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On Identification of Distribution Grids
Omid Ardakanian, Vincent W.S. Wong, Roel Dobbe, Steven H. Low, Alexandra von Meier, Claire Tomlin, Ye Yuan

Abstract—Large-scale integration of distributed energy re-
sources into residential distribution feeders necessitates careful
control of their operation through power flow analysis. While the
knowledge of the distribution system model is crucial for this type
of analysis, it is often unavailable or outdated. The recent intro-
duction of synchrophasor technology in low-voltage distribution
grids has created an unprecedented opportunity to learn this
model from high-precision, time-synchronized measurements of
voltage and current phasors at various locations. This paper
focuses on joint estimation of model parameters (admittance
values) and operational structure of a poly-phase distribution
network from the available telemetry data via the lasso, a method
for regression shrinkage and selection. We propose tractable
convex programs capable of tackling the low rank structure of
the distribution system and develop an online algorithm for early
detection and localization of critical events that induce a change
in the admittance matrix. The efficacy of these techniques is
corroborated through power flow studies on four three-phase
radial distribution systems serving real household demands.

Index Terms—System identification, event detection, phasor
measurement units, distribution grids, smart grids.

I. INTRODUCTION

D ISTRIBUTION grids are traditionally sized in a way
that they will not be stressed even under severe loading

conditions. The emergence of demand side technologies and
distributed energy resources (DER), such as solar panels, wind
turbines, battery storage systems, and plug-in electric vehicles,
has led to an unprecedented amount of variability across
multiple timescales which cannot be simply managed using
the traditional “fit and forget” philosophy. This manifests the
need for a novel operation paradigm which is centered around
pervasive monitoring, real-time analytics and control at the
distribution scale [1].

In recent years, numerous smart grid technologies have
been piloted to improve observability and controllability of
distribution grids, examples of which are distribution su-
pervisory control and data acquisition (D-SCADA) system
and synchrophasor technology [2] – inexpensive, high-fidelity
micro-phasor measurement units (µPMUs) sampling voltage
and current waveforms at high frequency [3]. The availability
of telemetry data from multiple points across a distribution
network makes valuable new applications possible, such as
event detection and classification, model validation, distributed
generation (DG) characterization, state estimation, equipment
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health monitoring, and phasor-based control [4], [5]. While
the knowledge of the distribution network model is crucial for
most of these applications, such a model is often unavailable
or outdated due to the continuous integration of distribution
components and frequent reconfiguration of feeders. To ad-
dress this problem, this work focuses on joint estimation of
distribution system model parameters and its topology from
the available telemetry data.

The distribution system identification problem has received
a lot of attention lately. However, most research focuses on
topology verification which entails identifying the subset of
distribution lines that are energized using smart meter data
or phasor measurements, and little effort has been put into
learning the impedance parameters of lines and transformers
from the available data1. For example, the correlation between
node voltage measurements is leveraged in [6] to detect the
grid topology via a sparse Markov random field. A data-driven
online algorithm is proposed in [7] for detecting a switching
event by comparing a trend vector built from µPMU data
with a given library of signatures derived from the possible
topology changes. In [8], the optimal placement of sensors
in a distribution network is investigated in order to infer the
status of switches from the measurements using the maximum
likelihood method. A mutual information-based algorithm
is proposed in [9] to identify the distribution topology by
building a graphical model that describes the probabilistic
relationship among voltage measurements. In [10], a graphical
model learning algorithm is proposed based on conditional
independence tests for nodal voltage measurements. Principal
component analysis is employed in [11] to obtain a lower
dimensional subspace of the available µPMU data and project
the original data onto this subspace by learning coefficients of
the basis matrix using an adaptive training method. An online
event detection algorithm is then proposed to approximate
phasor measurements using these coefficients, issuing an alert
whenever a significant approximation error is noticed.

The inverse power flow (iPF) problem, originally defined
in [12], concerns recovering the admittance matrix of a
power system from a sequence of voltage and current phasor
measurements corresponding to different steady states of the
system. In this paper, we study the iPF problem in the context
of a poly-phase distribution system (loopy or radial) where
each node is equipped with a sensor (i.e., the full observ-
ability assumption). Drawing on sparsity-based regularization
techniques [13]–[15], we present a tractable convex program
to uniquely identify the admittance matrix of the distribution
system when the identification problem is well-posed. To
tackle the low rank structure of a distribution network, we

1Due to the imprecise and possibly correlated phasor measurements,
model parameter estimation will be nontrivial even if the true topology is
known.
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develop a novel algorithm based on matrix decomposition
which is capable of identifying a large submatrix of the
admittance matrix. Furthermore, we put forward an online
algorithm for early detection and localization of critical events
that change the admittance matrix.

