
Traversing Environments Using Possibility
Graphs for Humanoid Robots

Michael X. Grey, Aaron D. Ames, and C. Karen Liu

Georgia Institute of Technology, Atlanta GA 30332, USA

Abstract. Locomotion for legged robots poses considerable challenges
when confronted by obstacles and adverse environments. Footstep plan-
ners are typically only designed for one mode of locomotion, but travers-
ing unfavorable environments may require several forms of locomotion to
be sequenced together, such as walking, crawling, and jumping. Multi-
modal motion planners can be used to address some of these problems,
but existing implementations tend to be time-consuming and are limited
to quasi-static actions. This paper presents a motion planning method to
traverse complex environments using multiple categories of actions. We
introduce the concept of the “Possibility Graph”, which uses high-level
approximations of constraint manifolds to rapidly explore the “possibil-
ity” of actions, thereby allowing lower-level single-action motion plan-
ners to be utilized more efficiently. We show that the Possibility Graph
can quickly find paths through several different challenging environments
which require various combinations of actions in order to traverse.

1 Introduction

Modern motion planning methods have proven effective at navigating geometric
constraint manifolds within high dimensional configurations spaces. This capabil-
ity is critical for robots to exhibit autonomy in complex real-world environments,
because geometric constraints are frequently used to determine the feasibility of a
physical action and hence are often used as “feasibility constraints” which must
be satisfied or else the action is considered infeasible. Geometric constraints
include requirements such as avoiding obstacles and placing end effectors in ap-
propriate locations. Two common types of motion planners are Probabilistic
Roadmaps (PRM) [15] and Rapidly-exploring Random Tree (RRT) [14]. Stan-
dard PRM is well-suited for exploring a single expansive manifold, as defined
in [1]. Constrained Bi-directional RRT (CBiRRT) [2] can effectively handle con-
straint manifolds whose dimensionality is lower than the configuration space in
which it exists.

Standard motion planning methods tend to struggle when a solution needs
to traverse numerous topologically distinct constraint manifolds. This occurs
most often in hybrid dynamic systems where the “mode” of the system alters its
constraint manifold. For example, standing on the left foot is a different mode
from standing on the right foot for a bipedal robot. The constraint manifolds
of these two modes are different, and their intersection is narrow, resulting in a

ar
X

iv
:1

60
8.

03
84

5v
1 

 [
cs

.R
O

] 
 1

2 
A

ug
 2

01
6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216298823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

low (sometimes zero) probability of randomly moving from one manifold to the
other. Hauser et al. introduced the Multi-modal PRM [10] to address this prob-
lem. The primary bottleneck of this method is the combinatorial complexity of
sampling and selecting modes, since each footstep taken by the robot represents
a mode that must be explored. Additionally, existing implementations of the
Multi-modal PRM are limited to quasi-static actions, which broadly eliminates
its ability to utilize the dynamic capabilities of a robot system.

(a)

(b)

Fig. 1. The robot is tasked with traversing from the right side of a hallway to the
left side. It must navigate underneath bars which are positioned at various angles, and
then must jump across a gap. (a) The graph explored the space of the hallway until
a solution was found. Green edges are walking actions, light blue edges are crawling
actions, and fuchsia arcs are jumping actions. (b) Snapshots show the plan in action.

In contrast to motion planning methods, standard footstep planners are able
to rapidly generate footsteps and walking trajectories without spending time ex-
ploring the constraint manifolds of combinatorial modes the way a Multi-modal
PRM does. They typically do this by approximating the problem of walking. In
[3, 4] this is done using a 2D representation of obstacles and in [3, 4, 5] only a
finite set of footstep parameters or action primitives are available to the planner.
The two-stage method presented in [6] uses a bounding cylinder to represent the
collision geometry of the lower body. All of these estimations inherently limit
the completeness of the methods. Moreover, these methods are all limited to a
single category of action: bipedal walking.

The use of optimization methods in the motion planning domain has been
growing [16, 17], especially for walking motions. Nonlinear constrained optimiza-
tion can elegantly handle the mixed modes and hybrid dynamics [18] required



3

for walking and crawling. However, they tend to be tailored for generating single
behaviors (e.g. a walking behavior that consists of a single- and double-support
phase). This is insufficient for traversing a complex environment where a se-
quence of different types of behaviors is needed. Optimizations methods also
tend to be local, making them inappropriate for tackling problems that require
a global search.

