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ABSTRACT
We consider the effects of radio-wave scattering by cool ionized clumps (T ∼ 104 K) in
circumgalactic media (CGM). The existence of such clumps are inferred from interven-
ing quasar absorption systems, but have long been something of a theoretical mystery.
We consider the implications for compact radio sources of the ‘fog-like’ two-phase
model of the circumgalactic medium recently proposed by McCourt et al. (2018). In
this model, the CGM consists of a diffuse coronal gas (T & 106 K) in pressure equilib-
rium with numerous . 1 pc scale cool clumps or ‘cloudlets’ formed by shattering in a
cooling instability. The areal filling factor of the cloudlets is expected to exceed unity
in & 1011.5M� haloes, and the ensuing radio-wave scattering is akin to that caused
by turbulence in the Galactic warm ionized medium (WIM). If 30 per-cent of cosmic
baryons are in the CGM, we show that for a cool-gas volume fraction of fv ∼ 10−3,
sources at zs ∼ 1 suffer angular broadening by ∼ 15µas and temporal broadening
by ∼ 1 ms at λ = 30 cm, due to scattering by the clumps in intervening CGM. The
former prediction will be difficult to test (the angular broadening will suppress Galac-
tic scintillation only for < 10µJy compact synchrotron sources). However the latter
prediction, of temporal broadening of localized fast radio bursts, can constrain the size
and mass fraction of cool ionized gas clumps as function of halo mass and redshift,
and thus provides a test of the model proposed by McCourt et al. (2018).
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1 INTRODUCTION

The circumgalactic medium (CGM) of galaxies and the in-
tergalactic medium (IGM) are together expected to harbour
about 80 % all baryons in the Universe (Anderson & Breg-
man 2010). Absorption spectroscopy of quasars along inter-
vening CGM sight-lines in recent years have yielded a wealth
of information on the physical state of CGM gas. Some of
these findings have however contradicted naive models based
on theoretical considerations. In particular, the ubiquitous
detection of cool (∼ 104 K) and likely dense (ne ∼ 1 cm−3 at
z ≈ 2; Hennawi et al. 2015; Lau et al. 2016) gas in the CGM
of massive galaxies (M & 1012 M�) is puzzling— an outcome
that was not predicted by canonical galaxy assembly mod-
els. Based on theoretical consideration and numerical simu-
lations, McCourt et al. (2018); Ji et al. (2017) have shown
that numerous sub-parsec scale cool1 gas clumps can form in

? E-mail: vedantham@astron.nl
1 The clumps of interest are photoionized gas at ∼ 104K. In

the recent CGM literature, whose terminology is used by Mc-

Court et al, such clouds are called “cold”, while gas at 104−5K
is called “cool”, and gas at 105−6K called “warm”, in contrast

to the volume-filling “hot” gas at ∼ 106K. This is unfortunately

galaxy haloes due to thermal instabilities, likening the CGM
to a ‘fog’ consisting of partially ionized ∼ 104 K cloudlets
dispersed in a hot ∼ 106 K ambient medium. Such small
clumps, though they can explain many features of quasar
absorption lines, are however subject to uncertainly regard-
ing the initial conditions, and destruction by electron con-
duction from the surrounding hot gas unless magnetically
shielded. It therefore is desirable to have an observational
probe capable of detecting the existence of such small clumps
in the CGM of distant galaxies. Here we show that the fog-
like CGM leads to observable scattering of radio waves from
extragalactic sources, and that upcoming surveys for Fast
Radio Bursts (FRB) can constrain the sub-parsec scale mor-
phology of cool gas in intervening CGM.

The assembly of dissipative baryons into galaxies in
the presence of dark matter potential wells has been stud-
ied extensively based on general physical principles(see e.g.

inconsistent with many decades of tradition of literature on the
interstellar medium, in which partially ionized gas at 8000K is

called “warm”, while “cold” is reserved for neutral and molecular

gas at much lower temperatures. To avoid confusion, in this pa-
per we decided to call the photoionized clumps “cool” rather than

“cold” or “warm”.
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2 Vedantham & Phinney

Binney 1977; Silk 1977; Rees & Ostriker 1977; White &
Rees 1978). The conclusion of these early studies relevant
for this paper is as follows. Gravitational potential energy
of baryons is converted to kinetic energy during dissipative
collapse. This heats the baryons to the virial temperature
Tvir ≈ 106 M

2/3
12 h2/3(z) K, where M12 is the halo mass in

units of 1012 M� and h(z) is the dimensionless Hubble pa-
rameter at redshift z of the halo. For haloes less massive
than about 1011.5 M�, the virial temperature drops below
∼ 105 K, whereupon the radiative cooling timescale, tcool

(primarily via metal lines) is smaller than the Hubble time,
t0. The gas then rapidly cools to T ∼ 104 K throughout
the halo, loses pressure support, and falls inwards to form
stars. In more massive haloes, tcool � t0 and the gas at
large radii r ∼ rvir forms a long-lived pressure-supported
hot (T & 105.5 K) halo devoid of cold neutral gas.2

Quasar absorption spectroscopy and fluorescent Lyα
studies of the CGM, however, tell a somewhat different
story. Absorption studies routinely detected large amounts
(N ∼ 1018−1020 cm−2) of cool 104 K gas at the virial radius
of & 1012 M� haloes at both high (z ∼ 2) and low (z ∼ 0)
redshifts (Steidel et al. 1988, 1994; Lau et al. 2016; Stocke
et al. 2013; Werk et al. 2014; Mathes et al. 2017; Tumlinson
et al. 2017). Studies of galaxies at redshifts z ∼ 0.1 − 2.5
have shown that associated absorption lines are almost al-
ways found in the spectra of background quasars projected
within 50–100 kpc of the galaxies(Tumlinson et al. 2017;
Rudie et al 2012; Turner et al. 2014). Thus the covering
factor of cool gas in galaxy halos exceeds 50% even at such
large distances from the galaxies. Photoionization models,
though uncertain, indicate that the projected mass surface
density scales roughly as r−1 (Tumlinson et al. 2017, see e.g.,
Fig 7 of). Florescent Lyα imaging of quasar host galaxies at
z ∼ 3 provides additional cofirmation that cool gas has a
covering fraction of unity even out to the virial radius, with
a surface brightness that evolves with radius as r−1.8 (Can-
talupo et al. 2014; Borisova et al. 2016). Both the emission
and absorption observations point to the ubiquitous nature
of cool, ∼ 104 K gas in the CGM of M & 1012 M� halos— a
result not predicted by the canonical model of halo forma-
tion. The radial profile and smooth absorption lines over the
viral velocity width in addition disfavour any model where
the cool gas is confined to a narrow shell around the virial
shock, but instead suggests that the cool gas pervades the
CGM in multiple small clouds with a total areal covering
factor exceeding unity.

Broadly speaking, two classes of models have been ad-
vanced via sophisticated simulations to explain the large cov-
ering fraction of cool gas in massive galactic haloes. (a) The
first set of models create the cool gas in-situ by recogniz-
ing that in practice, only a part of the accreted gas is likely
heated to the virial temperature at the accretion shock (see
e.g. Kereš et al. 2005, fig. 7) and/or by enhancing thermal
instability via magnetic suppression of buoyant oscillation
(Ji et al. 2017). The cooler (T . 105.5) gas can therefore
cool well within t0 in situ. (b) The second set of models
transport the cool gas from near the galactic disk into the
halo in the form of galactic winds (Faucher-Giguère et al.