This paper extends our prior work [16] in three main ways.
First, we propose the use of the adaptive lasso penalty to esti-
mate large elements of the admittance matrix, attenuating the
bias problem. Second, we propose a regularization technique
that leverages the approximate knowledge of the admittance
matrix to enhance identification. Third, we validate the efficacy
of the proposed algorithms and study their sensitivity to the
measurement error through extensive simulations on IEEE 13,
34, 37, and 123-bus feeders serving real and synthetic loads.

The closest lines of work to ours are [17], [18] which jointly
address topology detection and model parameter estimation
problems. In [17], these problems are merely studied in a
radial network setting and the results are not extended to
poly-phase and mesh systems. In [18], noisy measurements of
power injections and voltage phasors from µPMUs and smart
meters are leveraged for the joint estimation of line parameters
and topology of a distribution system. However, their approach
cannot be used to detect faults or track topology changes.

II. PROBLEM FORMULATION

This section describes the iPF problem in a poly-phase dis-
tribution system and introduces a regularization technique for
simultaneous estimation and variable selection to efficiently
solve this problem under certain assumptions.

A. Preliminaries

We denote the set of complex matrices and the set of
symmetric complex matrices by C and S, respectively, the
transpose of a matrix A by A>, its Hermitian (complex
conjugate) transpose by AH , its pseudo-inverse by A†, its
Frobenius norm by ‖A‖F , and the smallest number of linearly
dependent columns of this matrix by Spark(A). All-zeros and
all-ones vectors are denoted respectively by 0 and 1, and the
cardinality of a set N is denoted by |N |. Placing a caret over
a letter indicates that it represents an estimated value.

A poly-phase power distribution system can be modeled by
an undirected graph G = (N , E) where N = {1, 2, . . . , N}
represents the set of nodes, and E ⊆ N × N represents the
set of energized lines, each connecting two distinct nodes. We
denote the phases of a node n ∈ N by Pn ⊆ {an, bn, cn}
and the phases of a line (m,n) ∈ E connecting node m to
node n by Pmn ⊆ {amn, bmn, cmn}. For node n ∈ N and
phase φ ∈ Pn, let V φn ∈ C be its line-to-ground voltage and
Iφn ∈ C be the injected current. We represent the voltages
and injected currents of different phases of node n ∈ N by
vectors Vn = {V φn }φ∈Pn and In = {Iφn}φ∈Pn , respectively,
and use the per-unit system to express the quantities. We treat
the voltage at the distribution substation as reference for phasor
representation.

We model lines as π-equivalent components and denote the
phase impedance and shunt admittance matrices of line (m,n)

by Zmn ∈ C|Pmn|×|Pmn| and Y smn ∈ C|Pmn|×|Pmn|, respec-
tively. Similarly, transformers are modeled as series compo-
nents with an admittance matrix which depends on the type
of connection. Assembling the admittance matrices of all com-
ponents, the admittance matrix can be constructed for the dis-
tribution system, denoted by Ybus ∈ S

∑
n∈N |Pn|×

∑
n∈N |Pn|,

which is a symmetric matrix that satisfies Ybus1 = 0 if shunt
elements are neglected. The bus admittance matrix relates the
node voltages and injected currents according to Ohm’s law:

I1(k)
I2(k)

...
IN (k)


︸ ︷︷ ︸
Ibus(k)

=


Y11 Y12 . . . Y1N

Y >12 Y22 . . . Y2N

...
...

. . .
...

Y >1N Y >2N . . . YNN


︸ ︷︷ ︸

Ybus


V1(k)
V2(k)

...
VN (k)


︸ ︷︷ ︸
Vbus(k)

, (1)

where k = 1, . . . ,K is the time index, Vbus(k), Ibus(k) ∈
C
∑

n∈N |Pn|×1 are steady-state complex nodal voltages and
injected currents at time k, each off-diagonal block of Ybus is
a submatrix Ymn = −Z−1

mn corresponding to the admittance
of line (m,n), and each diagonal block is a submatrix

Ynn =
∑

m∈{o|(o,n)∈E}

(
1

2
Y smn + Z−1

mn

)
.

Rewriting (1) in vector form for K time slots yields:
I1(1) . . . I1(K)
I2(1) . . . I2(K)

...
. . .

...
IN (1) . . . IN (K)


︸ ︷︷ ︸

IKbus

=Ybus


V1(1) . . . V1(K)
V2(1) . . . V2(K)

...
. . .

...
VN (1) . . . VN (K)


︸ ︷︷ ︸

V K
bus

, (2)

where V Kbus and IKbus collect nodal voltages and injected currents
sampled at K successive time slots, respectively.

The iPF problem that we study in this paper concerns
recovering the admittance matrix of a poly-phase distribution
system, Ybus, from voltage and current phasor measurements
of all nodes, V Kbus and IKbus. In general, V Kbus is low rank in a
power system2, making the identification problem ill-posed. In
the following, we first study how the admittance matrix can
be identified when the identification problem is well-posed.
We discuss in Section III how a large part of the admittance
matrix can be identified despite the low rank structure of V Kbus.