The goal of this paper is to introduce a new high-level motion planning
method, named the Possibility Graph, that can leverage the speed and efficiency
of standard footstep planners with the completeness of randomized motion plan-
ning methods and the dynamics capabilities of optimization-based methods. The
Possibility Graph is general enough to handle arbitrary categories of actions in-
stead of being limited to only walking or stepping primitives. The role of the
Possibility Graph is to quickly explore what actions might be possible through-
out an environment. Different action types are compactly interlaced with each
other within the graph, allowing a solution to utilize any action types in any
order. Once a potential route is discovered, lower-level planning methods are
used to confirm whether the route is truly feasible. This allows the lower-level
(and computationally intensive) planners to focus their efforts on queries which
are likely to achieve a solution. These queries can be performed in parallel, en-
suring that the overall planning effort does not get bottlenecked by any single
challenging step.

The three categories of actions used in this paper are walking, crawling, and
a standing long jump. Figure 1 shows these three actions being utilized in a
hallway example. We test the Possibility Graph on various scenarios. In some
scenarios, multiple action categories may be required to reach the goal. We show
that the Possibility Graph works reliably on the order of seconds. Complete
solutions tend to generate at faster than 100x real time. This makes Possibility
Graphs suitable for online planning. They could also be incorporated into higher
level task planners [9] which require numerous high-speed queries.

2 Possibility Graph

The governing logical principles behind the Possibility Graph have a theoretical
grounding in Possibility Theory [7], but the concepts are intuitive enough that
a knowledge of Possibility Theory is not necessary to proceed. It is enough
to understand that the possibility of any given action instance can be labelled
with “impossible”, “possible”, or “indeterminate” depending on whether the
instance satisfies the necessary or sufficient conditions that are assigned to it.
The motivation for using a Possibility Graph is two-fold:

1. We can design necessary and/or sufficient conditions that can be checked
quickly, making expansion of the graph very efficient.

2. Even though different actions may have constraint manifolds with different
dimensionalities, we can design their necessary and/or sufficient conditions
to share a common set of parameters, allowing for a single unified graph
which combines all actions.



4

Motion planning methods ordinarily operate by constructing graphs or trees
which fully exist within the feasibility constraint manifold of the action they are
performing. Remaining within this manifold is a reasonable requirement to place
on the graph, because any vertices or edges which step outside of the manifold
are, by definition, invalid—which may mean it is physically impossible, or simply
harmful to the robot or its surroundings. Unfortunately, for a humanoid robot to
remain on the constraint manifold, expensive calls to whole body inverse kine-
matics solvers (for more on whole body IK, see [11, 12, 13]) must be performed.
This results in a critical bottleneck if a broad area needs to be explored before
finding a solution. By exploring the possibility of actions first, we can broadly
avoid expensive whole body inverse kinematics queries and easily slide through
transition spaces which would otherwise be narrow.

2.1 Simplifying the Manifold: Sufficient vs. Necessary Conditions

To construct the Possibility Graph, we must first design sufficient and/or nec-
essary conditions for the feasibility constraint manifold of each action. The two
motivations which were mentioned earlier imply that the conditions we create
should satisfy two criteria: (1) They should be quick to test, and (2) they should
be low dimensional, using as few parameters as is reasonable.

Suppose we have a 2D constraint manifold, C, which exists in 3D space,
as shown in Fig. 2(a). Supposing we can directly compute the z-value of the
manifold given valid x and y values, it makes sense to project this manifold
down onto the xy-plane. We can call the projection CP . This accomplishes our
goal of lower dimensionality.

Even with a flattened-out projection, identifying which points are inside or
outside of the manifold may still be costly or difficult, because the boundaries
of the projection may be functions that are expensive to compute or hard to
fully define. However, suppose a box, circle, or some other simple shape can be
fit within the projection such that it is guaranteed that every point within the
simplified shape also lies within the manifold projection. Such a shape would
be a suitable representation of the sufficient condition manifold, CS , for the
constraint manifold C. Mathematically, this means CS ⊆ CP . Similarly, if a
simple shape, CN , could be fit around the projection CP such that CP ⊆ CN ,
then CN would qualify as the necessary condition manifold. The specific designs
of necessary and sufficient manifolds for this paper are discussed in Sec. 3.

