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Abstract

We study the problem of learning a good search policy from
demonstrations for combinatorial search spaces. We pro-
pose retrospective imitation learning, which, after initial
training by an expert, improves itself by learning from its
own retrospective solutions. That is, when the policy eventu-
ally reaches a feasible solution in a search tree after making
mistakes and backtracks, it retrospectively constructs an im-
proved search trace to the solution by removing backtracks,
which is then used to further train the policy. A key feature of
our approach is that it can iteratively scale up, or transfer, to
larger problem sizes than the initial expert demonstrations,
thus dramatically expanding its applicability beyond that of
conventional imitation learning. We showcase the effective-
ness of our approach on two tasks: synthetic maze solving,
and integer program based risk-aware path planning.

1 Introduction
Many challenging tasks involve traversing a combinato-
rial search space. Examples include branch-and-bound
for constrained optimization problems [Lawler and Wood,
1966], A* search for path planning [Hart et al., 1968] and
game playing, e.g. Go [Silver et al., 2016]. Since the search
space often grows exponentially with problem size, one key
challenge is how to prioritize traversing the search space.
A conventional approach is to manually design heuristics
that exploit specific structural assumptions (cf. [Gonen
and Lehmann, 2000, Holmberg and Yuan, 2000]). However,
this conventional approach is labor intensive and relies on
human experts developing a strong understanding of the
structural properties of some class of problems.

In this paper, we take a learning approach to finding an
effective search heuristic. We cast the problem as policy
learning for sequential decision making, where the envi-
ronment is the combinatorial search problem. Viewed in
this way, a seemingly natural approach to consider is rein-
forcement learning, where the reward comes from finding a
feasible terminal state, e.g. reaching the target in A* search.
However, in our problem, most terminal states are not feasi-
ble, so the reward signal is sparse; hence, we do not expect
reinforcement learning approaches to be effective.

*Equal contribution.
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We instead build upon imitation learning [Ross and Bag-
nell, 2010, Ross et al., 2011, Daumé III et al., 2009, He et al.,
2014], which is a promising paradigm here since an initial
set of solved instances (i.e., demonstrations) can often be
obtained from existing solvers, which we also call experts.
However, obtaining such solved instances can be expen-
sive, especially for large problem instances. Hence, one key
challenge that we address is to avoid repeatedly querying
experts during training.

We propose the retrospective imitation approach, where
the policy can iteratively learn from its own mistakes with-
out repeated expert feedback. Instead, we use a retrospec-
tive oracle to generate feedback by querying the environ-
ment on rolled-out search traces (e.g., which part of the
trace led to a feasible terminal state) to find the shortest
path in hindsight (retrospective optimal trace).

Our approach improves upon previous imitation ap-
proaches [Ross and Bagnell, 2010, Ross et al., 2011, He et al.,
2014] in two aspects. First, our approach iteratively refines
towards solutions that may be higher quality or easier for
the policy to find than the original demonstrations. Second
and more importantly, our approach can scale to larger
problem instances than the original demonstrations, allow-
ing our approach to scale up to problem sizes beyond those
that solvable by the expert, dramatically extending the ap-
plicability beyond that of traditional imitation learning al-
gorithms. We also provide a theoretical characterization for
a restricted setting of the general learning problem.

We evaluate on two environments: A* search to solve
mazes, and risk-aware path planning based on mixed inte-
ger linear programs (MILPs) [Schouwenaars et al., 2001,
Ono and Williams, 2008]. We demonstrate that our ap-
proach improves upon prior imitation learning work [He
et al., 2014] as well as commercial solvers such as Gurobi
(for MILPs). We further demonstrate generalization ability
by learning to solve larger problem instances than con-
tained in the original training data.

In summary, our contributions are

• We propose retrospective imitation, a general learning
framework that can generate feedback for imitation
learning algorithms without repeatedly querying experts.

• We show how retrospective imitation can scale up be-
yond the problem size where demonstrations are avail-

ar
X

iv
:1

80
4.

00
84

6v
3 

 [
cs

.L
G

] 
 5

 O
ct

 2
01

8
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216299201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


able, which significantly expands upon the capabilities
of imitation learning.

• We provide theoretical insights on when retrospective
imitation can provide improvements over imitation
learning, such as when we can reliably scale up.

• We evaluate empirically on two combinatorial search en-
vironments and show improvements over both imitation
learning baselines and off-the-shelf solvers.

2 Related Work
Driven by availability of demonstration data, imitation
learning is an increasingly popular learning paradigm,
whereby a policy is trained to mimic the decision-making
of an expert or oracle [Daumé III et al., 2009, Ross and Bag-
nell, 2010, Ross et al., 2011, Chang et al., 2015]. Existing
approaches often rely on having access to a teacher at train-
ing time to derive learning signals from. In contrast, our
retrospective imitation approach can learn from its own
mistakes as well as train on larger problem instances than
contained in the original supervised training set.

Another popular paradigm for learning for sequential de-
cision making is reinforcement learning (RL) [Sutton and
Barto, 1998], especially with recent success of using deep
learning models as policies [Lillicrap et al., 2015, Mnih et al.,
2015]. One major challenge with RL is effective and stable
learning when rewards are sparse, as in our setting. In con-
trast, the imitation learning reduction paradigm Ross et al.
[2011], Chang et al. [2015] helps alleviate this problem by re-
ducing the learning problem to cost-sensitive classification,
which essentially densifies the reward signals.

Our retrospective imitation approach bears some affinity
to other imitation learning approaches that aim to exceed
the performance of the oracle teacher [Chang et al., 2015].
One key difference is that we are effectively using retrospec-
tive imitation as a form of transfer learning by learning to
solve problem instances of increasing size.