B. Sparsity-based Regularization

This section presents a robust algorithm for recovering the
admittance matrix of a distribution system from noisy sensor
data3 under two assumptions: (a) the identification problem is
well-posed, and (b) all nodes can be monitored.

2This is reported for transmission PMU data in [11] and is further
supported by the experiments on real µPMU data obtained from [19].

3 Existing synchrophasor technology is capable of sampling voltage and
current waveforms at 120 Hz or higher [3]. But even at a lower temporal
resolution (e.g., one-minute), enough data can be collected to identify the
model of a distribution network comprised of several hundred nodes, before
it changes. Nevertheless, for convenience, we henceforth refer to the available
sensor data as µPMU data.
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The admittance matrix can be identified by solving the
following regression problem:

Ŷbus = argmin
Y

∥∥Y V Kbus − IKbus

∥∥
F

(3)

subject to Y ∈ SN×N .

In practice, the sample size K can be smaller than the
number of unknown variables in the admittance matrix and we
seek for a sparse solution because Ybus encodes the topology
of a distribution network4. Thus, we adopt sparsity-based
regularization techniques to identify the admittance matrix.
We specifically enforce sparsity of Ybus by applying the vec
operator, which converts a matrix into a column vector, to the
objective function and constraining the `0-norm of vec(Ybus):

Ŷbus = argmin
Y

∥∥((V Kbus)
> ⊗ 1N )vec(Y )−vec(IKbus)

∥∥
2

(4)

subject to Y ∈ SN×N , ‖vec(Y )‖0 ≤ δ,

where ⊗ is the Kronecker product and δ determines the
degree of sparsity of Ybus. The cardinality constraint makes
this problem NP-hard [20].

Exploiting the symmetric structure of Ybus, we reduce the
number of parameters that need to be estimated. Consider a
mapping f : CN×N → C(N2+N)/2×1 which collects the lower
triangular elements of a complex matrix as illustrated below:

f(A) = [a11, a21, a31, . . . aN1, a22, a32, . . . aN2, . . . aNN ]>,

where aij is the element in the ith row and jth column of
matrix A. Observe that f is a bijection for any Y ∈ SN×N and
we have vec(Y ) = QY f(Y ), where QY ∈ RN

2×(N2+N)/2 is
a unique binary matrix that converts f(Y ) to vec(Y ). Hence,
the iPF problem can be reformulated as:

f(Ŷ )=argmin
x∈C(N2+N)/2×1

∥∥∥(V Kbus
>⊗ 1N

)
QY x−vec(IKbus)

∥∥∥2

2
+λ ‖x‖0,

where λ is a suitable positive regularization parameter. The
above problem is non-convex and cannot be solved efficiently;
thus, we solve a convex relaxation of this problem known
as the lasso [21], hoping that the solutions coincide5. The
penalized form of lasso can be written as:

min
x∈C(N2+N)/2×1

∥∥∥∥∥∥∥∥
(
V Kbus
>⊗ 1N

)
QY︸ ︷︷ ︸

A

x−vec(IKbus)︸ ︷︷ ︸
b

∥∥∥∥∥∥∥∥
2

2

+λ ‖x‖1. (5)

The lasso continuously shrinks the elements of Ybus toward
0 as λ increases, and some coefficients are shrunk to exact 0
if λ is sufficiently large. Hence, selecting λ is critical to the
performance of the lasso and cross-validation can be used for
this purpose. We note that (5) can be solved using a standard
convex optimizer as well as iterative algorithms [22]–[24],
which are more compelling in large distribution networks.

4Distribution systems typically have a radial operational structure since
they are operated in such a way that power flows on a radial sub-graph at any
particular time. Hence, most elements of the admittance matrix are zero.

5In [14], conditions are established for the solution of `1 optimization to
coincide with the solution of `0 optimization.

Once f(Ŷ ) is recovered, vec(Ŷ ) can be easily constructed:

vec(Ŷ ) = QY f(Ŷ ). (6)

It is shown in [12] that the proposed technique can solve the
identification problem when it is well-posed.

C. Avoiding Unnecessary Bias

Despite significant statistical and computational advantages
of the lasso for solving the iPF problem, it is not an ‘oracle
procedure’ and could result in suboptimal estimation in certain
cases [25]. The lasso equally penalizes all elements of Ybus,
thereby producing biased estimates for the large elements.
Hence, it may fail to identify the true admittance matrix
when the distribution system contains several switches and
voltage regulators which have much larger admittance than
the distribution lines.