2.2 Explore Possibilities by Expanding the Graph

The purpose of the Possibility Graph is to find a feasible action sequence to
get from a start point to at least one goal point. We define the contents of
the Possibility Graph in Def. 1. The procedure for finding solutions with the
graph is described by Alg. 1. The graph is initialized with a set of subgraphs,
each subgraph consisting solely of either the start point or a goal point. All
the graph’s vertices are elements of the “possibility exploration space”, E . The
Possibility Graph finds paths through the exploration space by querying each



5

x

y

z

Fig. 2. Visual depiction of an abstract constraint manifold, C and its projection. The
manifold is projected, CP , from 3D space onto a plane. “Sufficient” CS and “Necessary”
CN boundaries are fitted within and around the projection of the manifold.

Fig. 3. Cartoon showing a simple 2D stick-figure example where the stick figure can
walk or crawl forward. The graph’s vertices represent the (x, z) values of a point fixed
to the stick figure’s chest. The upper region, marked by W in the top photo, is where
walking is valid. The lower region, Cr, is where crawling is valid. (a) We extend from
the start vertex towards a randomly sampled point in the center. [Alg. 3, line 7] (b) We
extend from the goal vertex towards the last vertex that was created in the previous
step. [Alg. 3, line 13] (c) For each new walking vertex, we create a crawling vertex and
connect it to the walking vertex using a transition edge [Alg. 1, line 8]. For some of
the walking vertices, a transition into crawling is not viable due to obstacles. (d) We
now extend the crawling subgraphs towards a point that was sampled near the center
of the room, and the subgraphs manage to connect [Alg. 1, line 10].



6

available action to expand the graph in randomized directions within E (see line
10 of Alg. 1). If a query meets at least the necessary conditions of the action,
then it will be appended to the graph.

Definition 1. A Possibility Graph is a tuple
PG = (actions,E , ΓPG, QConfirmation), where

– actions is a set of actions (defined in Table 1),
– E is a space consisting of the union of all the parameters used by the neces-

sary and sufficient conditions of each Action,
– ΓPG is a directed graph whose vertices are elements of E ,
– QConfirmation is a queue which manages confirmation jobs (see Table 1).

An important feature of our algorithm is the exploration of transitions be-
tween various action categories. Each time vertices are added for one action, the
other actions will be queried to see if they can transition from it (Alg. 1 , Line 8).
This allows different actions to be interlaced with each other within the graph.
Each action keeps track of its own exploration by storing a set of subgraphs, Γa,
consisting of its own vertices and edges. At the same time, the Possibility Graph
maintains the “master” graph, ΓPG, which combines all the subgraphs of all the
different action types. The algorithm is illustrated by a toy example in Fig. 3.

Over time, the Possibility Graph will consist of vertices and edges from var-
ious actions interlaced with each other. Some elements of the graph will satisfy
the sufficient conditions of their respective actions, but some will only satisfy the
necessary conditions. Once the graph contains a path from the start vertex to a
goal vertex, we need to inspect the vertices and edges of that path to confirm
whether all the path elements are truly feasible. This process is shown in the
ConfirmPath function of Alg. 1. Actions are responsible for spawning “confirma-
tion jobs” which are low-level planning routines whose job is to verify whether or
not an edge in the possibility graph is truly feasible. These routines are loaded
into the Confirmation Queue, QConfirmation. The Confirmation Queue will ro-
tate between running each job to ensure that easy ones are finished promptly
while difficult ones do not halt the overall confirmation progress. These jobs are
executed on threads which run parallel to the graph expansion and each other.
This allows the planner to search for alternative potential solutions when certain
edges are difficult to confirm.

2.3 Extending Action Subgraphs

For the Possibility Graph to explore actions, we need to fully define each ac-
tion type. Table 1 lays out the implementation-dependent functions which must
be engineered for each action type. The functions in that table enable the
GrowTowards and PerformTransitions functions to work. PerformTransitions
is described in Alg. 2. It simply pulls vertices from other actions out of a queue
and attempts to create transitions from those actions to itself. GrowTowards

serves two primary roles: (1) expand the graph in new directions, and (2) con-
nect together disjoint subgraphs. The nature of how an action grows will depend



7

Algorithm 1: Finding a path by exploring possibilities

1 Function FindPath(start, goals, actions)
2 ΓPG.V ← {start, goals};
3 Initialize each action graph with the start and goal vertices;
4 QConfirmation.launchThreads();
5 t← 0;
6 while t < tmax do
7 for a in actions do
8 {Vnew, Enew} ← a.PerformTransitions();
9 ptarget ← RandomSample();