Another paradigm for learning to optimize is to learn a
policy on-the-fly by using the first few iterations of opti-
mization for training Ipek et al. [2008], Khalil et al. [2016].
This requires dense rewards as well as stationarity of opti-
mal behavior throughout the search. Typically, such dense
rewards are surrogates of the true sparse reward. We study
a complementary setting of learning off-line from demon-
strations with sparse environmental rewards.

The policy class used in some of our experiments is in-
spired by recent work combining tree search [Kocsis and
Szepesvári, 2006] with deep learning, e.g., playing Go [Sil-
ver et al., 2016]. Since our search processes are also tree
structured, such policy classes might also work well.

3 Problem Setting & Preliminaries
Learning a Search Policy for Combinatorial Search Prob-
lems. Given a combinatorial search problem instance P , a
policy π (i.e., a search algorithm) must make a sequence
of decisions to traverse a combinatorial search space to
find a (good) feasible solution (e.g., a setting of integer vari-
ables in an integer program that satisfies all constraints
and has good objective value). Given the current “state” st

of the problem, which contains the search history so far
(e.g., a partial assignment of integer variables in an integer
program), the policy chooses an action a to apply to the
current state st (i.e., to extend the current partial solution)
and transitions to a new state st+1. The search process ter-
minates when a complete feasible solution to P is found,
which we also refer to as reaching a terminal state. A typical
objective is to minimize search time to a terminal state. In
general, the transition function is deterministic and known,
but navigating a combinatorial search space to find rare
terminal states solutions is challenging. Given a training
set of problem instances, a learning approach trains π to
perform well on future test problem instances.

Imitation Learning. We build upon the imitation learn-
ing paradigm to learn a good policy. In imitation learning,
there is typically an expert policy πexper t that provides in-
teractive feedback on the trained policy He et al. [2014].
The expert can be a human or an (expensive) solver. How-
ever, a human cannot always be available, or a solver can
be prohibitively expensive. Our approach is based on the
idea that retrospection (with query access to environment)
can also generate feedback. A search trace typically has
many dead ends and backtracking before finding a termi-
nal state. Thus, more efficient search traces (i.e., feedback)
can be retrospectively extracted by removing backtrack-
ing, which forms the core algorithmic innovation of our
retrospective imitation approach. This idea is formalized
in Section 4. Retrospective imitation also enables a form of
transfer learning where our policy can be iteratively trained
to solve larger problems for which the original expert (e.g.,
an existing MILP solver) may be ineffective and collecting
training demonstrations is infeasible, for instance due to
computational complexity.

4 Retrospective Imitation Learning
We now describe the retrospective imitation learning ap-
proach. It is a general framework that can be combined
with a variety of imitation learning algorithms. For clar-
ity of presentation, we instantiate our approach using the
data aggregation algorithm (DAgger) [Ross et al., 2011, He
et al., 2014] and we call the resulting algorithm Retrospec-
tive DAgger. We also include the instantiation with SMILe
[Ross and Bagnell, 2010] in Appendix A. In Section 6, we em-
pirically evaluate retrospective imitation with both DAgger
and SMILe to showcase the generality of our framework.

The ultimate goal of retrospective imitation is to enable
imitation learning algorithms to scale up to problems much
larger than those for which we have expert demonstrations,
which is a significant improvement since conventional imi-
tation learning cannot naturally accomplish this. To accom-
plish this goal, we decompose our general framework into
two steps. First, Algorithm 1 describes our core procedure
for learning on fixed size problems with a crucial retrospec-
tive oracle subroutine (Algorithm 2). Finally, Algorithm 3
describes how to scale up beyond the fixed size.

We will use Figure 1 as a running example. In Figure
1, the search trace is tree-structured, where circular and
diamond nodes represent intermediate and terminal states,
respectively. Numbers in nodes indicate the order visited.
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Figure 1: A visualization of retrospective imitation learning depicting components of Algorithm 1. An imitation learning
policy is initialized from expert traces and is rolled out to generate its own traces. Then the policy is updated according to the
feedback generated by the retrospective oracle. This process is repeated until some termination condition is met.

Algorithm 1: Retrospective DAgger for Fixed Size

1 Inputs:
2 N : number of iterations
3 π1: initially trained on expert traces
4 α: mixing parameter
5 P : a set of problem instances
6 D0: expert traces dataset
7 D = D0
8 for i ← 1 to N do
9 π̂i ←απi + (1−α)πexplor e (optionally explore)

10 run π̂i on P to generate trace τ
11 compute π∗(τ, s) for each terminal state s (Algorithm 2)
12 collect new dataset Di based on π∗(τ, s)
13 update D with Di (i.e., D ← D ∪Di )
14 train πi+1 on D
15 end
16 return best πi on validation

Core Algorithm for Fixed Problem Size. The core learn-
ing procedure is iterative. We assume access to an initial
dataset of expert demonstrations to help bootstrap the
learning process, as described in Line 3 in Algorithm 1 and
depicted in step 1© in Figure 1. In Lines 9-10, the current
policy (potentially blended with an exploration policy) runs
until a termination condition, such as reaching one or more
terminal states, is met. In Figure 1, this is step 2© and 2 ter-
minal states (5 and 11) are found. In Line 11, a retrospective
oracle computes retrospective optimal trace for each termi-
nal state (step 3©). In our example, black nodes form two
retrospective optimal traces: 1 → 2 → 4 → 5 for terminal
state 5 and 1 → 6 → 9 → 10 → 11 for terminal state 11. In

Algorithm 2: Retrospective Oracle for Tree Search

1 Inputs:
2 τ: search tree trace
3 s: terminal state
4 Output:
5 retro_optimal: the retrospective optimal trace
6 while s is not the root do
7 parent ← s.parent
8 retro_optimal(parent) ← s
9 s ← parent

10 end
11 return retro_optimal

Line 12, a new dataset is generated as discussed below. In
Lines 12-14, we imitate the retrospective optimal trace (in
this case using DAgger). We then train a new policy and
repeat the process.