2 At some sufficiently small radius r � rvir, tcool < t0 and the

gas can collapse into stars.

2016). At present, these are somewhat heuristic arguments
and the precise details of how cool gas is produced and sus-
tained in galactic haloes remains an active field of study (see
Tumlinson et al. (2017) for a recent review).

Absorption spectroscopy (Steidel et al. 1988; Tumlinson
et al. 2017, e.g.) measures the column density of cool gas.
The volume density can only be inferred from photoioniza-
tion modelling that is fraught with uncertainties. Yet the
volume density of cool gas in CGM and its internal clumpy
structure are critical to a determination of its physical state,
formation mechanism, and eventual fate. Recently McCourt
et al. (2018) have employed simulations and theoretical ar-
guments to study the condensation of cool T ≈ 104 K clumps
from a background of hot T & 106 K gas that leads to the
development of the classical two-phase medium (Field 1965).
They argue that, akin to fragmentation in the Jeans’ insta-
bility (Jeans 1902) of gravitationally collapsing clouds with
γ < 4/3, cooling of clouds whose size greatly exceeds cstcool

does not proceed isochorically, but leads to continual frag-
mentation of gas into pieces of size ∼ cstcool which are able
to maintain isobaric cooling, down to a length-scale of or-
der the minimum of cs(T )tcool(T ) as a function of tempera-
ture T . For radiative cooling curves relevant to astrophysical
plasma, this characteristic minimum scale of cool clumps oc-
curs at T ∼ 104 and is ∼ (0.1 pc) (n/cm−3)−1. This predicts
a fixed gas column density of the individual smallest clumps
(independent of ambient pressure) of Ne ≈ 1017 cm−2 (Mc-
Court et al. 2018, their §2.1). Such small length-scales are
currently well beyond the reach of halo-scale simulations and
much smaller than can be constrained by photoionization
modelling of absorption spectra.

By contrast, the scattering of radio waves is a highly
sensitive function of small-scale density inhomogeneities. For
instance, radio wave propagation through the Galactic warm
ionized medium (WIM) has been used to study its density
structure on spatial scales of 108−1015 cm (Armstrong et al.
1995). Here we show that the same techniques can be applied
to probe the structure of cool gas in the CGM. More im-
portantly, the recent discovery of Fast Radio Bursts (FRB;
Lorimer et al. 2007)— milli-second duration radio pulses
originating at cosmic distances, opens up an unprecedented
opportunity to revolutionize our understanding of the CGM,
much in the same way the discovery of pulsars led to a pro-
foundly improved understanding of the Galactic interstellar
medium (Rickett 1990).

The rest of the paper is organized as follows. In §2, we
lay down the basic halo properties as as function of mass
and redshift. In §3 we compute the scattering characteristic
of such haloes. In §4, we present a discussion of our results
by considering the observable signature of scattering by the
CGM of an ensemble of haloes in the Universe. We adopt
the Planck cosmological parameters (Planck Collaboration
et al. 2016):H0 = 67.8 km s−1 Mpc−1, Ωm = 0.308 and ΩΛ =
1 − Ωm throughout this paper. A glossary of symbols and
their meaning is given in the Appendix for quick reference.

2 HALO PROPERTIES

We assume the usual definition of virial radius, r200 as
the radius at which the matter density equals 200 times
the critical density at any given redshift. The halo mass,

MNRAS 000, 1–15 (2018)



Radio wave scattering in the CGM 3

M12 = M/1012 M� is then the mass enclosed within r200:

r200 =

(
3M

800πρ(z)

)1/3

≈ 163M
1/3
12 h−2/3(z) kpc, (1)

where the critical density ρ(z) is given by

ρ(z) =
3H(z)2

8πG
≈ 277.34h2(z) M� kpc−3. (2)

Here H(z) is the Hubble parameter at redshift z:

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ, (3)

and h(z) is the dimensionless Hubble parameter defined as
H(z) = h(z)×100 km s−1 Mpc−1. With the dark matter halo
properties completely specified by equations 1 through to 3,
we turn our attention to the gas properties.

2.1 Gas density

We assume that in the halo mass-range of interest, the in-
falling gas is shock heated to the virial temperature of

Tvir = 9.3× 105 M
2/3
12 h2/3(z) K, (4)

The hot gas pressure at r200 and its profile is somewhat dif-
ficult to derive from first principles. We therefore pick a gas
pressure at r200 that yields a predefined baryon fraction in
the hot phase. There is currently no consensus on how the
cosmic baryons are apportioned to the various gas and stellar
phases. Current best constraints places about 20 per-cent of
baryons in galaxies (stars, gas and dust; see e.g. Anderson &
Bregman 2010), while the remaining 80 per-cent must be in
the CGM and IGM (Tumlinson et al. 2017). We will normal-
ize our results to the nominal case where fCGM = 30 per-cent
of baryons are in the CGM. We further assume a density pro-
file of n(r) ∝ r−α for 0 < r ≤ rshock = 1.5r200 with α = 1.5
(Fielding et al. 2017). This yields a gas pressure at r200 of

P200(M, z) = 27

(
fCGM

0.3

)
M

2/3
12 h(z)8/3 cm−3 K. (5)

2.2 Volume fraction and covering factor

The closest analog to the cool clumps that have been stud-
ied in any detail are the Milky Way’s high velocity clouds
(HVC). HVCs detected in emission have a total mass of
about 2.6×107 M� (Putman et al. 2012) which yields a lower
limit on cool gas volume fraction of about fv > 10−5. Sev-
eral authors have studies absorption line systems at higher
redshifts up to z ∼ 2. The measured column densities in con-
junction with photo-ionization modeling yield volume frac-
tions of fv = 10−4 − 10−3.5 (Lau et al. 2016; Hennawi et
al. 2015; Prochaska & Hennawi 2009; Stocke et al. 2013).
We refer the reader to McCourt et al. (2018, their Table 1)
for a summary of these results. Photo-ionization modeling
sufferers from considerable uncertainties. In limited cases,
fine structure lines may be used to get a direct estimate of
gas densities without the need for photo-ionization model-
ing. Such observations also show large gas densitiesLau et
al. (2016) in excess of ∼ 1 cm−3 that imply comparable vol-
ume filling fractions. Hence, we will adopt a characteristic
of fv = 10−4 when a specific number is required, but we
will carry fv as a variable in our equations such that vari-
ations between photo-ionization models may be included in
the future.

There is sparse observational constraint regarding the
radial evolution of the volume fraction. Borisova et al. (2016)
find that the surface brightness of the Lyα fluorescent emis-
sion in z ∼ 2 − 3 CGM has a power-law variation, r−1.8. If
the volume density of cool gas evolves as r−1.5 as seen in
simulations (Fielding et al. 2017), then the fluorescent emis-
sion can be reconciled with a volume fraction that changes
only weakly with radius as fv(r) ∝ r−β , with β = −0.2. We
will adopt this value throughout.