10 {Vnew, Enew}.append(a.GrowTowards(ptarget));
11 for all aother not a in actions do
12 aother.QTransition.insert(Vnew);

13 {ΓPG.V, ΓPG.E}.append({Vnew, Enew});
14 for g in goals do
15 if Connected(start, g) then
16 Γpath ← ShortestPath(start, g);
17 if ConfirmPath(ΓPG, Γpath, QConfirmation, actions) then
18 return Γpath;

19 t← CurrentTime();

20 return null;

21 Function ConfirmPath(ΓPG, Γpath, QConfirmation, actions)
22 pathConfirmed ← true;
23 for edge in Γpath.E do
24 edgeConfirmed ← false;
25 for a in actions do
26 if a.CS(edge) then
27 edgeConfirmed ← true;

28 else if a.CN(edge) then
29 ΓPG.remove(edge);
30 QConfirmation.insert(a.SpawnConfirmationJob(edge));

31 if not edgeConfirmed then
32 pathConfirmed ← false;

33 return pathConfirmed;

on what kind of action it is. For this paper, we have two methods of expanding
an action, one for holonomic actions and the other for nonholonomic.

Holonomic actions are expanded using Alg. 3. When we describe an action
as “holonomic” in this context, we mean that its sufficient/necessary condition
manifold is holonomic. Even if the full feasibility constraint manifold of the
action is nonholonomic, it can be treated as holonomic by the Possibility Graph
if its necessary/sufficient condition manifold is simplified to be holonomic within



8

Table 1. Definition of an Action

All action types

ExtendTowards(v0, v1): Create a vertex by moving towards v1 from v0

via this action.

CN (x): Return true if x meets the action’s necessary conditions,
otherwise return false. x may be a vertex or an edge.

CS(x): Return true if x meets the action’s sufficient conditions,
otherwise return false. x may be a vertex or an edge.

TransitionFrom(v): Attempt to return a path that goes from v into the
necessary condition manifold of this action.

SpawnConfirmationJob(e): Return a routine (called a confirmation job) which can
examine edge e to ascertain whether it is truly feasible.

Holonomic action types

Project(v): Attempt to return a point on the necessary
condition manifold which is close to v.

Nonholonomic action types

ReverseExtend(v0, v1): Create a vertex which can arrive at v0 from the
direction of v1 via this action.

FindLaunchPoint(v, v1): Return a point, v0, close to v which can be used
in a call to ExtendTowards(v0, v1)

FindLandingPoint(v, v1): Return a point, v0, close to v which can be used
in a call to ReverseExtend(v0, v1)

Algorithm 2: Utilizing the Transition Queue

1 Function Action::PerformTransitions()
2 {Vnew, Enew} ← {new VertexQueue, new EdgeQueue};
3 i← 0;
4 while i < MaxTransitionsPerCycle do
5 v ← PopRandom(QTransitions);
6 {Vnew, Enew}.append(TransitionFrom(v));
7 i← i+ 1;

8 Γa.append({Vnew, Enew});
9 return {Vnew, Enew};

the exploration space, E . Alg. 3 shows how the possibilities of holonomic actions
are expanded. Importantly, holonomic actions always try to connect disjoint
subgraphs together. This procedure is very similar to the growth of a CBiRRT [2],
except that it accommodates numerous directional subgraphs. To avoid having
subgraphs needlessly cross over each other, we only extend two at a time: The
subgraph who has the vertex closest to the random target is extended towards
the target up to some point v0 [Alg. 3, line 7] (at which point it cannot extend
any further); then the second closest subgraph attempts to connect to v0 [Alg.



9

3, line 13]. However, if the first subgraph was goal-connected, then the second
subgraph must not be (i.e. we skip over the next closest subgraph until we
reach one which is not goal-connected), because connecting together two goal-
connected subgraphs cannot help in finding a solution.

Nonholonomic actions are expanded in a more complex way than holo-
nomic actions, as shown in Alg. 4. Nonholonomic actions generally cannot move
directly towards a goal, so they need to “line themselves up” first. We do this by
identifying a launch point which is reachable from an existing point on the graph
[Alg. 4, line 10]. The launch point should be chosen such that it allows the ac-
tion to land as close to the randomly generated target as possible, so long as the
launch point is still reachable from the existing graph. Since nonholonomic ac-
tions are also generally direction-dependent, we do the reverse for goal-connected
subgraphs [Alg. 4, line 17]: Pick a landing point which can connect to an existing
goal-connected vertex such that it has a viable launch point coming from the
direction of the target. Section 3.2 describes this for the jump action.