To avoid the unnecessary bias, we can assign data-dependent
weights to different elements of Ybus in the `1 penalty. The
two-stage algorithm, known as the adaptive lasso [25], applies
less shrinkage whenever the true unknown variable is large.
Specifically, f(Y ) can be recovered from:

min
x∈C(N2+N)/2×1

‖Ax−b‖22+λ
∑
i

|xi|
|x̂i|γ

, (7)

where γ is a positive parameter and x̂i is an initial estimator
for xi, e.g., the ordinary least squares (OLS) estimator defined:

x̂ = (A>A)−1A>b.

Rescaling the columns of A =
(
V Kbus
>⊗ 1N

)
QY with the

corresponding weights, i.e., |x̂i|γ , reduces (7) to the standard
lasso problem, and therefore, it can be solved using the same
algorithms developed for the lasso. Note that two-dimensional
cross-validation is typically used to tune (λ, γ).

In Section V, we compare the lasso and the adaptive lasso
penalties and show that the adaptive lasso outperforms the
lasso in terms of identification accuracy in the test feeders.

D. Exploiting Additional Structure

Distribution circuits are upgraded and reconfigured to meet
the growing demand of a neighbourhood, accommodate new
technologies installed at customers’ premises, and minimize
losses. These changes are seldom incorporated into the dis-
tribution system model; thus, the available model is usually
obsolete and cannot be relied on for diagnostics and control
applications. We now discuss how such an approximate model
can be leveraged to improve the identification accuracy.

We represent the available (and presumably inaccurate)
admittance matrix of a distribution system by Ỹ , Ybus + Ψ
where Ybus is the true admittance matrix of the network, which
we ultimately intend to find, and Ψ is an arbitrary error matrix
that must be identified. We note that Ψ is symmetric since both
Ỹ and Ybus are symmetric. If all elements of Ψ are small6,

6Alternately, Ψ might have a small number of nonzero elements that are
not necessarily small, e.g., when the only unknown information is the status
of switches which typically have large admittance values. In such cases, the
Frobenius norm of Ψ in (8) must be replaced with the `0-norm of Ψ.
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the identification problem reduces to solving the following
regularized least squares problem:

Ŷbus = Ỹ − argmin
Ψ∈SN×N

∥∥∥(Ỹ −Ψ)V Kbus − IKbus

∥∥∥2

F
+λ ‖Ψ‖2F ,

(8)

where λ is a tuning parameter.
Exploiting the symmetric structure of Ψ and adopting the

technique outlined in Section II-B, we can solve the following
ridge regression problem to identify Ψ:

f(Ψ̂) = argmin
x∈C(N2+N)×1

‖Ax− b‖22 + λ ‖x‖22 (9)

where A = −
(
V Kbus
> ⊗ 1N

)
QΨ and b = vec(IKbus − Ỹ V Kbus).

This approach can be used to periodically update the distribu-
tion system model.

III. LOW RANK STRUCTURE OF DISTRIBUTION SYSTEMS

The voltage measurement matrix, V Kbus, is low rank in
most power distribution systems due to the interdependencies
between nodal voltages. This results in an ill-posed problem
that cannot be solved to identify the admittance matrix in its
entirety even if K � N . To tackle this problem, we propose a
novel identification algorithm based on a particular partitioning
of V Kbus into two matrices, one of which has full row rank; this
permits us to recover at least some part of the admittance
matrix while the rest of it cannot be recovered. The steps of
this algorithm are described below.

A. Similarity Transformation

Let R be the row rank of V Kbus. We partition V Kbus into two
matrices via a similarity transformation of the matrix Ybus:

T IKbus︸ ︷︷ ︸
I

= (T YbusT −1)︸ ︷︷ ︸
Y

(T V Kbus︸ ︷︷ ︸
V

), (10)

where T is a
∑
n∈N |Pn|×

∑
n∈N |Pn| matrix that splits V Kbus

into an R ×K matrix, denoted by V2, containing R linearly
independent rows of V Kbus and an (

∑
n∈N |Pn|−R)×K matrix,

denoted by V1, containing other rows of V Kbus that are all in the
row space of V2. Algorithm 1 describes the steps for building
these two submatrices from the available synchrophasor data.
Shuffling rows of V Kbus and IKbus according to this transformation
yields:

T V Kbus =

[
V1

V2

]
, T IKbus =

[
I1
I2

]
.

Since V1 is in the row space of V2, we can estimate the
basis X such that V1 = XV2 from µPMU data by computing
the pseudo-inverse of V2: X = V1V†2. Note that the pseudo-
inverse is well-defined here since V2 is full row rank.