The foggy-CGM model under consideration here specif-
ically addresses the large areal covering factor of cool gas de-
spite its low volume fraction as implied by photo-ionization
modeling. The number of cool clumps encountered by a
sightline at a characteristic impact factor of b is given by
fa(b) ≈ fv(b) b/rc where rc is the radius of the individual
cloudlets that comprise the CGM fog. Because the column
density in individual cloudlets is fixed by the model under
consideration at Ne = 1017 cm−2, the cloudlet size at radius
r is rc(r) = 0.5Ne/ne(r) which gives

fa(b) ≈ 3

(
fCGM

0.3

)(
fv

10−4

)
M12h

2(z)

(
b

r200

)1−β−α

(6)

For our fiducial values of α = 1.5, β = −0.2, fv = 10−4,
fCGM = 0.3, the covering fraction of cloudlets exceeds unity
at impact parameter b ∼ r200 for haloes above 1011.9 M�
at z = 0 or above 1011.4 M� at z = 1. This fog-like nature
of the CGM wherein a low volume fraction leads to a high
areal covering factor is depicted in Fig. 1 with some charac-
teristic parameter values for a 1012 M� halo at z = 1. The
reader may readily scale the numbers to other halo masses
and redshifts via equations 1 though 6. The resulting den-
sities and high areal covering factors are roughly consistent
with inferences from observations of quasar absorption sys-
tems: see for instance McCourt et al. (2018, their Table. 1),
who present a compilation of relevant observational infer-
ences from (Stocke et al. 2013; Lau et al. 2016; Prochaska &
Hennawi 2009; Hennawi et al. 2015).

2.3 Neutral fraction

The last aspect of haloes that needs specification is the ion-
ization fraction, since only free electrons contribute to radio
wave scattering. We adopt an intergalactic UV photoioniza-
tion rate to be Γ(IGM) = 10−13 [(1 + z)/1.2]5 sec−1 (Gaik-
wad et al. 2017) to determine the neutral fraction at different
radii, ζ(r). Details of our photoionization-equilibrium calcu-
lations in a fog-like CGM is is given in the Appendix. We
find that individual cloudlets with their column density of
1017 cm−2 are only partially ionized, but the fog can self-
shield itself against the extragalactic radiation field below a
critical radius that, for α = 1.5, β = −0.2, has an approxi-
mate value of (proof in Appendix)

rss ≈ 0.11

(
fv

10−4

)0.56 (
fCGM

0.3

)1.11

M0.93
12

h2.59(z)

(1 + z)2.78
. (7)

At radii below rss the clouds rapidly achieve neutrality. We
therefore find that haloes more massive that 1013.2 M� at
z = 0 or 1013.4 M� at z = 1 can self shield themselves even
at their virial radius. The halo mass range that is relevant
for radio wave scattering is therefore bounded. On the lower
mass end, haloes less massive than 1011.5 M� are not ex-
pected to have long-lived pressure supported halo gas, and

MNRAS 000, 1–15 (2018)



4 Vedantham & Phinney

Figure 1. A depiction of the fog-like CGM model considered here and some characteristics physical parameters for a 1012M� halo at

z = 1. Cyan denotes the cool 104 K gas clumps or ‘cloudlets’ that are dispersed in a virial-shock heated 106 K halo gas. The cloudlets
have a large areal covering factor despite their small volume fraction.
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Figure 2. CGM fog characteristics assumed in this paper (equations 1 to 6). The column density through individual cloudlets and the

cloudlet volume fraction are taken to be Ne = 1017 cm−2, and fv = 10−4 respectively. The cloudlet size, rc and the areal covering factor,
fa are evaluated at the viral radius, r200, and evolve with radius according r1.5 and r0.2 respectively

haloes more massive than about 1013.5 M� can self shield
themselves against ionization from the extragalactic radia-
tion field. Now that the halo mass range and the relevant
gas properties have been specified, we turn our attention to
the problem of computing the scattering parameters.

3 SCATTERING BY A SINGLE HALO

Before considering the scattering of radio waves from a cos-
mic distribution of haloes, it is instructive to built up our
analysis starting with the scattering properties of a single
cool gas clump, which we will call as a ‘cloudlet’ after Mc-
Court et al. (2018).

3.1 Dispersion in a cloudlet

Propagation through plasma of column density Ne advances
the phase of a monochromatic wave of wavelength λ by
φ = λNere where re is the classical electron radius. Wave
diffraction is a result of fluctuations of phase φ transverse to
the direction of propagation. Specifically, a transverse gra-
dient of ∂φ/∂r leads to a deflection of the direction of light
propagation through an angle (geometry sketched in Fig. 3)

θsc =
λ

2π

∂φ

∂r
(8)

MNRAS 000, 1–15 (2018)
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Source Observer

DlDls

Ds

θsc

θl= θsc - θl

Scatterer

= θsc - θl

Figure 3. A not to scale sketch of the scattering geometry and symbols used in this paper.

For a cloudlet radius of rc, the phase gradient is ∂φ/∂r ∼
λNere/rc, which gives a characteristic deflection angle of

θsc ∼ 0.3µas λ2
30 Ne,17 (rc/1 pc)−1 (9)

The geometric delay between the time of arrival of sig-
nals from multiple images may also be observed in impulsive
sources such as fast radio bursts. Here again, the cosmolog-
ical distances will have profound effect. The characteristic
time delay is

∆τ ≈ θ2
sc

2c

DlsDl
Ds

(10)

The delay is maximized for a geometry where Dls = Dl:

∆τmax ≈ 0.05µs (Dl/1 Gpc) λ4
30 N

2
e,17 (rc/1 pc)−2 (11)

which is comparable to the temporal broadening due to scat-
tering in the Galactic WIM towards Pulsars at high Galactic
latitude (see for e.g. Manchester et al. 2005). We therefore
conclude that even an isolated cloudlet at cosmological dis-
tances leads to measurable effects on radio waves. Because
we expect typical sight-lines through the CGM to intercept
a large number of cloudlets (equation 6), we now generalize
these results to the case of a random cloudlet ensemble.

3.2 Ensemble scattering properties

The volume filling fraction of cloudlets is expected to be
small: ∼ 10−4, and we treat the cloudlets as discrete objects
that are randomly distributed. The transverse phase gradi-
ent imparted by such an ensemble of cloudlets is a random
variable, whose statistical properties are best expressed in
terms of the phase structure function, Dφ(∆r) defined as:

Dφ(∆r) ≡
〈
[φ(r)− φ(r + ∆r)]2

〉
(12)

where the angular brackets denote ensemble average, and
φ(r) is the total wave phase at transverse co-ordinate r.
The structure function therefore measures the variance of
phase differences between two sight-lines that separated by
a transverse distance ∆r, and is the statistical analogue of
the transverse phase gradient ∂φ/∂r used in §2.2 to compute
the scattering angle.

If there be on average fa cloudlets intercepted by a
sight-line, the structure function can be shown to be (see
Appendix)

Dφ(∆r) = 2λ2r2
eN

2
e faΨ(∆r/rc), (13)

where the function Ψ(.) ≤ 1 only depends on the internal

10 1 100 101

∆r/rc

10 2

10 1

100

101

D
φ
(∆

r)
 [

n
o
rm

a
lis

e
d
]

Numerical
Kolmogorov approx.

