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Abstract

We give a protocol for producing certifiable randomness from a single untrusted quantum device

that is polynomial-time bounded. The randomness is certified to be statistically close to uniform from

the point of view of any computationally unbounded quantum adversary, that may share entanglement

with the quantum device. The protocol relies on the existence of post-quantum secure trapdoor claw-free

functions, and introduces a new primitive for constraining the power of an untrusted quantum device. We

show how to construct this primitive based on the hardness of the learning with errors (LWE) problem,

and prove that it has a crucial adaptive hardcore bit property. The randomness protocol can be used as

the basis for an efficiently verifiable “test of quantumness”, thus answering an outstanding challenge in

the field.
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1 Introduction

In this paper we propose solutions to two basic tasks: how to generate certifiably random strings from a

single untrusted quantum device (also referred to as a prover), and how to efficiently verify that an untrusted

device is “truly” quantum, as opposed to classical. The setting we consider is one where the quantum device

is polynomial-time bounded but untrusted, and the verifier is entirely classical and also polynomial-time

bounded. The peculiarity of this setting is that it allows the verifier to leverage post-quantum cryptography,

i.e. the existence of cryptographic primitives that can be implemented efficiently on a classical computer

but that cannot be broken by any efficient quantum computer.

There has been considerable research into certifiable random number expansion from quantum de-

vices [Col06, PAM+10, VV11, MS16, AFDF+18], including experimental demonstrations [BKG+18].

However, all prior works providing verifiable guarantees have focused on the setting where there are multi-

ple quantum devices that share entanglement, and where the randomness certification relies on the violation

of a Bell inequality. More generally, the violation of Bell inequalities provides a powerful technique for

the classical testing of quantum devices — the obvious downside being that it is limited to situations with

multiple non-communicating quantum devices that share entanglement. Here we propose a new setting for

classical testing, where bounds on the computational power of a single quantum device are leveraged by

a classical verifier. Specifically, in the context of certifiable random number expansion, the guarantee we

seek is that provided the device is unable to break the post-quantum cryptographic assumption during the

execution of the protocol, the output of the protocol must be statistically indistinguishable from a uniformly

random sequence of bits to any computationally unbounded adversary that may share prior entanglement

with the computationally bounded device. This information-theoretic guarantee, the same guarantee as that

offered in the aforementioned works [VV11, MS16, AFDF+18], is stronger than computational pseudoran-

domness (that is easily achievable under standard cryptographic assumptions, since the verifier starts with a

short uniformly random seed).

The specific cryptographic primitive we rely on is the existence of a post-quantum secure trapdoor claw-

free (in short, TCF) family of functions f : {0, 1}n → {0, 1}m , the post-quantum analogue of a notion

introduced by Goldwasser, Micali and Rivest in the context of digital signatures [GMR84]. A TCF is a 2-to-

1 function f that satisfies the following properties: f (x) is efficiently computable on a classical computer,

and if f (x) = y, then there is a unique x′ 6= x such that f (x′) = y. Moreover, with knowledge of a secret

trapdoor it is possible to efficiently (classically) compute x and x′ from y, but without the trapdoor there is

no efficient quantum algorithm that can compute such a claw, a triple (x, x′, y), for any y.

By contrast, a quantum algorithm can simultaneously hold an image y, as well as a superposition
1√
2
(|x〉 + |x′〉) over two preimages of y, simply by evaluating f on a uniform superposition over all in-

puts and measuring the image y. At this point, measuring the quantum state in the standard basis will yield

a random preimage, x or x′. This is not any stronger than a classical device could do, by first sampling a

random x and then computing y = f (x). However, the quantum device can do something different from

directly measuring a preimage. Instead, the device can perform Fourier sampling (Hadamard transform

followed by a measurement), which yields a random n-bit string d such that d · (x⊕ x′) = 0, thereby re-

vealing some joint information about both preimages of y. From the point of view of the classical verifier

a device that performs these tasks is modeled as an untrusted black box that outputs y, and then either a

string x or a string d. Assuming the verifier knows the secret trapdoor, given y she can efficiently compute

both preimages x and x′ and verify that indeed d · (x ⊕ x′) = 0. At a high level, the consideration of a

cryptographic primitive equipped with a trapdoor restores some symmetry between the quantum prover (the

untrusted quantum device) and the classical verifier, by providing a primitive which allows the quantum
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capabilities of the prover to play a useful role while at the same time giving the classical verifier a handle,

namely the ability to compute both x and x′, that the prover does not have access to.

