Supporting Information

Development of a Next-Generation Fluorescent Turn-On Sensor to Simultaneously Detect and Detoxify Mercury in Living Samples

Abdul Malek^{†, ϕ}, Kallol Bera^{#, ϕ}, Shrutidhara Biswas[§], Govindaraj Perumal[¥], Anand Kant Das^{ϵ}, Mukesh Doble[¥], Tiju Thomas^{*‡} and Edamana Prasad^{*†}

[†]Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.

[#]Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India. [§]Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India. [§]Department of Biotechnology, Indian Institute of Technology Madras, Chennai-600036, India.

[€]Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai- 400005, India.

[‡]Department of Metallurgical and Materials Engineering, Institute of Technology Madras, Chennai-600036, India.

 $^{\Phi}$ These authors contributed equally

Correspondence and requests for materials should be addressed to E.P. and T.T.

*Tel: +91-44-2257-4232. Fax: +91-2257-4202. E-mail: pre@iitm.ac.in (E.P.) *Tel: +91-44-2257-5781. Fax: +91-44-2257-4752. E-mail: tijuthomas@iitm.ac.in or tt332@cornell.edu (T.T.)

Contents:

Serial no.	Title	Page
		no.
1	Characterization of PYDMSA by FTIR spectroscopy	S 3
2	¹ H and ¹³ C NMR of PYDMSA	S4-S5
3	HRMS of PYDMSA	S6
4	UV-Visible spectroscopic characterization of PYDMSA	S7
5	Color change of the solution containing PYDMSA in the presence of Hg ²⁺	S8
6	Time-dependent response of PYDMSA to Hg ²⁺	S9
7	HRMS of the Hg ²⁺ -DMSA complex and pyronin Y	S10-S11
8	Fluorescence intensity vs. Hg ²⁺ concentration plot	S12
9	Job's plot: PYDMSA vs. Hg ²⁺	S13
10	Fluorescence titration at nanomolar (nM) concentrations of Hg^{2+}	S14
11	Response of PYDMSA towards various metal ions	S15
12	MTT assay for the cell viability test	S16

1. Characterization of PYDMSA by FT-IR spectroscopy

Figure S1. Fourier transform infrared spectroscopy (FT-IR) spectra of PYDMSA, PYDMSA + Hg^{2+} and Pyronin Y. Presence of CS-C⁹ vibration in the FTIR spectra of the PYDMSA around 660 cm⁻¹ supports the structure shown in the main manuscript.

2 (a). ¹H NMR of PYDMSA

¹**H** NMR (CDCl₃, 400 MHz): δ = 2.023 (s, 1H, SH), 2.659 (s, 2H, methylene CH), 3.315 (s, 12H, N-CH₃), 6.7025 (d, 2H, J = 6.25 Hz, ArH), 7.021 (d, 1H, J = 7.5 Hz, ArH), 7.044 (d, 1H, J = 7.5 Hz, ArH), 7.981(s, 1H, ArH), 8.005 (s, 1H, ArH), 8.97 (s, 1H, ArCH), 10.010 (s, 1H, COOH).

2 (b). ¹³C NMR of PYDMSA

¹³C NMR (DMSO-d₆, 400 MHz): δ= 40.61, 44.19, 95.93, 113.63, 114.33, 133.13, 146.01, 157.02, 157.21, and 171.77

Figure S2. (a) ¹H Nuclear magnetic resonance (NMR) of PYDMSA (b) ¹³C NMR spectra of PYDMSA.

3. HRMS of PYDMSA

Figure S3. High-resolution mass spectrometry (HRMS) of PYDMSA.

4. UV-Visible spectroscopic characterization of the PYDMSA

Figure S4. Black colored spectrum is the UV-Vis spectrum of PYDMSA (10 μ M) in PBS buffer. PYDMSA is colorless ($\lambda_{abs}^{max} = 390$ nm) in PBS at pH 7.4. Red colored spectrum is the UV-Vis spectrum of (PYDMSA+ Hg²⁺) the solution (10 μ M of both PYDMSA and Hg²⁺). Absorption maximum around 550 nm indicates that after interacting with Hg²⁺, PYDMSA generates Pyronin Y; this is in accordance with the mechanism provided in the main manuscript.

5. Color change of the solution containing PYDMSA in the presence of Hg²⁺

Figure S5. Color of the solution containing PYDMSA (10 μ M) with varying concentrations of Hg²⁺ (0 - 10 μ M). The label on the tubes indicates the Hg²⁺ concentration in micromolar (μ M). The image is taken under visible light. It is observed that the naked eye can visually detect the marked color change at a concentration equal to or above 2 μ M.

6. Time-dependent response of PYDMSA to Hg²⁺

Figure S6. Time-dependent response of 10 μ M PYDMSA to 10 μ M Hg²⁺. The fluorescence response of PYDMSA to Hg²⁺ is ~0.1 s.

7. HRMS of the Hg²⁺-DMSA complex and pyronin Y

Figure S7. HRMS of PYDMSA solution after addition of Hg^{2+} (i.e. after sensing). Mass of 378.3 corresponds to DMSA- Hg^{2+} complex, and 302.093 corresponds to pyronin Y.

8. Fluorescence intensity vs. Hg²⁺ concentration plot

Figure S8. Fluorescence intensity vs. Hg^{2+} concentration plot. Correlation coefficient $R^2 = 0.99$.

9. Job's plot: PYDMSA vs. Hg²⁺

Figure S9. Job's plot for the determination of stoichiometry of PYDMSA and Hg^{2+} . It is obvious from the plot that Hg^{2+} makes 1:1 complex with PYDMSA.

Figure S10. Plot of $(F-F_0)/F_0$ vs. $[Hg^{2+}]$. The plot is obtained upon addition of Hg^{2+} (0.33 – 3 nM) to PYDMSA (10 μ M) at 25 °C in PBS, pH 7.4. [Excitation wavelength (λ_{ex}) = 490 nm and emission maxima (λ_{em}^{max}) = 570 nm].

11. Response of PYDMSA towards various metal ions

Figure S11. Relative fluorescence intensity changes after addition of 50 μ M of various interfering metal ions to 5 μ M PYDMSA.

12. MTT assay for the cell viability test

Figure S12. MTT assay is carried out to verify the detoxifying capability of the probe. It is found that the probe is capable of detoxifying Hg^{2+} as hypothesised. The trend is similar to what is found in CCK-8 assay.