Figure 4. The normalize phase structure function of an ensem-

ble of spherical cloudlets with uniform density, compared to a

Kolmogorov structure function with the same normalization and
an outer-scale of rc. The structure function is normalized by the

factor 2fa (λreNe)
2 .

structure of the cloudlets and determines the slope of the
phase structure function.

The upper panel of Fig. 4 shows the numerically com-
puted, normalized structure function Ψ(∆r/rc) for a spher-
ical cloudlet. As anticipated, the differential phase increases
monotonically for ∆r < rc. Beyond a transverse separation
of rc, rays encounter an independent realization of cloudlets
and the structure function saturates and becomes indepen-
dent of ∆r. The saturated value of the structure function is
simply the Poisson variance in the phase accumulated along
two independent realization of the cloudlet ensemble which
is 2fa×(λreNe)

2. Here the first term is the Poisson variance
in the differential number of cloudlets on two independent
sight-lines and the second terms if the square of the radio-
wave phase through a single cloudlet.

The bottom panel of Fig. 4 shows the logarithmic slope
of the structure function under the spherical cloudlet as-
sumption. The slope is less than the critical value of 2, which
implies a ‘shallow spectrum’ in which the transverse phase
structure on smaller spatial scales dominate the scattering as
opposed to larger scales fluctuations (Goodman & Narayan
1985). At smaller spatial scales (∆r � rc), the slope is close
to the Kolmogorov value of 5/3, which is usually employed

MNRAS 000, 1–15 (2018)



6 Vedantham & Phinney

to model wave scattering in extended turbulent media. We
will therefore proceed with the assumption that the struc-
ture function is ‘Kolmogorov-like’ with an outer scale of rc

and total phase variance of 2λ2N2
e r

2
efa:

Dφ(∆r) =

(
∆r

rdiff

)5/3

∆r < rc

2λ2N2
e r

2
efa otherwise (14)

where, the diffractive scale rdiff is

rdiff = rc

(
2λ2N2

e r
2
efa

)−3/5
, (15)

or

rdiff ∼ 1.6×1010 cm (rc/1 pc)λ
−6/5
30 N

−6/5
e,17 (fa/10)−3/5 (16)

For comparison, the Galactic WIM has a diffractive
scale of ∼ 109.5 cm at λ = 30 cm (Armstrong et al. 1995,
their fig. 2). Hence we expect the cloudlet ensemble to scat-
ter incoming light through angles that are comparable to
that from the Galactic WIM.

The typical scattering angle can be computed analogous
to equation 8, by noting that the stochastic phase fluctuates
by ∼ 1 rad over a transverse extent equal to the diffrac-
tive scale. This gives ∂φ/∂r ∼ 1/rdiff , and the characteristic
scattering angle becomes

θsc =
λ

2πrdiff
, (17)

or

θsc ∼ 63µas (rc/1 pc)−1 λ
11/5
30 N

6/5
e,17 (fa/10)3/5 (18)

The characteristic temporal broadening (equation 10)
is much larger than that seen in the Galactic WIM:

∆τ ∼ 0.4 ms (rc/1 pc)−2 λ
22/5
30 N

12/5
e,17 (fa/10)6/5

×
(
DlsDl/Ds

1 Gpc

)
. (19)

3.3 Dependence on halo mass and impact
parameter

Lets us now evaluate the scattering angle and temporal
broadening when the sight-line passes a halo of a given mass
at some redshift with an impact parameter b. Such a ray
will pass through cloudlets at varying radii which will pos-
sess varying scattering strengths. Ideally one would evaluate
the integral

∫
dy∂Dφ(∆r, y)/∂y along the ray-path within

the halo with y as the affine parameter. However, scattering
is dominated by the densest3 part of the halo along the ray
path. We can therefore obtain reasonably accurate values for
the scattering parameters by assuming that a ray with im-
pact parameter b traverses a distance of b along a cloudlet
ensemble with volume filling factor fv(b) and cloudlet ra-
dius of rc(b). The areal covering factor along such a ray is
fa(b) = fv(b) b/rc. Following a proceeder similar to that in
§3.2, we obtain an expression for the diffractive scale at im-
pact parameter b:

rdiff(b200) =
(
2λ2N2

e r
2
e

)−3/5
[rc(b)]8/5 [fv(b)b]−3/5 . (20)

3 By densest, we imply largest fv and smallest rc.

Substituting rc(b) = NeT/[2P (b)] and employing the halo
properties from §2, we get

rdiff(b)

1011 cm
= 3.5

(
λ30

1 + z

)−1.2(
fv

10−4

)−0.6(
fCGM

0.3

)−1.6

×M−1.27
12 h−3.87(z)b1.68

200

for rshock > b200 > 1.5rss, (21)

= 0.17λ−1.2
30

(
fv

10−4

)0.34(
fCGM

0.3

)0.27

M0.29
12

×h0.48(z) (1 + z)−3.47 for b200 < 1.5rss, (22)

where we have enforced the saturation of rdiff due to self-
shielding. The saturation radius of 1.5rss, instead of simply
rss (see equation 7) was chosen to match rdiff versus b profiles
obtained from full numerical integration of ∂Dφ(y)/∂y along
the ray path in the halo.

The corresponding scattering angle is

θsc(b)

µas
= 2.5

(
λ30

1 + z

)2.2(
fv

10−4

)0.6(
fCGM

0.3

)1.6

M1.27
12

×h3.87(z)b−1.68
200 for rshock > b200 > 1.5rss,

= 50 λ2.2
30

(
fv

10−4

)−0.34(
fCGM

0.3

)−0.27

M−0.29
12

×h−0.48(z) (1 + z)2.47 for b200 < 1.5rss. (23)

The apprent size of the scattering disc is θap = θscDls/Ds.
Finally, the temporal broadening timescale is

∆τ

ms
= 7.6× 10−3

(
λ30

1 + z

)4.4(
fv

10−4

)1.2(
fCGM

0.3

)3.2

×M2.54
12 h7.74(z)b−3.36

200

(
Deff

1 Gpc

)
for rshock > b200 > 1.5rss,

= 3λ4.4
30

(
fv

10−4

)−0.68(
fCGM

0.3

)−0.54

M−0.58
12

×h−0.96(z) (1 + z)4.94

(
Deff

1 Gpc

)
for b200 < 1.5rss. (24)

where the effective distance is Deff = DlsDl/Ds. With the
above equations, we can now compute the optical depth to
scattering for any halo mass function. Figure 5 shows a to-
scale depiction of the scattering properties and projected
sizes of haloes of various masses and redshifts. Figure 6 com-
pares the analytical approximation to the scattering angle
with the result of (a) numerically solving the equilibrium
neutral fraction at each location in the halo and then (b)
numerically integrating the phase structure function along
the CGM sight-line. The agreement is good and we will use
equation 21 to 24 to compute the statistics of scattering by
a cosmic distribution of haloes in §4.