Retrospective Oracle. A retrospective oracle (with query
access to the environment) takes as input a search trace τ
and outputs a retrospective optimal trace π∗(τ, s) for each
terminal state s. Note that optimality is measured with re-
spect to τ, and not globally. That is, based on τ, what is the
best known action sequence to reach a terminal state if we
were asked to solve the same instance again? In Figure 1,
given the initial roll-out trace after step 2© with terminal
states 5 and 11, we know the optimal trace in retrospect to
reach 5 is through 1 → 2 → 4 → 5. In general, π∗(τ, s) will
be shorter than τ. As we aim to minimize the number of
actions taken, π∗(τ, s) is an effective demonstrations. Algo-
rithm 2 shows the retrospective oracle for tree-structured
search. Identifying a retrospective optimal trace given a



Algorithm 3: Retrospective Imitation for Scaling Up

1 Inputs:
2 S1: initial problem size
3 S2: target problem size
4 πS1 : trained on expert data of problem size S1
5 for s ← S1 +1 to S2 do
6 generate problem instances Ps of size s
7 train πs via Alg. 1 by running πs−1 on Ps to generate

initial search traces
8 end

terminal state is equivalent to following parent pointers
until the initial state as this results in the shortest trace.

Design Decisions in Training Data Creation. Algorithm
1 requires specifying how to create each new dataset Di
given the search traces and a retrospective optimal trace.
Intuitively Di should contain mistakes made during roll-
out to reach a terminal state s when comparing to π∗(τ, s).
What constitutes a mistake is influenced by the policy’s
actions. For example, in branch-and-bound, Di ’s contain
data about which nodes should have been selected and
pruned to reach a solution faster. Moreover, we also need to
decide which terminal state(s) to prioritize in the case that
multiple ones are present in τ based on their qualities. See
Section 6 for concrete instantiations of these decisions for
learning search heuristics for solving mazes and learning
branch-and-bound heuristics for solving MILPs.

Scaling Up. The most significant benefit of retrospective
imitation is the ability to scale up to problems of sizes be-
yond those in the initial dataset of expert demonstrations.
Algorithm 3 describes our overall framework, whicht iter-
atively learns to solve increasingly larger instances using
Algorithm 1 as a subroutine. We show in the theoretical
analysis that, under certain assumptions, retrospective imi-
tation is guaranteed able to scale, or transfer, to increasingly
larger problem instances.

Incorporating Exploration. In practice, it can be bene-
ficial to employ some exploration. Exploration is typically
more useful when scaling up to larger problem instances.
We discuss some exploration approaches in Appendix H.

5 Theoretical Results
In this section, we provide theoretical insights on when we
expect retrospective imitation to improve reduction based
imitation learning algorithms, such as DAgger and SMILe.

For simplicity, we regard all terminal states as equally
good so we care about finding one as quickly as possible.
Note that our experiments evaluate settings beyond those
covered in the theoretical analysis. For brevity, all proofs
are deferred to the appendix.

Our analysis builds on a trace inclusion assumption.
That is, the search trace τ1 generated by a trained pol-
icy contains the trace τ2 by an expert policy. This strict
assumption allows us to theoretically characterize guar-
antees provided by retrospective imitation. In practical
experiment it may not be satisfied, but we observe that
the conclusion of our theoretical result still holds up.

For performance metric, we define an error rate ε =
#Non-optimal actions compared to retrospective optimal trace
#Actions to reach a terminal state in retrospective optimal trace to mea-
sure quality of a policy. For example, in Figure 1, the error
rate along the path 1 → 2 → 4 → 5 is 1

3 since there is one
non-optimal move at node 2 (node 3 is explored before
node 4). This leads us to the following proposition stating
that retrospective imitation can effectively scale up and
obtain a lower error rate.

Proposition 1. Assume πS1 is a policy trained using imi-
tation learning on problem size S1. If, during the scaling-
up training process to problems of size S2 > S1, the trained
policy search trace, starting from πS1 , always contains the
expert search trace, then the final error rate εS2 on prob-
lems of size S2 is at most that obtained by running imitation
learning directly on problems of size S2.

Next we analyze how lower error rates impact the num-
ber of actions to reach a terminal state. We restrict ourselves
to decision spaces of size 2: branch to one of its children or
backtrack to its parent. Theorem 2 equates the number of
actions to hitting time for an asymmetric random walk.

Theorem 2. Let π be a trained policy that has an error rate
of ε ∈ (0, 1

2 ) as measured against the retrospective feedback.
Let P be a search problem where the optimal action sequence
has length N . Then the expected number of actions by π to
reach a terminal state is N

1−2ε .

This result connects the error rate with our objective and
implies that lower error rate leads to shorter search time in
expectation. By combining this result with the lower error
rate of retrospective imitation (Proposition 1), we see that
retrospective imitation has a shorter expected search time
than the corresponding imitation learning algorithm. We
provide further analysis on this connection in the appendix.

6 Experimental Results
We empirically validate the generality of our retrospective
imitation technique by instantiating it with two well-known
imitation learning algorithms, DAgger [Ross et al., 2011]
and SMILe [Ross and Bagnell, 2010]. Appendix A describes
how to instantiate retrospective imitation with SMILe in-
stead of DAgger. We showcase the scaling up ability of ret-
rospective imitation by only using demonstrations on the
smallest problem size and scaling up to larger sizes in an
entirely unsupervised fashion through Algorithm 3. We ex-
perimented on two combinatorial search environments:
maze solving with A* search and integer program based
risk-aware path planning [Ono and Williams, 2008]. Code
will be available upon publication.

6.1 Environments and Datasets
Both environments, A* search and integer program based
risk-aware path planning, have combinatorial search
spaces. The latter is particularly challenging and character-
izes a practical combinatorial optimization problem. We
also include additional comparisons using datasets in [He
et al., 2014] in Appendix G for completeness.