A test of quantumness. We refer to the protocol that consists of first, requesting a value y in the range of

f , and then, executing either the preimage test (receive a string x and check that f (x) = y), or the equation

test (receive a string d and check, using the trapdoor, that d · (x⊕ x′) = 0, where x, x′ are the two preimages

of y), each chosen with probability 1
2 , as the single round test.

The ability to succeed in the single round test seems to be a unique quantum capability. To argue that

no classical procedure could succeed in the test, we describe a TCF construction based on the learning

with errors problem (LWE) that has additional security guarantees, most notably the “adaptive hardcore bit”

property that is explained below. For clarity, in this paper we refer to the specific kind of TCF that we rely

on as an NTCF, or post-quantum secure noisy trapdoor claw-free family. We give a construction of an NTCF

that rests on the hardness of the Learning with Errors (LWE) problem, introduced by Regev [Reg05], with

slightly super-polynomial noise ratio, against quantum polynomial-time attacks with nonuniform quantum

advice (for which the state of the art classical and quantum attacks scale exponentially with the dimension).

This construction is similar to the one used in [Mah17a], albeit with some changes in parameters that allows

us to prove the following crucial adaptive hardcore bit property: roughly, that given the public parameters of

the NTCF it is computationally intractable to sample from any distribution on quadruples (y, x, d, b) such

that both conditions f (x) = y and b = d · (x⊕ x′) hold with probability non-negligibly larger than 1
2 . Very

informally, this says that the condition that no efficient quantum algorithm can exhibit a claw (x, x′, y) for

the NTCF can be greatly strengthened to assert that no efficient quantum algorithm can even exhibit (x, y)
and a nontrivial advantage in guessing any generalized bit of x′ of its choice — where a generalized bit is

d · x′ for any choice of d. Note that this is much stronger than a standard hardcore bit, which would assert

intractability only for fixed d.

Assuming such an adaptive hardcore bit property, it is possible to show that passing the single round

test constitutes a proof of quantumness of the device. This is because any efficient classical algorithm that

can reliably succeed in both the preimage test and the equation test could be “rewound” to simultaneously

answer both challenges, thus contradicting the adaptive hardcore bit property.

This result has implications for an important milestone in the experimental realization of quantum com-

puters, namely “quantum supremacy”: a proof that an (untrusted) quantum computing device performs some

computational task that cannot be solved classically without impractical resources. While this could in prin-

ciple be achieved by demonstrating quantum factoring, the latter requires quantum resources well beyond

the capability of near term experiments. Instead current proposals are based on sampling problems (see

e.g. [HM17] for a recent survey). The major challenge for these proposals is verifying that the quantum

computer did indeed sample from the desired probability distribution, and all existing proposals rely on

exponential time classical algorithms for verification. By contrast, our single round test provides a proof of

quantumness that can be verified by a classical verifier in polynomial time. This proposal seems promising

from a practical viewpoint — indeed, even using off-the-shelf bounds for LWE-based cryptography sug-

gests that a protocol providing 50 bits of security could be implemented with a quantum device of around

2000 qubits (see e.g. [LP11]). It would be worth exploring whether there are clever implementations of this

scheme that can lead to a protocol in the 200− 500 qubit range. Our protocol is robust to a device that only

successfully answers the verifier’s challenges with a sufficiently large, but constant, success probability; it

would be interesting to explore whether such a device could be implemented without resorting to general

fault-tolerance techniques.
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Certifiable randomness. The challenge in achieving certifiable randomness lies in using computational

assumptions to establish not pseudorandomness, but rather that the output of the protocol must be (close to)

statistically random. The goal of the protocol we sketch below is to leverage the properties of the NTCF to

characterize the quantum state and measurements of the untrusted quantum device — essentially showing

that it must have a qubit initialized in state |+〉, which it measured in the standard basis, thus generating

statistical randomness. This is the analogue of the use of the violation of Bell inequalities to characterize

the state of the device in entanglement-based testing.

We first explain how to show a device that succeeds in the single round test must generate randomness. In

the test the device must make one of two measurements: either a “preimage” measurement, or an “equation”

measurement. We focus on a single bit of information provided by each measurement. The “preimage”

measurement can be treated as a projection into one of two orthogonal subspaces corresponding to the two

preimages x, x′ for the element y that the device has returned to the verifier. The “equation” measurement

can similarly be coarse-grained into a projection on one of two orthogonal subspaces, “valid” or “invalid”,

i.e. the subspace that corresponds to all measurement outcomes d such that d · (x⊕ x′) = 0, or the subspace

associated with outcomes d such that d · (x⊕ x′) = 1.