3.4 The impact of granularity

Before we extent the formalism to account for scattering
from multiple halos, we pause to appreciate the impact of
pc-scale cloudlet structure on CGM scattering. Consider a
1012 M� halo at z = 1 with a cool-gas volume fraction of
fv = 10−4, and a fraction fCGM = 0.3 of baryons in the
CGM. The column density of the hot-phase gas would be

MNRAS 000, 1–15 (2018)
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1012M�

1012.5M�

1013M�z = 0.5 1′

1012M�

1012.5M�

1013M�z = 1.0 1′

1012M�

1012.5M�

1013M�z = 2.0 1′

> 4µas > 8µas > 16µas > 32µas > 64µas > 128µas

θsc

Figure 5. To-scale cartoons showing the relative amount of projected sky area within which the scattering angle exceeds the value given
by the colour code, for haloes of varying mass (1012, 1012.5 and 1013M�). Each row corresponds to a different halo redshift. Scattering
strength is parametrized as the characteristics ray deflection angle, θsc at an observed wavelength of λ = 30 cm (observed size of the

scattering disc is θap = θscDls/Ds). The gray background marks the virial extent of the halo.

Ne ≈ 2× 1019. If this gas were fully turbulent with an outer
scale of r200 ≈ 140 kpc, then its diffractive scale at λ = 30 cm
is rdiff ≈ 4× 1013 cm. The diffractive scale due to scattering
by cloudlet in our formalism is rdiff ≈ 2 × 1011 cm— about
two orders of magnitude smaller. Hence even though the
cool gas only has a volume fraction of 10−4, it scatters radio
waves though a characteristic angle that is two orders of
magnitude larger. This is a direct result of the small-scale
granularity of cool gas in the cloudlet model considered here.

In other words, radio-wave scattering is highly sensitive to
the small-scale fluctuations in gas density.

4 DISCUSSION AND SUMMARY

We will now discuss the observable impact of scattering in
the CGM. To do so, we first predict the scattering properties
of an ensemble of haloes.

MNRAS 000, 1–15 (2018)
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Figure 6. Solids lines: plots of scattering angle, θsc versus impact parameter, b200 (same data as in Fig. 5) for varying halo mass. Dashed

lines: analytical approximation from equation 23. The vertical dot-dashed lines mark 1.5 rss (defined in equation 7) where the scattering
is expected to saturate due to self-shielding against the ionizing IGM background radiation.

4.1 Scattering in a ΛCDM Universe

We assume that the volume fraction of cool gas is red-
shift independent. The halo scattering properties however
remain redshift dependent due to the evolution of virial
pressure and halo number counts with redshift. We use the
halo mass function calculator of Murray et al. (2013) to
compute dN(z,M)/dM— the co-moving volume density of
haloes of with mass in an infinitesimal interval dM about
M , at redshift z. Fig. 7 shows the ensuing numbers of haloes
larger than a mass shown in the legend, that are intercepted
(within their virial shock) by an average sightline through
the Universe. We find that nearly all sight-lines out to z ∼ 1
pass within the virial radius of a 1013 M� halo, and ∼ ten
1011 M� halo. Because larger haloes (a) condense out of the
Hubble flow at later times and (b) possess smaller virial
radii at higher redshift, the number of intercepts for any
given mass range rise up to z ∼ 1 and decline thereafter.

Consider a radio source at redshift zs. The statistics
of the scattering timescales from all intervening haloes at
redshift zl < zs can be computed as follows. We pick a scat-
tering timescale τsc, and for each halo mass and redshift bin,
we compute the impact parameter bmax(M, zl, zs, τsc) below
which the scattering timescale exceeds τsc via equation 24.
The projected area is πb2max/D

2
l . There are dN(M, zl)/dM

haloes per unit volume that contribute to the scattering. The
areal covering factor of sightlines whose scattering timescale
exceed τsc is therefore

A(> τsc) =

∫
d2V (z)

∫ Mmax

Mmin

dM
dN(M, zl)

dM

×πb2max(M, zl, zs, τsc)

D2
l

(25)

where Mmin and Mmax are the mass range of interest, as-
sumed to be 1011.5 M� and 1013.5 M� respectively, and
d2V (z) is the co-moving volume element at redshift z given
by:

d2V (z) = c3
(∫ z

0
dz′/H(z′)

)2
H(z)

dz dΩ (26)

We note that A(> τsc) can be larger than unity which
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Figure 7. Number of virial intercepts by haloes with mass in ex-

cess of value shown in legend per unit redshift bin. Halo mass
functions were computed using the program of Murray et al.

(2013), and the footprint of each halo extended to a radius of

rshock = 1.5 r200 (see eqn. 1).

indicates that there is more than one halo along the sight-
line whose ‘stand-alone’ scattering strength exceeds τsc. An
identical procedure can be followed for any other scattering
parameter such as the apparent size of the scattering disc.
Figure 8 shows the apparent angular size of the scattering
disc and the scattering timescale calculated using the above
prescription. The figure shows that most sight-lines out to
zs = 1 suffer angular broadening of at least ∼ 8µas and
temporal broadening of at least ∼ 0.1 ms. The scattering for
zs & 0.2 happens due to many intervening haloes. To under-
stand their effect, we must compute the average scattering
angle.

To first order, the scattering angle due to multiple
scattering ‘screens’ add in quadrature, and the scattering
timescale add linearly (Blandford & Narayan 1985, their Ap-
pendix A). We can therefore compute the mean scattering
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timescale. A covering factor > 1 implies there is more than one intervening halo whose scattering individually exceeds the x-axis value.

Assumed parameter values are fv = 10−4, fCGM = 0.3, Γ = 10−13 [(1 + zl)/1.2]5 s−1

timescale as

τsc = −
∫ ∞

0

dτ τ
dA(> τ)

dτ
(27)

where (the negative of) the differential in the integrand re-
turns the probability density function of τ and the integral
therefore evaluates to the expected value of τ . The mean
size of the scattering disc is similarly

θap =

√
−
∫ ∞

0

dθ θ2
dA(> θ)

dθ
(28)

Figure 9 shows the mean temporal and angular broadening
this computed as a function of source redshift for different
values of cool-gas volume fraction fv and fraction of baryons
in the CGM, fCGM. The fractional sample variance on the
mean is driven in large part by the Poisson fluctuations in
the number of intercepted haloes. Based on Fig. 7, the frac-
tional variation is of order unity for zs . 0.2 and reduces to
few tens of per-cent by zs ∼ 1. order unity for zs . 0.2 and
decreases to tens of per-cent by zs ∼ 1.

4.2 How can CGM scattering be observed?

Figure 9 shows that sources at zs & 1 are scatter broadened
to typical angular size of ∼ 20µas and in timescale to about
& 1 ms, at a wavelength of λ = 30 cm. Despite the consid-
erable uncertainty in parameters affecting CGM scattering
(specifically fv and fCGM), let us take these numbers as a
fiducial test case, to understand the observational manifes-
tation of CGM scattering.

4.2.1 Refractive and diffractive scales

We first summarize the relevant aspects of two regimes
of scattering: diffractive and refractive.4 Diffractive effects

4 Also called fast and slow scintillation respectively. See Rickett

et al. (1984); Goodman & Narayan (1985) for further details.