Maze Solving with A* Search. We generate random
mazes according to the Kruskal’s algorithm [Kruskal, 1956].



For imitation learning, we use search traces provided by an
A* search procedure equipped with the Manhattan distance
heuristic as initial expert demonstrations.

We experiment on mazes of 5 increasing sizes, from 11×
11 to 31×31. For each size, we use 48 randomly generated
mazes for training, 2 for validation and 100 for testing. We
perform A* search with Manhattan distance as the search
heuristic to generate initial expert traces which are used
to train imitation learning policies. The learning task is
to learn a priority function to decide which locations to
prioritize and show that it leads to more efficient maze
solving. For our retrospective imitation policies, we only
assume access to expert traces of maze size 11× 11 and
learning on subsequent sizes is carried out according to
Algorithm 3. Training retrospective imitation resulted in
generating ∼ 100k individual data points.

Integer Program based Risk-aware Path Planning. We
briefly describe the risk-aware planning setup. Appendix C
contains a detailed description. Given a start point, a goal
point, a set of polygonal obstacles, and an upper bound of
the probability of failure (risk bound), we must find a path,
represented by a sequence of way points, that minimizes
a cost while limiting the probability of collision to the risk
bound. This task can be formulated as a MILP [Schouwe-
naars et al., 2001, Prékopa, 1999], which is often solved
using branch-and-bound [Land and Doig, 1960]. Recently,
data-driven approaches that learn branching and pruning
decisions have been studied in [He et al., 2014, Alvarez et al.,
2014, Khalil et al., 2016]. Solving MILPs is in general NP-
hard, and this combinatorial search problem presents a
practical challenge to our learning approach.

The experiment is conducted on a set of 150 different
instances of randomly generated obstacle maps with 10 ob-
stacles each. We used a commercially available MILP solver
Gurobi (Version 6.5.1) to generate expert solutions. Details
on dataset generation can be found in Appendix D. The risk
bound was set to δ= 0.02. We started from problems with
10 way points and scaled up to 14 way points, in increments
of 1. The number of integer variables range from 400 to 560,
which can be quite challenging to solve for the type of path
planning problem of our interest.

For training, we assume that expert demonstrations by
Gurobi are only available for the smallest problem size (10
way points, 400 binary variables). We use 50 instance of ran-
domly generated obstacle maps each for training, valida-
tion and testing. Training retrospective imitation resulted
in generating ∼ 1.4 million individual data points.

6.2 Policy Learning
For A* search, we learn a ranking model as the policy. The
input features are mazes represented as a discrete-valued
matrix indicating walls, passable squares, and the current
location. We instantiate using neural networks with 2 con-
volutional layers with 32 3×3 filters each, 2×2 max pooling,
and a feed-forward layer with 64 hidden units.

For risk-aware path planning, we experimented with
two policy classes. The first follows [He et al., 2014], and
consists of a node selection model (that prioritizes which
node to consider next) and a pruning model (that rejects

nodes from being branched on), which mirrors the struc-
ture of common branch-and-bound search heuristics. We
use RankNet [Burges et al., 2005] as the selection model, in-
stantiated using a 2-layer neural network, with LeakyReLU
[Maas et al., 2013] activation functions and trained via cross
entropy loss. For the pruning model, we train a 1-layer neu-
ral network classifier with higher cost on the optimal nodes
compared to the negative nodes. We refer to this policy
class as "select & pruner". The other policy class only has
the node selection model and is referred to as "select only".

The features can be categorized into node-specific and
tree-specific features. Node-specific features include an LP
relaxation lower bound, objective value and node depth.
Tree-specific features capture global aspects that include
the integrality gap, number of solutions found, and global
lower and upper bounds. We normalize each feature to [-
1,1] across the candidate variables at each node, which is
also known as query-based normalization [Qin et al., 2010].

6.3 Main Results
Comparing Retrospective Imitation with Imitation
Learning. As retrospective learning is a general framework,
we validate with two different baseline imitation learning
algorithms, DAgger [Ross et al., 2011] and SMILe [Ross
and Bagnell, 2010]. We consider two possible settings for
each baseline imitation learning algorithm. The first is
“Extrapolation”, which is obtained by training an imitation
model only using demonstrations on the smallest problem
size and applying it directly to subsequent sizes without
further learning. Extrapolation is the natural baseline to
compare with retrospective imitation as both have access
to the same demonstration dataset. The second baseline
setting is “Cheating”, where we provide the baseline
imitation learning algorithm with expert demonstrations
on the target problem size, which is significantly more than
provided to retrospective imitation. Note that Cheating is
not feasible in practice for settings of interest.

Our main comparison results are shown in Figure 2. We
see that retrospective imitation (blue) consistently and dra-
matically outperforms conventional Extrapolation imita-
tion learning (magenta) in every setting. We see in Figure 2a,
2d that retrospective imitation even outperforms Cheating
imitation learning, despite having only expert demonstra-
tions on the smallest problem size. We also note that (Retro-
spective) DAgger consistently outperforms (Retrospective)
SMILe. We discuss these results further in the following.

In the maze setting (Figure 2a, 2d), the objective is to
minimize the number of explored squares to reach the tar-
get location. Without further learning beyond the base size,
Extrapolation degrades rapidly and the performance differ-
ence with retrospective imitation becomes very significant.
Even compared with Cheating policies, retrospective imita-
tion still achieves better objective values at every problem
size, which demonstrates its transfer learning capability.
Figure 3 depicts a visual comparison for an example maze.