3 Action Implementations

In this paper, we implement three action types to serve as a proof of concept.
Two are holonomic and one is nonholonomic. They include walking, crawling,
and a standing long jump. We use a model of the DRC-HUBO1 robot, because
its kinematic structure is designed to accommodate crawling. The scenarios in
which we apply these actions will be discussed in Sec. 4. For the exploration
space of the Possibility Graph, E , we use the SE(3) coordinates of a reference
frame attached to the robot’s pelvis.

3.1 Walk and Crawl

The walking and crawling actions are formulated very similarly to each other.
Sufficient conditions for walking and crawling are holonomic, and include these
simplifications:

1. We use a swept collision geometry, similar to [9]. The geometries can be seen
in Fig. 4. These geometries must not be in collision with the environment
when given a point in E .

2. Each point that defines the robot’s support polygon must be touching flat
ground when the robot is in a “nominal” walk/crawl configuration. The
nominal configurations can be seen in Fig. 4.

3. The root must be in the “nominal” orientation of the action (upright for
walking and pitched backwards 80◦ for crawling).

The necessary conditions are significantly easier to satisfy:

1. We use only the collision geometry of the pelvis, because all other bodies
depend on joint parameters which are not included in E .

2. At least one foot must be able to reach some ground surface.



10

Algorithm 3: Growing the graph for a holonomic action

1 Function HolonomicAction::GrowTowards(ptarget)
2 Qclosest ← new SortedVertexQueue;
3 for g in Γa.SubGraphs do
4 v ← g.FindClosestVertexTo(ptarget);
5 Qclosest.insert(dist(v, ptarget), v);

6 v0 ← Qclosest.pop front();
7 {Vnew, Enew} ← Connect(v0, ptarget);
8 ptarget ← Vnew.back();
9 if UpstreamFromGoal(v0) then

10 while UpstreamFromGoal(Qclosest.front() do
11 Qclosest.pop front();

12 v1 ← Qclosest.pop front();
13 {Vnew, Enew}.append(Connect(v1, ptarget));
14 Γa.append({Vnew, Enew});
15 return {Vnew, Enew};

16 Function HolonomicAction::Connect(vstart, ptarget)
17 {Vnew, Enew} ← {new VertexQueue, new EdgeQueue};
18 vlast ← vstart;
19 v ← ExtendTowards(vstart, ptarget);
20 vp ← Project(v);
21 while CN(vp) and v 6= ptarget do
22 edge ← Edge(vlast, vp);
23 if not CN(edge) then
24 break;

25 {Vnew, Enew}.append({vp, edge});
26 vlast ← vp;
27 v ← ExtendTowards(v, ptarget);
28 vp ← Project(v);

29 return {Vnew, Enew};

The ExtendTowards(v0, v1) function simply applies an SE(3) transform which
translates and rotates v0 to bring it closer to v1. Changes in rotation should be
weighted less than changes in translation in order to have sensible differences be-
tween steps. The Project function for these action templates adjusts the height
and orientation of the SE(3) input so that it matches the nominal configura-
tion of the action. Translation in x/y and rotation along z are unaffected. The
TransitionFrom function moves between these actions by generating a simple
motion that goes from one nominal configuration to the other. If an edge only
meets the necessary conditions of the action, then another planning method
(such as Multi-modal PRM) must be generated by the SpawnConfirmationJob

function. On the other hand, when the sufficient conditions are satisfied, the
final motion for these actions is easily determined by placing footsteps along



11

Algorithm 4: Growing the graph for a nonholonomic action

1 Function NonholonomicAction::GrowTowards(ptarget)
2 {Vnew, Enew} ← {new VertexQueue, new EdgeQueue};
3 Qclosest ← new SortedVertexQueue;
4 for v in Γa.V do
5 Qclosest.insert(dist(v, ptarget), v);

6 Useful ← new BooleanArray(Γa.V .size(), true);
7 for v in Qclosest do
8 if not Useful[v] then continue ;
9 if not UpstreamFromGoal(v) then