B. Recovering Parts of Ybus

We write (10) as[
I1
I2

]
=

[
Y1,1 Y1,2

Y>1,2 Y2,2

]
︸ ︷︷ ︸

Y

[
XV2

V2

]
=

[
Y1,1X + Y1,2

Y>1,2X + Y2,2

]
V2, (11)

Algorithm 1 Basis Selection Algorithm
1: Perform orthogonal-triangular decomposition of V Kbus;
2: Sort diagonal elements of the upper triangular matrix;
3: Choose the first R elements that exceed a sufficiently

small threshold; return the corresponding elements in the
permutation matrix as indices of the linearly independent
rows of V Kbus;

where {Yi,j}i,j∈{1,2} are four submatrices of Y obtained
according to the decomposition of V. Note that V2 has full
row rank. We have

I1 = (Y1,1X + Y1,2) V2, (12)

I2 =
(
Y>1,2X + Y2,2

)
V2. (13)

Solving (12) for Y1,2 and substituting it into (13) yields:

−X>Y1,1X + Y2,2 = C, (14)

in which C = I2V†2 − (V†2)>I>1 X can be computed from the
µPMU data. Vectorizing both sides of the equation yields:

−
(
X> ⊗X>

)
vec(Y1,1) + vec(Y2,2) = vec(C).

This problem can be written in the following form to reduce
the number of parameters that need to be estimated using
bijection f and matrix Q:

−
(
X> ⊗X>

)
QY11f(Y1,1) +QY22f(Y2,2) = vec(C).

Enforcing sparsity of the components of Ybus, it is possible to
identify Y1,1 and Y2,2 from this optimization problem:[

f(Ŷ1,1)

f(Ŷ2,2)

]
= arg min

x
λ
∑
i

wi|xi|+ (15)∥∥[−(X>⊗X>)QY11
, QY22

]
x− vec(C)

∥∥2

2
.

Depending on whether we use the lasso or the adaptive lasso
penalty, wi is set to 1 or 1/|x̂i|γ for some γ > 0.

Once this problem is solved, Y1,2 can be identified from (13)
using the method of least squares. However, there is no
guarantee that Y1,2 is estimated with sufficient accuracy as the
error introduced in the process of estimating Y2,2 propagates.
We show in Section V that Y2,2 can be accurately estimated
in all cases despite the low rank structure, while Y1,1 and Y1,2

cannot be recovered with sufficient accuracy.

IV. TIMELY DETECTION AND LOCALIZATION OF EVENTS

Several types of power system events, such as switching
actions, tap operations, arc and ground faults can change the
effective admittance between the nodes, thereby resulting in
a different admittance matrix. In this section, we propose an
online algorithm for tracking changes in the admittance matrix
of a distribution system and identifying the events that induced
these changes. This algorithm requires a small amount of data
and has a low false alarm rate, enabling operators to take
remedial actions in quasi real-time.

Consider an affine parameterization of the admittance ma-
trix, denoted by Y δ(k)

bus , where

δ(k) =

{
0, k < t
1, k ≥ t
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is the discrete mode and t is the time that the event has
occurred. Our goal is to determine t and find out how the
admittance matrix has changed by estimating Y 1

bus−Y 0
bus using

as few successive voltage and current phasor measurements as
possible. The updated entries of the admittance matrix indicate
the type and approximate location of the event. For instance,
if two elements of the admittance matrix change in a certain
way during an event, it can be attributed to a switch that was
opened while another one was closed.

A. Event Detection

To detect a change in the admittance matrix, we estimate
the injected current vector at time k from Ohm’s law using
the known admittance matrix, Y 0

bus, and the measured voltage
vector at time k. We then compare the estimated injected
current vector Îbus with the measured current vector Ibus at
time k to calculate the prediction error:

e(k) = Ibus(k)− Îbus(k) = Ibus(k)− Y 0
busVbus(k). (16)

The series e(·) is white noise if the admittance matrix does not
change; this can be verified by the turning point test7. When
the prediction error ‖e(k)‖ exceeds a predefined threshold, we
assert that the admittance matrix has changed at time k.

B. Event Localization

The simplest approach to event localization is to run the
identification algorithm presented in the previous section upon
detection of an event to update the admittance matrix. In a
large distribution system, this requires collecting and process-
ing a considerable number of µPMU samples following the
detection, implying that the identification task may not be
accomplished in a timely manner. To address this shortcoming,
we propose an identification algorithm that scales with the size
of the network by taking advantage of the knowledge of the
admittance matrix before an event and the fact that only a
small number of its elements will change during the event.

Given that the effective admittance between just a small
number of nodes is expected to change in an event, the
difference between the two admittance matrices corresponding
to the systems before and after the event must be sparse. We
leverage this sparsity to recover the new admittance matrix:

min
Y 1

bus

‖vec(Y 1
bus − Y 0

bus)‖0 (17)

subject to It→t+Kbus = Y 1
busV

t→t+K
bus

Y 1
bus ∈ S

∑
n∈N |Pn|×

∑
n∈N |Pn|,

in which Y 0
bus is known, t is the time slot when the event is

detected, and

It→t+Kbus =


I1(t) . . . I1(t+K)
I2(t) . . . I2(t+K)

...
. . .