In the risk-aware path planning setting (Figure 2b, 2c,
2e, 2f), the objective is to find feasible solutions with low
optimality gap, defined as the percentage difference be-
tween the best objective value found and the optimal. If
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Figure 2: Retrospective imitation versus DAgger (top) and SMILe (bottom) for maze solving (left) and risk-aware path
planning (middle and right, with different policy classes). “Extrapolation” is the conventional imitation learning baseline,
and “Cheating” (left column only) gives imitation learning extra training data. Retrospective imitation consistently and
significantly outperforms imitation learning approaches in all settings.

Figure 3: Left to right: comparing Manhattan distance
heuristic, DAgger Cheating and Retrospective DAgger on a
31×31 maze starting at upper left and ending at lower right.
Yellow squares are explored. Optimal path is red. The three
algorithms explore 333, 271 and 252 squares, respectively.

a policy fails to find a feasible solution for a problem in-
stance, we impose an optimality gap of 300%. For statistics
on how many problems are not solved, see Appendix F. We
compare the optimality gap of the algorithms at the same
number of explored nodes. Specifically, in Figure 2b, 2e
we first run the retrospective imitation version until termi-
nation, then run the other algorithm to the same number
of explored nodes. In Figure 2c, 2f, we first run the retro-
spective imitation with the “select only” policy class until
termination, then run other algorithms to the same num-
ber of explored nodes. We note that the “select only” policy
class (Figure 2c, 2f) significantly outperforms the “select
and pruner” policy class (Figure 2b, 2e), which suggests that
utilizing conceptually simpler policy classes may be more

amenable to learning-based approaches in combinatorial
search problems.

While scaling up, retrospective imitation obtains consis-
tently low optimality gaps. In contrast, DAgger Extrapola-
tion in Figure 2b failed to find feasible solutions for ∼ 60%
test instances beyond 12 way points, so we did not test it be-
yond 12 way points. SMILe Extrapolation in Figure 2e failed
for ∼ 75% of the test instance beyond 13 way points. The
fact that retrospective imitation continues to solve larger
MILPs with a very slow optimality gap growth suggests that
our approach is performing effective transfer learning.

Comparing Retrospective Imitation with Off-the-
Shelf Approaches. For maze solving, we compare
Retrospective DAgger with: 1) A* search with the Man-
hattan distance heuristic, and 2) behavioral cloning
followed by reinforcement learning with a deep Q-network
[Mnih et al., 2015]. Figure 4a shows Retrospective DAgger
outperforming both methods. Due to the sparsity of the
environmental rewards (only positive reward at terminal
state), reinforcement learning performs significantly worse
than even the Manhattan distance heuristic.

For risk-aware path planning, we compare Retrospective
DAgger (“select only”) with a commercial solver Gurobi
(Version 6.5.1) and SCIP (Version 4.0.1, using Gurobi as the
LP solver). We implement our approach within the SCIP
[Achterberg, 2009] integer programming framework. Due
to the difference in the implementation, we use the number
of explored nodes as a proxy for runtime. We control the
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Figure 4: (left) Retrospective imitation versus off-the-shelf methods. The RL baseline performs very poorly due to sparse
environmental rewards. (middle, right) Single-step decision error rates, used for empirically validating theoretical claims.

(a) (b) (c)

Figure 5: Retrospective DAgger (“select only” policy class) with off-the-shelf branch-and-bound solvers using various search
node budgets. Retrospective DAgger consistently outperforms baselines.

search size for Retrospective DAgger (“select only”) and
use its resulting search sizes to control Gurobi and SCIP.
Figure 5 shows the results on a range of search size limits.
We see that Retrospective DAgger (“select only”) is able to
consistently achieve the lowest optimality gaps, and the
optimality gap grows very slowly as the number of integer
variables scale far beyond the base problem scale. As a
point of comparison, the next closest solver, Gurobi, has
optimality gaps ∼ 50% higher than Retrospective DAgger
(“select only”) at 14 waypoints (560 binary variables).

Empirically Validating Theoretical Results. Finally, we
evaluate how well our theoretical results in Section 5 char-
acterizes experimental results. Figure 4b and 4c presents
the optimal move error rates for the maze experiment,
which validates Proposition 1 that retrospective imitation
is guaranteed to result in a policy that has lower error rates
than imitation learning. The benefit of having a lower error
rate is explained by Theorem 2, which informally states that
a lower error rate leads to shorter search time. This result
is also verified by Figure 2a and 2d, where Retrospective
DAgger/SMILe, having the lowest error rates, explores the
fewest number of squares at each problem scale.

7 Conclusion & Future Work
We have presented the retrospective imitation approach
for learning combinatorial search policies. Our approach
extends conventional imitation learning, by being able to

learn good policies without requiring repeated queries to
an expert. A key distinguishing feature of our approach is
the ability to scale to larger problem instances than con-
tained in the original supervised training set of demonstra-
tions. Our theoretical analysis shows that, under certain
assumptions, the retrospective imitation learning scheme
is provably more powerful and general than conventional
imitation learning. We validated our theoretical results on
a maze solving experiment and tested our approach on the
problem of risk-aware path planning, where we demon-
strated both performance gains over conventional imita-
tion learning and the ability to scale up to large problem
instances not tractably solvable by commercial solvers.

By removing the need for repeated expert feedback, ret-
rospective imitation offers the potential for increased appli-
cability over imitation learning in search settings. However,
human feedback is still a valuable asset as human computa-
tion has been shown to boost performance of certain hard
search problems [Le Bras et al., 2014]. It will be interesting
to incorporate human computation into the retrospective
imitation learning framework so that we can find a balance
between manually instructing and autonomously reason-
ing to learn better search policies. Retrospective imitation
lies in a point in the spectrum between imitation learning
and reinforcement learning; we are interested in exploring
other novel learning frameworks in this spectrum as well.
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Supplementary Material

A Retrospective Imitation with SMILe

Algorithm 4: Retrospective SMILe

1 Inputs:
2 N : number of iterations
3 π1: initially trained on expert traces
4 α: mixing parameter
5 P : a set of problem instances
6 for i ← 1 to N do
7 run πi on P to generate trace τ
8 compute π∗(τ, s) for each terminal state s (Algorithm 2)
9 collect new dataset D based on π∗(τ, s)

10 train π̂i+1 on D

11 πi+1 = (1−α)iπ1 +α
i∑

j=1
(1−α) j−1π̂ j

12 end
13 return πN+1

B Additional Theoretical Results and Proofs
First we prove Proposition 1.