Table 1. A comparison of characteristic angular and time-scales
for scattering in the CGM (this work) and the Galactic warm

ionized medium (Walker 1998). A refractive scale of θap = 20µas

at λ = 30 cm has been assumed for the CGM contribution (see
Fig. 8).

Parameter CGM MW
(high lat.)

Transition wavelength (λtran) 0.3 cm 3.75 cm

Length-scale 1 Gpc 1 kpc

Fresnel scale at λtran 10−3 µas 3µas
Diffractive angular scale (λ = 30 cm) 10−6 µas 0.25µas

Refractive angular scale (λ = 30 cm) 20µas 0.3 mas

Diffractive time scale (λ = 30 cm) 5 min/0.5 s† 10 min
Refractive timescale† (λ = 30 cm) 180 yr/0.3 yr† 8 d

Temporal pulse broadening (λ = 30 cm) 1 ms 0.17µs

† For the CGM case, the refractive timescales are quoted for
two cases: (a) when the transverse velocity is 500 km s−1 and (b)

when the transverse velocity equals the speed of light (relevant

for relativistically moving sources).

manifest on scales given by θdiff = rdiff/Dl on which individ-
ual speckles form. The ensemble of speckles form a scatter-
ing disc over the refractive scale given by θap = θscDls/Ds =
λ/(2πθdiff)Dls/(DsDl). Because rdiff evolves as λ−6/5, the
diffractive and refractive scales evolve as θdiff ∝ λ−6/5 and
θap ∝ λ11/5. When the scattering is too weak to form speck-
les, the apparent size of a point-like source is set by the size
of the first Fresnel zone given by θ2

f = λ/(2π)Dls/(DlDs).
It is trivial to show that θ2

f = θdiffθap and that all three
angular scales are equal to one another at the transition
wavelength: λtran = 2πr2

diff Ds/(DlDls). Below the transi-
tion wavelength, scattering is weak and manifests as weak
flux-density modulation due to plasma density fluctuations
that focus and de-focus the electromagnetic wavefront on

MNRAS 000, 1–15 (2018)
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a source at z & 1. In either set of curves, the dot−dashed line

(∝ λ1/2) shows the weak scattering regime below the transition
wavelength. In the strong scattering regime, the solid (∝ λ11/5)
and dashed (∝ λ−6/5) curves show the refractive and diffractive

scales respectively. The solid black lines (∝ λ) show the intrinsic

angular size of an (incoherent) synchrotron source with a bright-
ness temperature of 1012 K, and flux-density values given in the

in-line labels. A length-scale of 1 Gpc has been assumed to convert
all physical scales to angular scales.

the Fresnel scale. Above the transition wavelength, diffrac-
tive flux-density modulations results from fluctuations in
the position and brightness of speckles that interfere at
the observer, while refractive modulations result from fo-
cussing and de-focussing of the entire speckle ensemble. The
above discussion applies to point-like sources. Refractive
and diffractive scintillation of extended sources are rapidly
‘washed out’ as the intrinsic source size exceeds the diffrac-
tive and refractive scales respectively. Figure 10 and table
1 summarize the angular and time-scale of scintillation in
the Galactic WIM at high Galactic latitudes and the corre-
sponding CGM values for our fiducial test case.

4.2.2 Incoherent synchrotron sources

Let us first consider incoherent optically-thin synchrotron
sources with a characteristic brightness temperature of
1012 K. Although the flux-density of such sources is strongly
modulated by refractive effects for λ & 0.3 cm, the time-scale
over which these modulations manifest in light-curves is too
large to be of practical interest. More importantly, even
sources as faint as 10µJy are too large for refractive modu-
lations to be observable at λ . 10 cm, whereas at λ & 10 cm,
the flux-density modulations are dominated by the Galactic
WIM. Hence the influence of CGM scattering will be diffi-
cult to identify observationally using incoherent synchrotron
sources. This conclusion also serves as an essential ‘sanity-
check’ in that, our postulated existence of significant CGM
scattering does not violate the large existing body of work on
scintillation of incoherent synchrotron sources (active galac-
tic nuclei and gamma-ray burst afterglow for e.g.) that only
consider flux-modulations from Galactic scintillation.

There is however a narrow parameter range where CGM
scattering may be discerned from Galactic scattering in weak
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< 10µJy-level sources. Consider the 3 cm . λ . 10 cm
regime in Fig. 10. In the absence of CGM scattering, weak
sources may be small enough to display diffractive scintil-
lation in the Galaxy which could be observed as modula-
tions in the radio spectrum of sources on scales of ∆ν/ν ≈
(ν/ν0)17/5 (Walker 1998, their §3.2.2). However, these scin-
tillations will be quenched in the presence of angular broad-
ening of the source in intervening CGM which could push
the apparent source size above the Galactic diffractive scale.
Given the large uncertainty in predictions for CGM scintil-
lation parameters it is difficult to accurately predict where
this wavelength window exists for a given sight-line. A tar-
geted survey of sources along sight-lines at varying impact
parameters (which would vary the transition frequency in
Fig. 10) may be a fruitful avenue to explore. Assuming a
characteristic coherence scale of ∆ν ∼ 1 GHz, τ ∼ 1 hr for
Galactic diffractive scintillation, a system temperature of
30 K, aperture efficiency of 60 per-cent, such an experiment
would require a collecting area well in excess of ∼ 105 m2

which is barely within reach of existing radio telescopes.

We have also considered early radio emission from
gamma-ray bursts (GRBs), which can have higher brightness
temperatures at early times than blazars, owing to their ul-
trarelativistic velocities. They can therefore be brighter and
easier to measure while still at small angular sizes, and are
consequently observed to show interstellar scintillation in
their first days at ∼ 5GHz (Granot & van der Horst 2014).
Before deceleration to Lorentz factor Γ < 1/θj (before the
“jet break” for a jet of opening half-angle θj), the projected
source angular size θ at (earth) time T after explosion of a
GRB at redshift z is θ ∼ 2cTΓ/DM (z), where DM (z) =
DA(z)(1 + z) is the proper motion distance, and DA(z)
the angular diameter distance. The Blandford-McKee blast
wave of the ultrarelativistic shock moving into a medium of
uniform external density ρ0 has radius R ' 2cTΓ2/(1 + z)
and explosion energy per unit solid angle E/Ω ' ρ0R

3Γ2c2,
which gives Γ ' 9(Eiso,53/n0)1/8(T/[(1+z)day])−3/8, where
E = 1053erg(Ω/4π)Eiso,53 and n0 is the external density in
cm−3 (Granot et al 2002, cf.). At DM (z = 1) = 3.3Gpc,
θ = [0.2, 1, 4]µas at T = [0.1, 1, 10] d. Thus at λ < 4cm (the
transition wavelength below which Milky Way scintillation
becomes unimportant), the GRB will be smaller than our
fiducial scattering angle θ = 20µas(λ/30cm)11/5 < 0.25µas
for less than 0.1 day. During this time, the scintillation
timescale will be set by the rapidly expanding source, ex-
panding across the refractive screen at a projected speed of
∼ ΓcDl/Ds. This is many times c for our cosmological lenses
with Dl ∼ 0.5Ds (but less than 1 km s−1 for Milky Way in-
terstellar plasma at Dl ∼ 100pc, so Milky Way scintillation
timescales are dominated by gas motions in the Milky Way,
not the apparent source expansion). The refractive scintilla-
tion timescale is thus the same as the timescale for the source
to expand to a size larger than the refractive scale —i.e., the
source will have only about 1 speckle before becoming too
large to display refractive scintillation. This would be diffi-
cult to convincingly detect in a GRB.