...
IN (t) . . . IN (t+K)

 ,

7 For a detailed discussion on how network topology errors can be
detected, the readers can refer to [26].

V t→t+Kbus =


V1(t) . . . V1(t+K)
V2(t) . . . V2(t+K)

...
. . .

...
VN (t) . . . VN (t+K)

 .
It can be readily seen that ∆Y , Y 1

bus − Y 0
bus is a symmetric

complex matrix as it is the difference of two symmetric
complex matrices. Hence, we have:

min
∆Y ∈S

∑
n∈N |Pn|×

∑
n∈N |Pn|

‖vec(∆Y )‖0 (18)

subject to It→t+Kbus − Y 0
busV

t→t+K
bus = ∆Y V t→t+Kbus ,

which can be relaxed and converted to the following weighted
regularized `1-norm optimization:

vec(∆Ŷ ) = Q∆Y × arg min ‖Ax− b‖22 + λ
∑
i

wi|xi|, (19)

where A =
(
V t→t+Kbus

> ⊗ 1N
)
Q∆Y , b = vec(It→t+Kbus −

Y 0
busV

t→t+K
bus ), and wi is the weight of the `1 penalty which

is defined earlier. This problem is convex and can be solved
efficiently with only a small number of µPMU samples com-
pared to the original identification algorithm. The following
proposition gives the necessary and sufficient condition for
the solution of the `0 minimization to converge to the true
sparse difference matrix by establishing a minimum bound on
the number of µPMU samples that are required.

Proposition 1 (From [13]). For any vector z, there exists a
unique signal w such that z = Φw with ‖w‖0 = S if and only
if Spark(Φ) > 2S.

Following this, the proposed event localization algorithm
needs as many µPMU samples as required for Spark(A) to
exceed twice the number of elements of the admittance matrix
that will change during an event.

V. PERFORMANCE EVALUATION

We evaluate the efficacy of the proposed algorithms in es-
timating the model parameters and tracking topology changes
through power flow studies on test distribution systems under
various loading conditions. To carry out this evaluation, we
develop a simulation framework in MATLAB which integrates
built-in graphics and advanced analysis capabilities with the
CVX toolbox for convex optimization [27], and the Open
Distribution System Simulator (OPENDSS) [28] for power
flow analysis. The OPENDSS can be controlled from MATLAB
through a COM interface, allowing us to load a distribution
system model, change its parameters, perform power flow
calculations, and retrieve the results8. Figure 1 depicts the
principal components of this framework.

The simulator takes as input a distribution system model,
the demand profile of a certain number of homes (for a fixed
number of time slots), the point of connection of each home
(i.e., the node that it is connected to), and a set of events
that should be simulated at specified times. These events

8The control mode is disabled in OPENDSS to ensure that the transformer
taps are not automatically adjusted during a simulation. This guarantees that
the admittance matrix does not change unless we trigger an event.
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Fig. 1. A block diagram of the integrated simulation framework.

change the admittance matrix in a deterministic way and we
record all these changes. Given this input data, the aggregate
demand is calculated at each node and a power flow study is
performed in a loop for each time slot to compute the voltage
magnitude and phase angle at each node, which are treated
as µPMU measurements. The proposed convex programs are
then solved to recover the original admittance matrix from the
available µPMU data and update it after detecting each event.
The sequence of recovered admittance matrices are eventually
compared against the sequence of true admittance matrices to
quantify the estimation error. We describe our test cases next.

A. Distribution Feeders

We evaluate our algorithms on four IEEE test feeders,
namely 13-bus, 34-bus, 37-bus, and 123-bus systems [29];
these unbalanced radial systems operate at a nominal voltage
of 4.16 kV, 24.9 kV, 4.8 kV, and 4.16 kV, respectively, and
differ in size and sparsity as shown in Table I. The columns
of this table respectively represent the test feeder, the number
of nodes in its OPENDSS model, the rank of V Kbus (when K
is much larger than the number of nodes), the percentage of
Ybus elements that are zero (i.e., the sparsity level), and the
absolute value of the largest element of the admittance matrix.
The following observations can be made for each test feeder:
a) V Kbus is rank deficient which implies that it is impossible to
recover the full admittance matrix from the µPMU data, b) the
admittance matrix is extremely sparse, and c) the admittance
matrix has at least one element9 that is several orders of
magnitude larger than other nonzero elements, hinting at the
possibility that the lasso produces biased estimates for these
large elements.

Moreover, two of these test feeders contain switches which
can be operated to induce a change in the admittance matrix.
The 123-bus test system contains 12 switches that can be

9Such elements typically correspond to the admittance of switches and
voltage regulators.