Proof. By the trace inclusion assumption, the dataset ob-
tained by retrospective imitation will contain feedback for
every node in the expert trace. Furthermore, the retrospec-
tive oracle feedback corresponds to the right training objec-
tive while the dataset collected by imitation learning does
not, as explained in Section 4. So the error rate trained on
retrospective imitation learning data will be at most that of
imitation learning.

Our next theoretical result demonstrates that if larger
problem instances have similar optimal solutions, a policy
will not suffer a large increase in its error rate, i.e., we can
“transfer” to larger sizes effectively. We consider the case
where the problem size increase corresponds to a larger
search space, i.e., the underlying problem formulation
stays the same but an algorithm needs to search through a
larger space. Intuitively, the following result shows that a
solution from a smaller search space could already satisfy
the quality constraint. Thus, a policy trained on a smaller
scale can still produce satisfactory solutions to larger scale
problems.

Proposition 3. For a problem instance P, let v∗
k denote the

best objective value for P when the search space has size k.
Assume an algorithm returns a solution with objective value
vk , with vk ≥αv∗

k with α ∈ (0,1). Then for any β> 0, there
exists K such that vK ≥αv∗

K+1 −β.

Proof. Since P has a finite optimal objective value v∗, and
for any k < k ′, v∗

k ≤ v∗
k ′ , then it follows that there exists an

index K such that v∗
K+1 − v∗

K ≤ β
α .

Then it follows that vK ≥ αv∗
K ≥ α(v∗

K+1 −
β
α ) = αv∗

K+1 −
β.

Since the slack variable β can be made arbitrarily small,
Proposition 3 implies that solutions meeting the termina-
tion condition need not look very different when transi-
tioning from a smaller search space to a larger one. Fi-
nally, our next corollary justifies applying a learned policy
to search through a larger search space while preserving
performance quality, implying the ability to scale up retro-
spective imitation on larger problems so long as the earlier
propositions are satisfied.

Corollary 3.1. Let εk be the error rate of an algorithm
searching through a search space of size k. Then there exists
K such that εK = εK+1.

To prove Theorem 2 we need to following lemma on
asymmetric 1-dimensional random walks.

Lemma. Let Zi , i = 1,2, · · · be i.i.d. Bernoulli
random variables with the distribution Zi ={

1, with probability 1−ε

−1, with probability ε
for some ε ∈ [0, 1

2 ). Define

Xn =
n∑

i=1
Zi and τN = inf{n : Xn = N } for some fixed integer

N ≥ 0. Then

(i) {Xn+(2ε−1)n} is a martingale with respect to the filtration
{Fn} defined by Fn =σ(Z1, Z2, · · · , Zn).

(ii) E[τN ] = N
1−2ε .

Proof.

(i ) We need to verify that E[Xn+1+(2ε−1)(n+1)|Fn] = Xn +
(2ε−1)n.

E[Xn+1 + (2ε−1)(n +1)|Fn]

= E[Xn +Zn+1|Fn]+ (2ε−1)(n +1)

= E[Xn |Fn]+E[Zn+1|Fn]+ (2ε−1)n

= Xn +E[Zn+1]+ (2ε−1)(n +1)

= Xn + (1−2ε)+ (2ε−1)(n +1)

= Xn + (2ε−1)n

(i i ) Apply the optional stopping theorem (the conditions for
OST can be easily checked) to XτN + (2ε−1)τN , we get
that E[XτN + (2ε−1)τN ] = E[X1 + (2ε−1)] = E[Z1]+ (2ε−
1) = 0. So E[τN ] = E[XτN ]

1−2ε = N
1−2ε since XτN = N from the

definition of τN .
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Figure 6: An example search trace by a policy. The solid
black nodes (1 → 6 → 8 → 9) make up the best trace to a
terminal state in retrospect. The empty red nodes are the
mistakes made during this search procedure. Every mistake
increases the distance to the target node (node 9) by 1 unit,
while every correct decision decreases the distance by 1
unit.

Now onto the proof for the Theorem 2.

Proof. We consider the search problem as a 1-dimensional
random walk (see Figure 6). The random walk starts at the
origin and proceeds in an episodic manner. The goal is to
reach the point N and at each time step, a wrong decision
is equivalent to moving 1 unit to the left whereas a right de-
cision is equivalent to moving 1 unit to the right. The error
rate of the policy determines the probabilities of moving
left and right. Thus the search problem can be reduced to
1-dimensional random walk, so we can invoke the previous
lemma and assert that the expected number of time steps
before reaching a feasible solution is N

1−2ε .

This theorem allows us to measure the impact of error
rates on the expected number of actions.

Corollary 3.2. With two policies π1 and π2 with corre-
sponding error rates 0 < ε1 < ε2 < 1

2 , π2 takes 1−2ε1
1−2ε2

times
more actions to reach a feasible state in expectation.

We can further apply Markov’s inequality to understand
the tail of the distribution on the number of actions. Let X
be the random variable representing the number of actions.

And we get P(X ≥ N 2

1−2ε ) ≤ 1
N . This result indicates that the

probability mass of the distribution beyond N 2

1−2ε is small,
however, it is still interesting to zoom in on this tail region.

