K 7K 8K

episode (Hl-level labeling cost)

episode (HI-level labeling cost)

episode (Hl-level labeling cost)

Figure 8. Montezuma’s revenge: Learning progression of Algorithm 3 in solving the entire first room. The figures show three randomly

selected successful trials.

accumulating bad experience, which is frequently the case
for h-DQN. The potential corruption of experience replay
buffer also implies at in our considered setting, learning
with hierarchical DQN is no easier compared to flat DQN
learning. Hierarchical DQN is thus susceptible to collaps-
ing into the flat learning version.

B.2.1. SUBGOAL DETECTORS FOR MONTEZUMA’S
REVENGE

In principle, the system designer would select the hierar-
chical decomposition that is most convenient for giving
feedback. For Montezuma’s Revenge, we set up four sub-
goals and automatic detectors that make expert feedback
trivial. The subgoals are landmarks that are described by

small rectangles. For example, the door subgoal (subgoal
4) would be represented by a patch of pixel around the right
door (see Figure 6 right). We can detect the correct termi-
nation / attainment of this subgoal by simply counting the
number of pixels inside of the pre-specified box that has
changed in value. Specifically in our case, subgoal comple-
tion is detected if at least 30% of pixels in the landmark’s
detector box changes.

B.2.2. HYPERPARAMETERS FOR MONTEZUMA’S
REVENGE

Neural network architecture used is similar to (Kulkarni
et al., 2016). One difference is that we train a separate
neural network for each subgoal policy, instead of main-

Hierarchical Imitation and Reinforcement Learning

HI-level Expert Cost over 100 Trials
(hg-DAgger/Q)

N
&2}
1

frequency
[y N
o o
- :

—
o
T

o
T

1T 1

6K 8K 10K 12K 14K 16K 18K
HI-level expert cost

o

S
X

Figure 9. Montezuma’s Revenge: Number of HI-level expert la-
bels. Distribution of Hi-level expert labels needed across 100
trials; the histogram excludes 6 outliers whose number of labels
exceeds 20K for ease of visualization

Table 2. Network Architecture—Montezuma’s Revenge

1: Conv. Layer 32 filters, kernel size 8, stride 4, relu
2: Conv. Layer 64 filters, kernel size 4, stride 2, relu
3: Conv. Layer 64 filters, kernel size 3, stride 1, relu
4: Fully Connected 512 nodes, relu,

Layer normal initialization with std 0.01

5: Output Layer linear (dimension 8 for subpolicy,

dimension 4 for meta-controller)

taining a subgoal encoding as part of the input into a pol-
icy neural network that shares representation for multiple
subgoals jointly. Empirically, sharing representation across
multiple subgoals causes the policy performance to degrade
we move from one learned subgoal to the next (a phe-
nomenon of catastrophic forgetting in deep learning liter-
ature). Maintaining each separate neural network for each
subgoal ensures the performance to be stable across sub-
goal sequence. The metacontroller policy network also has
similar architecture. The only difference is the number of
output (4 output classes for metacontroller, versus 8 classes
(actions) for each LO-level policy).

For training the LO-level policy with @Q)-learning, we use
DDQN (Van Hasselt et al., 2016) with prioritized experi-
ence replay (Schaul et al., 2015b) (with prioritization ex-
ponent o = 0.6, importance sampling exponent 8y = 0.4).
Similar to previous deep reinforcement learning work ap-
plied on Atari games, the contextual input (state) consists
of four consecutive frames, each converted to grey scale
and reduced to size 84 x 84 pixels. Frame skip parameter
as part of the Arcade Learning Environment is set to the
default value of 4. The repeated action probability is set to
0, thus the Atari environment is largely deterministic. The
experience memory has capacity of 5S00K. The target net-

work used in Q-learning is updated every 2000 steps. For
stochastic optimization, we use rmsProp with learning rate
of 0.0001, with mini-batch size of 128.

C. Additional Related Work

Imitation Learning. Another dichotomy in imitation
learning, as well as in reinforcement learning, is that of
value-function learning versus policy learning. The for-
mer setting (Abbeel & Ng, 2004; Ziebart et al., 2008) as-
sumes that the optimal (demonstrated) behavior is induced
by maximizing an unknown value function. The goal then
is to learn that value function, which imposes a certain
structure onto the policy class. The latter setting (Daumé
et al., 2009; Ross et al., 2011; Ho & Ermon, 2016) makes
no such structural assumptions and aims to directly fit a
policy whose decisions well imitate the demonstrations.
This latter setting is typically more general but often suf-
fers from higher sample complexity. Our approach is ag-
nostic to this dichotomy and can accommodate both styles
of learning. Some instantiations of our framework allow
for deriving theoretical guarantees, which rely on the policy
learning setting. Sample complexity comparison between
imitation learning and reinforcement learning has not been
studied much in the literature, perhaps with the exception
of the recent analysis of AggreVaTeD (Sun et al., 2017).

Hierarchical Reinforcement Learning. Feudal RL is an-
other hierarchical framework that is similar to how we de-
compose the task hierarchically (Dayan & Hinton, 1993;
Dietterich, 2000; Vezhnevets et al., 2017). In particu-
lar, a feudal system has a manager (similar to our HI-
level learner) and multiple submanagers (similar to our LO-
level learners), and submanagers are given pseudo-rewards
which define the subgoals. Prior work in feudal RL use re-
inforcement learning for both levels; this can require a large
amount of data when one of the levels has a long planning
horizon, which we demonstrate in our experiments. In con-
trast, we propose a more general framework where imita-
tion learners can be used to substitute reinforcement learn-
ers to substantially speed up learning, whenever the right
level of expert feedback is available. Hierarchical policy
classes have been additional studied by He et al. (2010),
Hausknecht & Stone (2016), Zheng et al. (2016), and An-
dreas et al. (2017).

Learning with Weaker Feedback. Our work is motivated
by efficient learning under weak expert feedback. When we
only receive demonstration data at the high level, and must
utilize reinforcement learning at the low level, then our set-
ting can be viewed as an instance of learning under weak
demonstration feedback. The primary other way to elicit
weaker demonstration feedback is with preference-based or
gradient-based learning, studied by Fiirnkranz et al. (2012),
Loftin et al. (2016), and Christiano et al. (2017).