We thus turn to the most promising class of sources.

4.2.3 Coherent sources

Fast radio bursts (FRB; Lorimer et al. 2007) are the only
known class of coherent emitters at cosmic distances of in-
terest to CGM scintillation. Extragalactic mega-masers are
known to scintillate due to the Galactic turbulence (Argon
et al. 1994). However, even if they are compact enough to
show diffractive scintillation in intervening CGM, the inter-
pretation is clouded by the possibility of intrinsic variability
(see e.g. Greenhill et al. 1997), and we will not consider
them here. FRBs are . 1 ms duration bright (∼ 1 Jy) radio
bursts of extragalactic origin. At least one FRB is known
to repeat (Spitler et al. 2016) which is the only FRB to
have been securely localized, and resides in a galaxy with
redshift zs = 0.193 (Chatterjee et al. 2017; Tendulkar et
al. 2017). However, if most of the observed plasma dis-
persion is apportioned to the intergalactic medium, then
the known populations of FRBs with dispersion measures
DM ∼ 500 − 2000 pc cm−3 (Petroff et al. 2016; Ravi 2017)
originate at redshifts of z ∼ 0.5 − 2. In this redshift range,
the spectra of quasars show absorption systems, e.g. in Mg
II, CIV, Lyman limit systems produced in the halos of one or
more intervening galaxies(Steidel et al. 1988, 1994; Mathes
et al. 2017). Thus signals from cosmological FRBs must also
be passing through the cool ionized clumps in the CGM of
galaxies.

Based on their ∼ms duration, FRBs should projected
an angular size of ∼ 10−6 µas at Ds ∼ 1 Gpc, even if the
emission region travels with apparent superluminal speed
with relativistic γ ∼ 103. Hence FRBs must display the ef-
fects of diffractive (and refractive) scintillation in both in-
tervening CGM and the Galactic WIM. The characteristic
pulse broadening time-scale in the CGM of & 1 ms should
also be easily distinguishable from the . 0.1µs of broad-
ening expected in the Galactic WIM at high latitudes, and
a presumably similar amount from the FRB host galaxy.
Some FRBs may also originate in dense star-forming regions
which may contribute significantly to temporal broadening.
CGM scattering can however be distinguished in a popula-
tion of localized FRBs in two ways. (a) One can attempt
a statistical detection of an FRB temporal broadening v/s
redshift relationship and constrain the amount of cool gas
in the CGM fog (via Fig. 9. (b) The variation of tempo-
ral broadening with halo mass and impact parameter can
be measured (with significant investment of time on opti-
cal spectrographs, comparable to that invested in quasar
studies, e.g.(Steidel et al. 1994)) and CGM scattering con-
strained via equation 24 and 5. These appear to be the most
promising avenues to directly constrain the fine sub-parsec
scale properties of cool gas in the CGM.

With the current absence of a sample of well local-
ized FRBs, we can only make a heuristic comparison be-
tween our predictions and data. If a large fraction of the
observed FRBs at λ = 30 cm are indeed at z ∼ 1 as they
dispersion measures suggest (Petroff et al. 2016), then based
on Fig. 8, the most extreme models with fV & 10−3 and
fCGM & 0.6 are disfavored. The more moderate models such
as (fCGM = 0.3, fV = 10−4) or (fCGM = 0.6, fV = 10−4)
are broadly consistent with the ∼ms scale scattering seen
in some FRBs if they are at z ∼ 1. The same models also
predict > 1 s of scattering at frequencies below ∼ 200 MHz,
making them difficult to detect. This is a plausible expla-
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nation for the current non-detection of FRBs at such low
frequencies (Chawla et al. 2017; Tingay et al. 2015; Karaster-
giou et al. 2015).

4.3 Summary

In addition to the hot 106 K halo gas, quasar absorption
spectroscopy and fluorescent Lyα imaging have detected
large amounts of cool 104 K gas in the CGM of & 1012 M�
haloes. This was not predicted in canonical galaxy assem-
bly models, but has been accounted for in recent simula-
tions of cooling instabilities that drive the formation of nu-
merous sub-pc size cloudlets of cool gas. The tiny size of
these cloudlets make their spectroscopic or imaging-based
detection (and even study via simulations) difficult. We have
shown that the pc-scale ‘granularity’ imparted by the small
cloudlet size results in a large increase in their radio wave
scattering strength. The resulting temporal broadening at
λ = 30 cm of ∼ 10−1−10 ms (depending on cool gas volume
fraction and fraction of baryons in CGM) far exceeds that
expected from the Galactic WIM. This makes their study
feasible with fast radio bursts. Identification of our predicted
associated temporal broadening in FRBs could revolution-
ized study of small-scale structure of the CGM in much the
same way that pulsars revolutionized our understanding of
sub-au scale structure in the Galactic WIM. We have com-
puted the scattering properties of individual haloes (equa-
tions 21 to 24) as function of halo parameters and redshift,
as well as ensemble scattering properties through sight-lines
in the Universe (9). The imprint of CGM scattering on the
angular size and scintillation of faint compact radio sources
may be difficult to discriminate from scattering in the Galac-
tic WIM. A population of well localized FRBs however, will
provide a much more promising avenue to measure the sub-
pc scale structure of the CGM. Such a measurement will
however have to discriminate between scattering in inter-
vening CGM and other plausible scattering sites such as the
circum-burst medium.

We end by noting that while we have demonstrated the
observable scattering effects of cool gas clouds, the precise
CGM model considered here is likely simplistic. For instance,
McCourt et al. (2018) considered equilibrium cooling rates
for collisionally ionized solar-metallicity gas that is optically
thin. These and other assumptions (see e.g. §4.1 of McCourt
et al. 2018) likely break-down at least in some parameter
ranges of redshift, halo mass and galaxy type. Our method
to compute CGM scattering from small-scale cool-gas clouds
presented here can however be readily adapted to future
refinement of CGM cool-gas models.
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Table 1. Glossary of symbols and their implied meaning

Symbol Meaning

λ Observed wavelength

λ30 λ in units of 30 cm

Ne Electron column density through a single cloudlet
Ne,17 Ne in units of 1017 cm−2

rc Radius of a single cloudlet

fa Average number of cloudlets intercepted
fCGM Fraction of baryons in CGM (halo mass and redshift independent)

rdiff Diffractive scale of plasma inhomogeneities

θsc Characteristic wave scattering angle
∆τ Characteristic pulse broadening timescale

r200 Radius at which halo density is 200× critical density

M200 Mass enclosed within r200

M12 M200 in units of 1012M�
b Impact parameter
b200 Impact parameter in units of r200

bc Radius below which cloudlets self-shield against photoionization

bc,200 bc in units of r200

P200 Gas pressure at r200

T , T4 Gas temperature in units of Kelvin and 104 Kelvin respectively

α Power-law index for variation of gas pressure with radius
β Power-law index for variation of cool-gas volume fraction with radius

Dφ(r) Phase structure function at transverse separation r

Dl Observer−Lens angular diameter distance
Ds Observer−Source angular diameter distance

Dls Lens−Source angular diameter distance
re Classical electron radius ≈ 2.81794× 10−13 cm.