10 vlaunch ← FindLaunchPoint(v, ptarget);
11 vlanding ← ExtendTowards(vlaunch, ptarget);
12 edge ← Edge(vlaunch, vlanding);
13 if CN(edge) then
14 {Vnew, Enew}.append({vlaunch, vlanding, edge});
15 RecursivelySetUpstreamVerticesToFalse(v, Useful);

16 if not DownstreamFromStart(v) then
17 vlanding ← FindLandingPoint(v, ptarget);
18 vlaunch ← ReverseExtend(vlanding, ptarget);
19 edge ← Edge(vlaunch, vlanding);
20 if CN(edge) then
21 {Vnew, Enew}.append{vlaunch, vlanding, edge};
22 RecursivelySetDownstreamVerticesToFalse(v, Useful);

23 Γa.append({Vnew, Enew});
24 return {Vnew, Enew};

the specified route through SE(3) and then generating a whole body motion to
follow those footsteps. Our sufficient conditions guarantee that it will be possible
to generate and follow those footsteps.

3.2 Standing Long Jump

A standing long jump is a forward jump which begins from standing in place
and launches forward without taking any steps. Figure 5 shows an example of
a jumping trajectory. We use a standing long jump in this paper for simplicity;
future work will include long jumps that take running starts, which can achieve
considerably greater range. We provide necessary conditions for the standing
long jump but not sufficient conditions. The necessary condition manifold is
nonholonomic, and contains the following:

1. The vertex that begins the jump must be a valid walk vertex.
2. The vertex that finishes the jump must be a valid crawl vertex.
3. There must be at least one collision-free parabola through E from the be-

ginning vertex to the finishing vertex. The parabola must follow a feasible
jump arc according to the physical limitations of the robot.



12

(a) (b)

Fig. 4. The nominal configurations used for (a) walking and (b) crawling, with their
swept geometries surrounding them.

Fig. 5. An example standing long jump trajectory. The robot begins from a standing
configuration, swings its arms, and jumps forward. It plans out its angular momentum
so that it is able to land in a crawling configuration. After hitting the ground, it absorbs
some of the impact by letting its joints behave elastically.

The TransitionFrom function for the jump action is trivial, because it always
begins from valid walking configurations and ends in valid crawling configura-
tions, therefore the transition function does nothing. The ExtendTowards(v0, v1)
function performs a forward jump from v0 to v1. If v1 is too far to reach from
v0, then it performs the furthest allowable jump. The ReverseExtend(v0, v1)
function instead performs a jump which lands at v0 and begins as close to v1 as
the robot’s physical limitations allow. The FindLaunchingPoint(v, v1) function
returns a point, v0, whose translation is the same as v but whose orientation
has the robot facing v1; this allows the ExtendTowards(v0, v1) function to bring
the robot closer to v1. Conversely, the FindLandingPoint(v, v1) function re-
turns a point, v0, whose translation is the same as v but which is facing away
from v1; this allows the robot to jump towards v from the direction of v1 using
ReverseExtend(v0, v1).



13

The SpawnConfirmationJob function of the jump action is a basic colloca-
tion optimization on a boundary value problem. The boundary value constraints
are (1) zero initial velocity, (2) a take-off configuration and velocity which will
allow the robot to reach its jump target. The objective function of the opti-
mization problem attempts to minimize the accelerations during take-off. While
generating the trajectory, we also check that the joint and contact forces required
to achieve the trajectory are physically feasible. Trajectories which fail this test
are discarded. Once the jump is generated, we can check for collisions along its
trajectory. If the jump was successfully generated (i.e. the jumping motion is
physically feasible) and is collision-free, then its “possibility” status is changed
from “indeterminate” to “possible”, and it can be used in a final solution.

4 Experimental Results

We run performance tests on three scenarios (one of which has three versions).
Each performance test is the result of 50 trials. The Possibility Graph is a ran-
domized planner, so the time required for the same trial can vary between runs.
We put a 60 second time limit on the planner; if a solution is not found within
60 seconds, we consider it a failed run.

Three Routes scenario is shown in Fig. 6. There are three potential routes
that the robot might take to get from the start to the goal. We have three
different versions of this scenario, and each version has progressively stronger
requirements for what actions are needed by the solution, allowing us to
compare the performance impact caused by specific action sequences being
required.
Hallway scenario was shown in Fig. 1. The robot must crawl underneath
some bars and then jump across a gap to get from the start on the right side
to the goal on the left.
Double Jump scenario is shown in Fig. 7. The robot must jump twice to
get from the right side to the left.