TABLE I
PROPERTIES OF THE RADIAL TEST FEEDERS.

feeder no. nodes rank(V K
bus) sparsity level |max(Ybus)|

13-bus 35 27 81.63% 107

34-bus 95 84 91.72% 402.1
37-bus 117 109 92.47% 1012.5
123-bus 275 254 97.39% 106

650

632 633 634645646

611

652

684 671

680

692 675

substation

N.C.

N.O
.

Fig. 2. A one-line diagram of the modified IEEE 13-bus test feeder. The
dashed line represents the switch added to the original feeder. The number of
phases connecting two nodes is shown by slashes on the lines.

operated in a certain way to change the topology while main-
taining its radial structure. Hence, it provides an ideal setting
for validating the event detection and localization algorithm.
Similarly, the 13-bus feeder has a normally closed switch. We
modify this system by adding a normally open switch with
the exact same configuration between Bus 680 and Bus 692
as shown in Figure 2. This creates two feasible radial structures
that span all nodes. We use this feeder to validate both event
detection and system identification algorithms. The 34-bus and
37-bus feeders do not have a switch and are merely used for
the purpose of validating the identification algorithm.

B. Residential Loads & Phasor Measurements

A node in the distribution system model represents an ag-
gregation point where usually a pole-top transformer supplies
a small number of residential customers. Since distribution
circuits are not modelled beyond these transformers, we aggre-
gate demands of downstream customers at the corresponding
nodes. We assume that each node is monitored by a µPMU
which measures the magnitude and phase angle of the node
voltage and the current drawn by the downstream customers
once every time slot.

We use real data from the ADRES dataset [30] to model
the customers connected to the 13-bus, 34-bus, and 37-bus test
feeders. This dataset consists of high-resolution (1 second)
measurements of real power, reactive power, and per-phase
voltage values of 30 Austrian households over 14 days. To
obtain a sufficient number of customers for our simulation,
we treat a 3-phase load as three separate single-phase loads,
and split 14 days of available data for each household into 14
individual loads each representing the demand of a customer
over a particular day. We connect a random number of
customers between 5 and 15 to each node, except the nodes
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TABLE II
ESTIMATION ERROR OF Y2,2 BY THE LASSO AND ADAPTIVE LASSO IN

DIFFERENT TEST FEEDERS.

feeder lasso adaptive lasso
M1 M2 M1 M2

13-bus 4.70 4.71 1.69 1.77
34-bus 240.51 602.89 3.08 0.37
37-bus 28.70 65.48 2.71 2.67

that are terminals of voltage regulators and switches; no load
is connected to these nodes.

In the case of the IEEE 123-bus feeder, we need high-
resolution measurements of many households, which we lack.
To address this problem, we synthesize residential loads (real
power) using the continuous-time Markov models derived
from fine-grained measurements of the power consumption of
20 households in Ontario [31]. We connect a random number
of customers between 5 and 10 to each node, except the nodes
that represent the terminals of voltage regulators and switches.
Hence, the load distribution is nonuniform across different
phases of a node. We consider a constant power factor of
95% at each node, which is typical for residential loads, and
set the reactive power accordingly in each time slot.

C. Results

To deal with the low rank structure of the test feeders, we
utilize the algorithm proposed in Section III to identify the
largest part of the admittance matrix that could be possibly
recovered from the available data. We also utilize the event
detection and localization algorithm proposed in Section IV
to track how the admittance matrix changes in an event. To
validate these algorithms, we perform several simulation runs
for each test feeder where each simulation spans one day
divided into 1-second time slots. In each case, we estimate
the admittance matrix using both the lasso and the adaptive
lasso penalties and compare their performance. We use two
metrics to quantify the error incurred in estimating Y2,2:

Metric 1 (M1): ‖vec(Ŷ2,2 − Y2,2)‖1
Metric 2 (M2): ‖Ŷ2,2 − Y2,2‖F

To tune the parameters of the convex programs, we search
through a reasonable set of values. Specifically, γ and λ of
the adaptive lasso are chosen from {0.5, 1, 2} and the set of
logarithmically spaced points between 105 and 10−5, respec-
tively. The same set of values are considered to determine λ
of the lasso. Moreover, the OLS estimator is adopted as the
weight of the `1 penalty in the adaptive lasso.

1) Identification with Precise Measurements: We first ex-
plore the scenario in which µPMU measurements are not
affected by noise. Table II shows the two error metrics when
the lasso or the adaptive lasso penalty is used to identify the
admittance matrix of the three test feeders. In the case of the
13-bus feeder, both methods can estimate all elements of Ŷ2,2

except one, with less than 1% relative error. The one element
that is not accurately identified corresponds to the substation.
Nevertheless, the adaptive lasso estimates that element with a
lower error compared to the lasso as suggest by the two error
metrics representing the overall accuracy of these methods.
Should we leverage the knowledge of the substation type
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Fig. 3. Identification error of the lasso and the adaptive lasso for different
noise levels in the IEEE 13-bus test feeder.

and configuration, both methods can accurately estimate all
elements of Ŷ2,2 (M1,M2 < 0.01).