APPENDIX A: PHASE STRUCTURE FUNCTION OF A CLOUDLET ENSEMBLE

Let the two dimensional impact parameters vector be b = [bx, by], and let us use the notation |x| ≡ x for spatial vectors.
If there are fa cloudlets intercepted by a ray, then the number of cloudlets intercepted with impact parameters within an
interval dbx ddy around [bx, by] is a Poisson random variable with mean〈
∂2N(bx, by)

∂bx ∂by

〉
=

fa

πr2
c

. (A1)

Let f(b) ∈ [0, 1) be the fractional path-length through a cloudlet. Because λreNe is the maximal phase through a cloudlet, the
phase inserted into a ray at impact parameter b is therefore λreNef(b). With these definitions, the phase structure function
at transverse separation ∆r can be written as the ensemble average:

Dφ(∆r) =

〈(∫
dbx

∫
dby

∂2N(bx, by)

∂bx ∂by
λreNe [f(b)− f(b + ∆r)]

)2
〉
. (A2)

We now bring in the assumption that cloudlets are randomly distributed. The random variable ∂2N(bx, by)/∂bx ∂by therefore
has the properties 〈

d2N(bx, by)

dbx dby

d2N(b′x, b
′
y)

db′x db′y

〉
=

2fa

πr2
c

if bx = x′x, by = b′y

= 0 otherwise (A3)

With this, the structure function reduces to

Dφ(∆r) = λ2r2
eN

2
e 2fa ×

∫
dbx dby [f(b)− f(b + ∆r)]2

πr2
c

. (A4)

The first factor is the variance of the phase accumulated by a ray propagating through the cloudlet ensemble. The second
factor, defined as the function Ψ(.) in §3, only depends on the internal structure of the cloudlets. For axially symmetric
cloudlets, it is only a function of ∆r/rc. It increases from 0 for ∆r = 0 and saturates at 1 for ∆r ≥ rc

APPENDIX B: PHOTOIONIZATION BALANCE IN THE GALACTIC FOG

We make the following simplifying assumption in our computation of the photoionization balance: (a) all neutral hydrogen
atoms are in the ground state, (b) photons emitted during direct recombinations to the ground state are all reabsorbed
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‘close by’ in the halo (so called on-the-spot approximation), (c) only photons close to ν0 = 3.3 × 1015 Hz participate in the
ionization balance (d) the free-electrons have a Maxwellian distribution owing to their large elastic scattering cross-section
(∼ 10−13 cm−2).

Let Jν0(r) be the number of photons at frequency ν0 per unit area, per unit solid angle, per unit frequency per unit time
present in the halo at radial distance r (i.e. Iν0 = Jν0/(hν0)). The boundary condition for photoionization equilibrium is set
by the measured/modelled UV photon field in the IGM, which is typically specified as an isotropic photoionization rate:

Γ(IGM) = 4π Jν0(IGM) a0 (B1)

where a0 ≈ 6.3×10−18 cm−2. Gaikwad et al. (2017) determined a photoionization rate of Γ(IGM) = 10−13 [(1 + z)/1.2]5. This
gives the boundary condition of

4πa0Jν0 = 10−13 [(1 + z)/1.2]5 (B2)

At any location r in the halo, if ζ(r) is the neutral fraction, then photionization balance is enforced via

[1− ζ(r)]2

ζ(r)
=

Γ(r)

n(r)αB
(B3)

where αB = 2.6 × 10−13 cm−3 s−1 at T = 104 K is the effective recombination coefficient for the on-the-spot approximation,
and n(r) is the total density.

Γ(r) is evaluated by the equation of radiative transfer. Recombinations to levels other than the ground state do not
contribute photons for ionization, and photons from recombinations to the ground state have been accounted for in αB. This
simplifies the equation of radiative transfer substantially (no source term).

Γ(r) = 2π

∫ π

0

dθ sin θ Jν0(IGM) exp−τ(r,θ) (B4)

where τ(r, θ) is the optical depth to ionizing photons arriving at radius r from the IGM, at a polar angle θ:

τ(r, θ) = a0

∫ ∞
0

dxn(x)ζ(x) fv(x) (B5)

where the integrand is just the column density of neutral atoms along the ray, and x is the affine parameter along the ray.
The above equation will need to be evaluated numerically for a spherical geometry that we are considering here (unlike the
plane-parallel approximation that is usually employed).

Taken together, we are now tasked with solving the following integral equation in ζ(r)

[1− ζ(r)]2

ζ(r)
=

Γ(IGM)

2αBn(r)

∫ π

0

dθ sin θ exp

[
−a0

∫ ∞
0

dxn(x)ζ(x)fv(x)

]
(B6)

Any given set of halo mass and redshift completely specify n(x), rc(x), fv(x), and Γ(IGM). This allows us to solve for ζ(x)
recursively via

[1− ζi+1(r)]2

ζi+1(r)
=

Γ(IGM)

2αBn(r)

∫ π

0

dθ sin θ exp

[
−a0

∫ ∞
0

dxn(x)ζi(x)fv(x)

]
(B7)

We choose an initial value by setting the optical depth term to unity:

[1− ζ0(r)]2

ζ0(r)
=

Γ(IGM)

αBn(r)
(B8)

An approximate location of the ionization front can be found by assuming (i) a radiation field given by Γ(IGM) throughout
the halo to compute the neutral fraction in each cloud, and (ii) computing the radial depth at which the ensuing neutral
fraction yields a column density of a−1

0 . Because individual clouds at the outskirts of the halo are only partially neutral,
we have ζ(r) ≈ n(r)αB/Γ(IGM). Setting the neutral column density integrated from the halo edge, rshock = 1.5 r200 to the
self-shielding radius rss in units of r200, to a−1

0 , we get

a0αB/Γ(IGM)r200

∫ 1.5

rss

d(r/r200)n2(r/r200)fv(r/r200) = 1 (B9)

We can let the upper limit of integration to recede to infinity without significant loss of accuracy, substitute for the radial
scaling of density and volume fraction from §2, and get an approximate expression for the self-shielding radius in units of r200

rss ≈ 0.11

(
fv

10−4

)0.56 (
fCGM

0.3

)1.11

M0.93
12

h2.59(z)

(1 + z)2.78
. (B10)

We have adjusted the numerical constant with a factor of order unity to match rss to the radius at which ζ = 0.5 (within
∼ 10 per-cent) for mass and redshift ranges of interest, in the neutral profile determined from the full radiative transfer as per
equation B7. Figure B1 shows the neutral fraction profile evaluated using equation B7 and the approximation for rss given
above.
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Figure B1. Neutral fraction profile, ζ(r), computed using full radiative transfer of the IGM UV field from equation B7 for different

redshifts and halo mass (halo properties defined in §2). The dashed lines show the location of the ionization front as approximated by
equation B10.
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