Theorem 4. Let P1 and P2 be probability distributions
on number of actions for two policies π1 and π2 with er-
ror rates ε1 and ε2. Assume 0 < ε1 < ε2 < 1

2 . Let m be an
integer that is at least N and has the same parity. Then
P2(X=m)
P1(X=m) = exp(α2 m − β

2 N ) where α = log ε2(1−ε2)
ε1(1−ε1) > 0 and

β= log ε2(1−ε1)
ε1(1−ε2) .

As a result, the ratio grows exponentially in the number
of actions. So even a small improvement on the error rate

can make a big difference on the tail probability distribu-
tion.

Next we prove Theorem 4.

Proof. Let m ≥ N and f (m) be the number of possible ex-
ecution traces that reaches a first feasible solution at the
mth time step. Assume in the process, the policy made a
right choices and b wrong choices, then we have a +b =
m, a −b = N . So a = m+N

2 ,b = m−N
2 . This is the reason we

need m and N to have the same parity. Since the proba-
bility is 1− ε for the policy to make a right choice and ε
for a wrong one and the choices are independent of each
other, we have that P(X = m) = f (m)(1−ε)(m+N )/2ε(m−N )/2.
Substitute into the ratio computation, we have the desired

result P2(X=m)
P1(X=m) = exp(α2 m − β

2 N ) where α= log ε2(1−ε2)
ε1(1−ε1) and

β = log ε2(1−ε1)
ε1(1−ε2) . Since we assume that 0 < ε1 < ε2 < 1

2 , it

follows that α= log ε2(1−ε2)
ε1(1−ε1) > 0.

C MILP formulation of risk-aware path
planning

This section describes the MILP formulation of risk-aware
path planning solved in Section 6. Our formulation is based
on the MILP-based path planning originally presented by
[Schouwenaars et al., 2001], combined with risk-bounded
constrained tightening [Prékopa, 1999]. It is a similar for-
mulation as that of the state-of-the-art risk-aware path
planner pSulu [Ono et al., 2013] but without risk allocation.

We consider a path planning problem in R, where a path
is represented as a sequence of N way points x1, · · ·xN ∈ X .
The vehicle is governed by a linear dynamics given by:

xk+1 = Axk +Buk +wk

uk ∈U ,

where U ⊂Rm is a control space, uk ∈U is a control input,
wk ∈Rn is a zero-mean Gaussian-distributed disturbance,
and A and B are n-by-n and n-by-m matices, respectively.
Note that the dynamic of the mean and covariance of xi ,
denoted by x̄i and Σi , respectively, have a deterministic
dynamics:

x̄k+1 = Ax̄k +Buk +wk (1)

Σk+1 = AΣAT +W,

where W is the covariance of wk . We assume there are M
polygonal obstacles in the state space, hence the following
linear constraints must be satisfied in order to be safe (as
in Figure 7):

N∧
k=1

M∧
i=1

Li∨
j=1

hi j xk ≤ gi j ,

where
∧

is conjunction (i.e., AND),
∨

is disjunction (i.e.,
OR), Li is the number of edges of the i -th obstacle, and
hi j and gi j are constant vector and scaler, respectively. In
order for each of the linear constraints to be satisfied with



Figure 7: Representation of polygonal obstacle by
disjunctive linear constraints

Figure 8: Comparison of optimality gap between Retro-
spective DAgger (select only) and Retrospective DAgger
(select and prune)

the probability of 1−δki j , the following has to be satisfied:

N∧
k=1

M∧
i=1

Li∨
j=1

hi j x̄k ≤ gi j −Φ(δki j ) (2)

Φ(δki j ) =−
√

2hi j kΣx,k hT
i j k erf−1(2δi j k −1),

where erf−1 is the inverse error function.
The problem that we solve is, given the initial state

(x̄0,Σ0), to find u1 · · ·uN ∈ U that minimizes a linear ob-
jective function and satisfies (1) and (2). An arbitrary non-
linear objective function can be approximated by a piece-
wise linear function by introducing integer variables. The
disjunction in (2) is also replaced by integer variables us-
ing the standard Big M method. Therefore, this problem is
equivalent to MILP. In the branch-and-bound algorithm,
the choice of which linear constraint to be satisfied among
the disjunctive constraints in (2) (i.e., which side of the ob-
stacle xk is) corresponds to which branch to choose at each
node.

Figure 9: Comparison of optimality gap between Retro-
spective DAgger (select only) and Retrospective SMILe
(select only)

D Risk-aware Planning Dataset Generation
We generate 150 obstacle maps. Each map contains 10
rectangle obstacles, with the center of each obstacle cho-
sen from a uniform random distribution over the space
0 ≤ y ≤ 1 , 0 ≤ x ≤ 1. The side length of each obstacle was
chosen from a uniform distribution in range [0.01,0.02]
and the orientation was chosen from a uniform distribu-
tion between 0° and 360°. In order to avoid trivial infeasible
maps, any obstacles centered close to the destination are
removed.

E Retrospective DAgger vs Retrospective
SMILe for Maze Solving

Figure 10: Average explored number of squares for Retro-
spective DAgger and Retrospective SMILe.

F Additional Experiments on Risk-aware
Planning

In this section, we present a comparison of Retrospective
DAgger with two different policy classes for MILP based
Path Planning, namely a combination of both select and
prune policy as described in [He et al., 2014] against se-
lect policy alone. We compare their optimality gap by first



running the Retrospective DAgger (select only) until termi-
nation and then limiting the Retrospective Dagger (search
and prune) to the same number of explored nodes. Fig-
ure 8 depicts a comparison of optimality gap with varying
number for waypoints. We observe that Retrospective DAg-
ger (select only) performs much better in comparison to
Retrospective DAgger (select and prune).

Next, we present a comparison of Retrospective DAg-
ger (select only) with Retrospective SMILe (select only).
We compare the optimality gap by limiting Retrospective
SMILe (select only) to the same number of nodes explored
by Retrospective DAgger (select only), which is run with-
out any node limits until termination. The results of this
experiment are shown in Figure 9. Retrospective DAgger
(select only) performs superior to Retrospective SMILe (se-
lect only) validating our theoretical understanding of the
two algorithms.