In the case of the 34-bus and 37-bus feeders, the lasso fails
to accurately identify more than one element of the admittance
matrix (M2 � M1), resulting in estimation errors which are
remarkably higher than the previous case. We verify that those
elements have large admittance values. However, the adaptive
lasso successfully estimates those elements in both feeders,
resulting in relatively smaller estimation errors.

2) Identification with Noisy Measurements: We now ex-
plore the scenario in which µPMU measurements are noisy.
We only show the results for the 13-bus feeder due to space
limitations. To simulate the measurement error, we add a
white Gaussian noise with σ2 variance to node voltages and
treat them as µPMU measurements10. We try different values
of σ and perform ten simulation runs for each value. In
particular, we increase the standard deviation from 10−6 to
10−2 and report the mean value of the two error metrics
over these runs. Figure 3 shows the mean estimation error
of the lasso and the adaptive lasso. It can be seen that both
methods are quite sensitive to noise. When σ = 10−6, the
estimation error of both methods is quite similar to the scenario
with precise measurements (see Table II). The adaptive lasso
can accurately identify all elements of Ŷ2,2, except for one
element (as discussed earlier) as long as σ ≤ 10−3. Should σ
exceeds this level, the adaptive lasso fails to identify several
elements and both error metrics increase significantly. Unlike
the adaptive lasso, the lasso is less robust to noise and only
yields sufficiently accurate estimates when σ ≤ 10−4.

3) Event Detection and Localization: We finally validate
the proposed event detection and localization algorithm by
simulating a line tripping event and a switching operation in
the 13-bus test feeder, and a switching operation in the 123-
bus test feeder. These events are triggered after the admittance
matrix has been identified for the initial configuration of the
distribution system.

10We have observed that perturbing node voltages by a small Gaussian
noise does not completely eliminate the low rank problem.
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Fig. 4. A colored representation of ∆Ŷ when 23 µPMU samples are used to
recover the admittance matrix following the detection of the switching event.

We first focus on the 13-bus test feeder. We introduce a line
tripping event by disconnecting the single-phase line between
Bus 611 and Bus 684, and a switching event by closing the
switch between Bus 692 and Bus 680 while opening the switch
between Bus 671 and Bus 692. Both events will change the
admittance matrix and therefore must be identifiable from the
available data. We observe that the proposed algorithm detects
the event in both cases in the same time slot that it occurs, i.e.,
immediately after processing the µPMU data for that time slot.
For the switching event, ∆Ŷ can be estimated with relatively
high accuracy (M1 = 0.17,M2 = 0.10) using 23 µPMU
samples following the detection of this event, as shown in
Figure 4. In this figure, the color of a cell located at row i and
column j represents the value of |Ŷ 1(i, j)−Ŷ 0(i, j)|. It can be
readily seen that all elements of ∆Ŷ are zero except for 6 three
by three submatrices which have changed due to this event,
enabling us to locate the event within a small geographical
area. We verified that these submatrices correspond to the
admittance of the two switches that are operated. Note that
these switches are located on three-phase lines. The estimation
error will increase significantly if we use fewer samples to
identify ∆Ŷ .

Turning our attention to the 123-bus test feeder, we simulate
a line switching event by closing the switch between Bus
13 and Bus 152 while opening the switch between Bus 151
and Bus 300 (refer to [32] for the topology of this feeder).
The simultaneous switching operation maintains the radial
structure of this distribution system. The proposed algorithm
detects the event in the same time slot that it occurs and
accurately identifies ∆Ŷ (M1,M2 < 0.1) using a small
number of µPMU samples following the detection.

VI. CONCLUSIONS

Widespread adoption of distributed energy resources in
power distribution grids calls for an advanced operation

paradigm centered around monitoring, diagnostics, and con-
trol. While the knowledge of the distribution system model
is crucial for most diagnostics and control applications, this
model is often unavailable or outdated in practice. This paper
studies how the admittance matrix of a power distribution
system can be identified from limited voltage and current
phasor measurements of inexpensive distribution PMUs. It
proposes tractable convex programs to recover the admittance
matrix in various settings and to track changes in the network
topology, and investigates the fundamental limitations of these
techniques. There are several avenues for future work. The
µPMU installation is currently limited in low-voltage distri-
bution networks. To address this problem, we intend to develop
techniques that leverage both smart meter and µPMU data to
improve identifiability of low-voltage distribution grids. We
also plan to develop an identification algorithm that can deal
with hidden states in the network. Furthermore, the proposed
technique can be computationally expensive when it is applied
to a distribution network with thousands of nodes. We intend
to develop a distributed identification algorithm for large
distribution networks.
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