In Table 2 we see that the time required to solve a problem scales up with
the number of actions being used (comparing the values in the Graph column
of rows 1–3 and 4–5). For every action that is utilized by the planner, more
exploration needs to be performed, which tends to increase the runtime. Not
only does the action’s space get explored, but also the transitions between the
actions need to be explored. However, this cost is additive, not multiplicative, so
the overall costliness will be related to the sum (not product) of the costliness of
the individual actions. Jumping exploration is considerably more expensive than
walking or crawling exploration. To curb this, we can modify Alg. 1, line 10 so
that there is some probability of skipping the jumping expansion each cycle. In
the results of Table 2, we use a 90% chance of skipping.

We can also see that the time required to solve a problem scales up with
the number of actions required by the environment to get a solution (comparing
the Graph values of row 2 to 4 and of row 3 to 5). This is not surprising since



14

requiring certain actions can be viewed as tightening the constraints on the
solution, and tighter constraints tend to take longer to solve with randomized
search.

Table 2. Time performance results, tested on an IntelR© XeonR© Processor E3-1290
v2 (8M Cache, 3.70 GHz) with 16GB of RAM. Na is the number of action types that
were provided to the planner. “Graph” is the time it took to generate a solved graph.
“Motion” is the time it took to generate the physical motions for the solution. γ is the
“Real-Time Ratio”, i.e. the time it would take to execute the plan divided by how long
the whole plan (graph+motion) took to generate. “Success Rate” is how many times
the planner succeeded (instead of timing out). All times are given in seconds. Each
result is the average of 50 runs; the standard deviation is given in parentheses.

Scenario Na Graph Motion γ Success

Three Routes (a) 1 0.088 (0.048) 8.47 (0.81) 143.2 (3.5) 100%

Three Routes (a) 2 0.134 (0.076) 8.75 (0.91) 143.6 (2.6) 100%

Three Routes (a) 3 0.484 (0.450) 7.52 (1.86) 136.8 (10.0) 100%

Three Routes (b) 2 0.152 (0.112) 9.23 (1.09) 142.5 (3.2) 100%

Three Routes (b) 3 0.561 (0.502) 7.59 (2.30) 134.0 (11.1) 100%

Three Routes (c) 3 1.210 (0.218) 5.73 (1.79) 121.2 (7.03) 100%

Hallway 3 3.67 (11.52) 8.29 (0.84) 127.2 (6.96) 96%

Double Jump 3 1.48 (0.34) 4.32 (0.28) 113.3 (6.24) 100%

Limitations Our experiments only used sufficient conditions for walking and
crawling; any actions which violate the sufficient conditions for walking and
crawling are ignored. Unfortunately, this eliminates the probabilistic complete-
ness of the implementation. A more complete approach would consider the nec-
essary conditions of walking and crawling, and then employ Multi-modal PRM
[10] to examine walking/crawling segments where only the necessary conditions
are met. This would allow the robot to step over small obstructions and squeeze
through narrow passages between obstacles. These considerations will be the
topic of future work.

5 Conclusion

We presented performance results of multi-action traversal plans being generated
for the DRC-HUBO1 platform in complex environments. The complexity of the
environments is derived from the fact that they require a variety of different ac-
tion types to be interlaced in the correct sequence in order to navigate from the
start to the goal. Three action types were used to traverse these environments:
walking, crawling, and the standing long jump. The time required to fully gener-
ate the motion plans was less than 1/100th of the time that the motions require
for physical execution. This makes the Possibility Graph a promising option for



15

(a) (b)

(c) (d)

Fig. 6. The three versions of the “Three routes” scenario. The robot must get from
the back left corner to the back right corner. (a) A route exists that allows the robot
to walk all the way to the goal. (b) Some bars were added to the walking route, so the
robot must crawl at least once to reach the goal. (c) A gap was added at the end of
the crawling routes, so the robot must jump at least once to reach the goal. (d) A grid
that shows the map being explored.

Fig. 7. The “double jump” scenario. The robot must jump across two gaps and navi-
gate around a wall in the middle to get from the right side to the left side.

online use. Moreover, the time required to guarantee that a solution exists is
even smaller, which suggests that the Possibility Graph would be an effective
tool for higher-level task planners such as the Hybrid Backward-Forward planner
[8, 9] which only needs to know whether a query is solvable.