Applying Jordan’s lemma, it is possible to decompose the device’s Hilbert space into a direct sum of

one- and two-dimensional subspaces, such that within each two-dimensional subspace the “preimage” and

“equation” measurements each correspond to an orthonormal basis, such that the two bases make a certain

angle with each other. We argue that almost all angles must be very close to π/4. Indeed, whenever the

angles are not near-maximally unbiased, it is possible to show that by considering the effect of performing

the measurements in sequence, one can devise an “attack” on the NTCF of a kind that contradicts the

adaptive hardcore bit property of the NTCF — informally, the attack can simultaneously produce a valid

preimage and a valid equation, with non-negligible advantage.

As a result it is possible to show that the state and (coarse-grained) measurements of the device are, up

to a global change of basis, close to the following: the device starts with a qubit initialized to |+〉, which it

measures in the standard basis for the case of a preimage test and in the Hadamard basis for the case of an

equation test. The fact that an efficient quantum device cannot break the cryptographic assumption has thus

been translated into a characterization of the state and actions of the quantum device, which further implies

that the output of the device in the single round test must contain close to a bit of true (information theoretic)

randomness.

One might further conjecture that for a generic TCF (e.g. modeled as a random oracle), if the output of

any efficient quantum device passes the single round test with non-negligible advantage over 1
2 , then the pair

y, d returned in the equation test must have high min-entropy. Such a strong statement would immediately

yield a randomness certification protocol. Among the many difficulties in showing such a statement is that

both y and d may be adaptively and adversarially chosen — in the single round protocol above this issue is

addressed by the adaptive hardcore bit property of the NTCF.

Outline of randomness generation protocol. Going beyond the analysis of the single round test requires

significantly more work. So far we have argued that if an efficient quantum algorithm has the ability to gen-

erate a valid equation with probability sufficiently close to 1, then, if instead it is asked for a preimage, this

preimage must be close to uniformly distributed over the two possibilities. To leverage this our randomness

expansion protocol proceeds in multiple rounds, repeatedly asking for new images y and a preimage of y (to

generate randomness) while inserting a few randomly located equation tests to test the device. Each time

an “equation” challenge has been answered, we refresh the pseudorandom keys used for the NTCF. This is

required to avoid a simple “attack” by the device, which would repeatedly use the same y, preimage x, and
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guessed equation d — succeeding in the protocol with probability 1
2 without generating any randomness.

Let’s call the sequence of rounds with a particular set of pseudorandom keys an epoch. Intuitively, we

would like to claim that if the device passes all the equation tests, then for most epochs and for most rounds

within that epoch, the state of the device and its measurements must be (close to) as characterized above:

it starts with a qubit initialized to |+〉, which it measures in the standard basis for the case of a preimage

test, and in the Hadamard basis for the case of an equation test. To show this we would like to claim that if

the device passes all the equation tests, for most such tests it must produce a valid equation with probability

close to 1. Since each equation test occurs at a random round in the epoch, it should follow from the adaptive

hardcore bit property that the sequence of bits that the verifier extracts from the device’s answers to preimage

tests during that epoch must look statistically random. We give a martingale-based argument to formalize

this intuition.

There is however a bigger challenge to analyzing the protocol — we must show that the sequence that

the verifier extracts from the device’s answers to preimage tests must look statistically random even to

an infinitely powerful quantum adversary, who may share an arbitrary entangled state with the quantum

device. If we could assert that each round of the protocol is played with a qubit exactly in state |+〉, and

measured in the standard basis basis for the case of a preimage test, then this would lead to an easy proof

that the extracted sequence looks random to the adversary. Unfortunately the characterization of the device’s

qubits leaves plenty of room for entanglement with the adversary. Showing that such entanglement cannot

leak too much information about the device’s measurements was the major challenge in previous work

on certified randomness through Bell inequality violations [VV11, MS14, AFDF+18]. Our cryptographic

setting presents a new difficulty, which is that in contrast to the Bell inequality violation scenarios, in our

setting it is not impossible for a deterministic device to succeed in the test: it is merely computationally

hard to do so. This prevents us from directly applying the results in [MS14, AFDF+18] and requires us to

suitably modify their framework. We describe this part of the argument in more detail below.

In terms of efficiency, for the specific LWE-based NTCF that we construct, our protocol can use as few

as poly log(N) bits of randomness to generate O(N) bits that are statistically within negligible distance

from uniform. However, this requires assuming that the underlying LWE assumption is hard even for sub-

exponential size quantum circuits with polynomial-size quantum advice (which is consistent with current

knowledge). The more conservative assumption that our variant of LWE is only hard for polynomial size

quantum circuits requires O(Nǫ) bits of randomness for generating the NTCF, for any constant ǫ > 0. The

following is an informal description; see Theorem 8.10 for a more formal statement.