Figure 11: Optimality gap comparisons and number of un-
solved problem instances.

Finally, we present statistics on how many instances of
MILPs are not solved by each method when given a fixed
budget on how many nodes to explore in the branch-and-
bound tree. Retrospective DAgger achieves the best record
among all the methods compared which implies that it is
able to learn a stable and consistent solving policy.

G Experiments on Combinatorial Auction
Test Suite

For completeness of comparison, we evaluate our ap-
proach on the same dataset as in He et al. [2014], the Hybrid
MILP dataset derived from combinatorial auction prob-
lems [Leyton-Brown et al., 2000]. For this experiment, we
vary the number of bids, which is approximately the num-
ber of integer variables, from 500 to 730. Similar to He et al.
[2014], we set the number of goods for all problems to 100
and remove problems that are solved at the root. We use
the select and pruner policy class to match the experiments
in He et al. [2014] and a similar feature representation to
those used in the path planning experiments.

The results of this experiment are shown in Figure 12.
We see that neither retrospective imitation learning nor

Figure 12: Comparison of optimality gap on the Hybrid
combinatorial auction held-out test data.

DAgger Extrapolation (He et al. [2014]) improves over SCIP.
Upon further scrutiny of the dataset, we have found several
issues with using this combinatorial auction dataset as a
benchmark for learning search policies for MILPs and with
the evaluation metric in [He et al., 2014].

Firstly, solvers like SCIP and Gurobi are well-tuned
to this class of problems; a large proportion of problem
instances is solved to near optimality close to the root of
the branch-and-bound tree. As shown by Figure 16, Gurobi
and SCIP at the root node already achieve similar solution
quality as SCIP and Gurobi node-limited by our policy’s
node counts; hence, exploring more nodes seems to result
in little improvement. Thus the actual branch and bound
policies matter little as they play a less important role for
this class of problems.

Secondly, in this paper, we have chosen to use the num-
ber of nodes in a branch-and-bound search tree as a com-
mon measure of the speed for various solvers and policies.
This is different from that used in [He et al., 2014], where
the comparison with SCIP is done with respect to the aver-
age runtime. For completeness, we ran experiments using
the metric in [He et al., 2014] and we see in Figure 13 that
retrospective imitation learning, upon scaling up, achieves
higher solution quality than imitation learning and SCIP,
both limited by the average runtime taken by the retrospec-
tive imitation policy, and Gurobi, limited by average node
count.

Instead of using average runtime, which could poten-
tially hide the variance in the hardness across problem
instances, using a different limit for each problem instance
is a more realistic experiment setting. In particular, the
average runtime limit could result in SCIP not being given
sufficient runtime for harder problems, leading to SCIP
exploring only the root node and a high optimality gap



Figure 13: Comparison of optimality gap on the Hybrid
combinatorial auction held-out test data using [He et al.,
2014] metric.

Figure 14: Proportion of Hybrid root problems. Root
problems are problems for which SCIP limited by av-
erage runtime explores only the root node.

Figure 15: Proportion of mean optimality gap due to
Hybrid root problems.

for these problems, which we call "root problems". As
Figure 14 shows, a significant proportion of the Hybrid
held-out test set is root problems on larger scales. Figure
15 shows that the majority of the mean optimality gap of
SCIP limited by average runtime is due to the optimality
gap on the root problems in the Hybrid dataset; for larger
scale problems, this proportion exceeds 80%, showing that
limiting by average runtime heavily disadvantages SCIP.

Another issue is using runtime as the limiting criterion.
From our observations, SCIP spends a substantial amount
of time performing strong branching at the root to ensure
good branching decisions early on. Limiting the runtime
results in a limited amount of strong branching; as shown
by Figure 17, SCIP limited by the average runtime of our
retrospective imitation policies performs significantly less
strong branching calls than SCIP limited by node counts,
especially at larger problem sizes. In contrast, limiting
the number of nodes does not limit the amount of strong
branching since strong branching does not contribute to
the number of nodes in the final branch-and-bound search
tree. Considering the importance of strong branching for
SCIP, we feel that only by allowing it can we obtain a fair
comparison.

As a result of the above reasons, we decided that
the combinatorial auction dataset is not a good candidate
for comparing machine learning methods on search
heuristics and that the metric used in [He et al., 2014] is not
the best choice for validating the efficacy of their method.



Figure 16: Comparison of optimality gap achieved by
SCIP and Gurobi node-limited and at the root on the
Hybrid combinatorial auction held-out test data.

H Exploration Strategy
For retrospective imitation learning to succeed in scaling
up to larger problem instances, it is important to enable
exploration strategies in the search process. In our exper-
iments, we have found the following two strategies to be
most useful.

• ε-greedy strategy allows a certain degree of random ex-
ploration. This helps learned policies to discover new
terminal states and enables retrospective imitation learn-
ing to learn from a more diverse goal set. Discovering
new terminal states is especially important when scaling
up because the learned policies are trained for a smaller
problem size; to counter the domain shift when scaling
up, we add exploration to enable the learned policies to
find better solutions for the new larger problem size.

• Searching for multiple terminal states and choosing the
best one as the learning target. This is an extension to
the previous point since by comparing multiple terminal
states, we can pick out the one that is best for the policy
to target, thus improving the efficiency of learning.

• When scaling up, for the first training pass on each prob-
lem scale, we collect multiple traces on each data point
by injecting 0.05 variance Gaussian noise into the regres-
sion model within the policy class, before choosing the
best feasible solution.

Figure 17: Number of strong branching calls at root for
SCIP limited by average runtime and node count at every
data point of retrospective imitation learning.
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