The theoretical framework of the Possibility Graph can extend beyond the ap-
plications seen here. Future work will incorporate Multi-modal PRM to achieve
probabilistic completeness in the quasi-static domain. We will also incorporate
highly dynamic actions, e.g. running jumps, using nonlinear constrained opti-
mization. This will open the door to fast, global, dynamic planning for high
dimensional systems.



16

References

[1] Hsu, D., Latombe, J.-C.: Path planning in expansive configuration spaces. IEEE
Int. Conf. on Rob. and Aut. (ICRA), vol. 3, 2719–2726 (1997)

[2] Berenson, D., Srinivasa, S. S., Kuffner, J.: Task space regions: A framework for
pose-constrained manipulation planning. The Int. J. of Rob. Res. (2011)

[3] Garimort, J., Hornung, A., Bennewitz, M.: Humanoid navigation with dynamic
footstep plans. IEEE Int. Conf. on Rob. and Aut. (ICRA) 3982–3987 (2011)

[4] Hornung, A., Dornbush, A., Likhachev, M., Bennewitz, M.: Anytime search-based
footstep planning with suboptimality bounds. 12th IEEE-RAS Int. Conf. on Hu-
manoid Rob. (Humanoids 2012) 674–679 (2012)

[5] Candido, S., Kim, Y. T., Hutchinson, S.: An improved hierarchical motion planner
for humanoid robots. 8th IEEE-RAS Int. Conf. on Humanoid Rob. 654–661 (2008)

[6] Pettré, J., Laumond, J. P., Simon, T.: A 2-stages locomotion planner for digital
actors. Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation 258–264 (2003)

[7] Dubois, D., Prade, H.: Possibility Theory. Meyers, R. A. (ed) Computational Com-
plexity: Theory, Techniques, and Applications 2240–2252 (2012)

[8] Garrett, C. R., Lozano-Pérez, T., Kaelbling, L. P.: Backward-forward search for
manipulation planning. IEEE/RSJ Int. Conf. on Intl. Rob. and Sys. 6366–6373
(2015)

[9] Grey, M. X., Garrett, C. R., Liu, C. K., Ames, A., Thomaz, A. L.: Humanoid
Manipulation Planning using Backward-Forward Search. IEEE/RSJ Int. Conf. on
Intl. Rob. and Sys. (2016) (to appear)

[10] Hauser, K., Latombe, J. C.: Multi-modal motion planning in non-expansive spaces.
The Int. J. of Rob. Res. (2009)

[11] Sentis, L., Khatib, O.: A whole-body control framework for humanoids operating
in human environments. Proceedings IEEE Int. Conf. on Rob. and Aut. 2641–2648
(2006)

[12] Sugihara, T., Nakamura, Y.: Whole-body cooperative balancing of humanoid robot
using COG Jacobian. IEEE/RSJ Int. Conf. on Intl. Rob. and Sys., vol. 3, 2575–2580
(2002)

[13] Gienger, M., Janssen, H., Goerick, C.: Task-oriented whole body motion for hu-
manoid robots. IEEE-RAS Int. Conf. on Humanoid Rob. 238–244 (2005)

[14] Kuffner, J. J., LaValle, S. M.: RRT-connect: An efficient approach to single-query
path planning. IEEE Int. Conf. on Rob. and Aut., vol. 2, 995–1001 (2000)

[15] Kavraki, L. E., Kolountzakis, M. N., Latombe, J.-C.: Analysis of Probabilistic
Roadmaps for Path Planning. IEEE Trans. on Rob. and Aut., vol. 14, no. 1, 166–
171, (1998)

[16] Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin,
C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: Covariant Hamiltonian optimization
for motion planning. The Int. J. of Rob. Res., 32(9-10), 1164–1193 (2013)

[17] Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F.,
Koolen, T., Marion, R., Tedrake, R.: Optimization-based locomotion planning, es-
timation, and control design for the Atlas humanoid robot. Autonomous Robots,
40(3), 429–455 (2016)

[18] Hereid, A., Cousineau, E.A., Hubicki, C.M., Ames, A.D.: 3D Dynamic Walking
with Underactuated Humanoid Robots: A Direct Collocation Framework for Op-
timizing Hybrid Zero Dynamics. IEEE Trans. on Rob. and Aut. (2016)


	Traversing Environments Using Possibility Graphs for Humanoid Robots