Theorem 1.1 (Informal). Let F be an NTCF family and λ a security parameter. Let N = Ω(λ2) and

assume the quantum hardness of solving lattice problems of dimension λ in time poly(N). There is an N-

round protocol for the interaction between a classical polynomial-time verifier and a quantum polynomial-

time device such that the protocol can be executed using poly(log(N), λ) bits of randomness, and for any

efficient device and side information E correlated with the device’s initial state,

Hδ
∞(O|CE)ρ ≥ (ξ − o(1))N .

Here ξ is a positive constant, δ is a negligible function of λ, and ρ is the final state of the classical output

register O, the classical register C containing the verifier’s messages to the device, and the side information

E, restricted to transcripts that are accepted by the verifier in the protocol.

Sketch of the security analysis. We describe the protocol in slightly more detail (see Section 5 for a

formal description). The verifier first uses poly(log(N), λ) bits of randomness to select a pair of functions

6



{ fk,b}b∈{0,1} from an NTCF family, and sends the public function key k to the quantum device. This pair

of functions can be interpreted as a single 2-to-1 function fk : (b, x) 7→ fk,b(x). The verifier keeps private

the trapdoor information that allows to invert fk. The protocol then proceeds for N rounds. In each round

the device first outputs a value y in the common range of fk,0 and fk,1. After having received y, the verifier

issues one of two challenges: 0 or 1, preimage or equation. If the challenge is “preimage”, then the device

must output an x such that f (x) = y. If the challenge is “equation” then the device must output a nontrivial

binary vector d such that d · (x0 ⊕ x1) = 0, where x0 and x1 are the unique preimages of y under fk,0 and

fk,1 respectively. Since the verifier has the secret key, she can efficiently compute x0 and x1 from y, and

therefore check the correctness of the device’s response to each challenge. The verifier chooses poly log(N)
rounds in which to issue the challenge 1, or “equation”, at random. Selecting these rounds requires only

poly log(N) random bits. At the end of each such round, the verifier samples a new pair of functions

from the NTCF family, and communicates the new public key to the device. On each of the remaining

N − poly log(N) rounds the verifier records a bit according to whether the device returns the preimage x0,

or x1 (e.g. recording 0 for the lexicographically smaller preimage). At the end of the protocol the verifier

uses a strong quantum-proof randomness extractor to extract Ω(N) bits of randomness from the recorded

string (this requires at most an additional poly log(N) bits of uniformly random seed).

To guarantee that the extractor produces bits that are statistically close to uniform, we would like to prove

that the N − poly log(N) random bits recorded by the verifier must have Ω(N) bits of (smoothed) min-

entropy,1 even conditioned on the side information available to an infinitely powerful quantum adversary,

who may share an arbitrary entangled state with the quantum device.

The analysis proceeds as follows. First we assume without loss of generality that the entire protocol is

run coherently, i.e. we may assume that the initial state of the quantum device (holding quantum register

D) and the adversary (holding quantum register E) is a pure state |φ〉DE, since the adversary may as well

start with a purification of their joint state. We may also assume that the verifier starts with a cat state on

poly log(N) qubits, and uses one of the registers of the state, C, to provide the random bits used to select

the type of test being performed in each round. (This is for the sake of analysis only, the actual verifier is of

course completely classical.) We can similarly arrange that the state remains pure throughout the protocol by

using the principle of deferred measurement. Our goal is to show a lower bound on the smooth min-entropy

of the output register O in which the verifier has recorded the device’s outputs, conditioned on the state E

of the adversary, and on the register C of the cat state (conditioning on the latter represents the fact that

the verifier’s choice of challenges may be leaked to the adversary, and we would like security even in this

scenario). Intuitively, this amounts to bounding the information accessible to the most powerful adversary

quantum mechanics allows, conditioned on the joint state of the verifier and device.

In order to bound the entropy of the final state we need to show that the entropy “accumulates” at each

round of the protocol. A general framework to establish entropy accumulation in quantum protocols such as

the one considered here was introduced in [AFDF+18]. At a high level, the approach consists in reducing

the goal of a min-entropy bound to a bound on the appropriate notion of (1 + ε) quantum conditional Rényi

entropy, and then arguing that, under suitable conditions on the process that generates the outcomes recorded

in the protocol, entropy accumulates sequentially throughout the protocol.

In a little more detail, the first step on getting a handle on the smooth min-entropy is to use the quantum

asymptotic equipartion property (QAEP) [TCR09] to relate it to the (1 + ε) conditional Rényi entropy, for

suitably small ε. The second step uses a duality relation for the conditional Rényi entropy to relate the

(1 + ε) conditional Rényi entropy of the output register O, conditioned on the adversary side information

in R and the register C of the cat state, to a quantity analogous to the (1− ε′) conditional Rényi entropy

1We refer to Section 2 for definitions of entropic quantities.
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of the output register, conditioned on the register E for the device, and a purifying copy of the register C

of the cat state. The latter quantity, a suitable conditional entropy of the output register conditioned on the

challenge register and the state of the device, is the quantity that we ultimately aim to bound. Note what

these transformations have achieved for us: it is now sufficient to consider as side information only “known”

quantities in the protocol, the verifier’s choice of challenges and the device’s state; the information held by

the adversary plays no other role than that of a purifying register.

As mentioned earlier, our cryptographic setting presents the additional difficulty that our guarantee

is only that it is computationally hard for a deterministic device to succeed in the protocol. The results

in [AFDF+18, MS14] crucially rely on the fact that the process that generates the randomness does so

irrespective of the quantum state in which it is initialized (as long as the output of the process satisfies

the test’s success criterion). This requirement comes from the conditioning that is performed in order to

show that entropy accumulates; in our setting, conditioning is more delicate as it can in principle induce

non-computationally efficient states for the device.

Recall that we argued that for a single round of the protocol, we can decompose the device’s Hilbert

space into a direct sum of one- or two-dimensional subspaces, such that within most two-dimensional sub-

space the “preimage” and “equation” measurements correspond to orthonormal bases that make an angle

close to π/4 with each other. Showing that the Rényi entropy accumulates in each round requires a device

in which all angles are close to π/4, not “almost all”. To accommodate for this we “split” the state of

the device into its component on the good subspace, where the angles are unbiased, and the bad subspace,

where the measurements may be aligned. The fact that the distinction between good and bad subspace is

not measured in the protocol, but is only a distinction made for the analysis, requires us to apply a fairly

delicate martingale based argument that takes into account possible interference effects and bounds those

“branches” where the state has gone through the bad subspace an improbably large number of times. When-

ever the state lies in the good susbpace, we can appeal to an uncertainty principle from [MS14] to show that

the device’s measurement increases the conditional Rényi entropy of the output register by a small additive

constant. Pursuing this approach across all N rounds, we obtain a linear lower bound on the conditional

Rényi entropy of the output register, conditioned on the state of the device. As argued above this in turn

translates into a linear lower bound on the smooth conditional min-entropy of the output, conditioned on

the state of the adversary and the verifier’s choice of challenges. It only remains to apply a quantum-proof

randomness extractor to the output, using a poly-logarithmic number of additional bits of randomness, to

obtain the final result.

Our NTCF Family. Our goal is to construct a family of pairs of injective functions f0, f1 with the same

image such that it is hard to find a collision x0, x1 with f0(x0) = f1(x1), but so that given a suitable

trapdoor it is possible to recover, for any y, values x0, x1 such that f0(x0) = f1(x1) = y. We do this by

relying on the hardness of the Learning with Errors (LWE) problem [Reg05]. LWE states that given a public

uniformly random matrix A ∈ Zm×n
q for m ≫ n, it is intractable to distinguish between u = As + e

(mod q) and a uniform vector, for a uniform vector s and small discrete Gaussian vector e (all arithmetic

from here on is performed modulo q; we use ⊕ to denote binary XOR). Inspired by [Mah17a], our function

pair will be characterized by (A, u = As + e), but for a binary vector s.2 The trapdoor for our function

is a lattice trapdoor for A that allows to recover s, e given a vector of the form As + e (it is possible to

generate A together with a trapdoor such that A is indistinguishable from uniform, as originally shown by

Ajtai [Ajt99]).

2It is known that LWE is hard even with binary secrets. We do not use this property explicitly but rather employ the respective

techniques in our proof.
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The structure of the LWE problem motivates us to consider functions f0, f1 that range over probability

distributions. Specifically, we define the distribution fb(x) as fb(x) = Ax + b · (As) + e′ where e′ is a

discrete Gaussian random variable with a sufficiently wide Gaussian parameter. Observe that the functions

have overlapping images in the following sense: f0(x) = f1(x− s). Moreover, since As + e′ is statisti-

cally indistinguishable from u + e′, we can efficiently sample from the distribution fb(x) up to negligible

statistical distance.

This probabilistic notion complicates the definition and use of the family, but the principles are similar

to the deterministic version.3

Adaptive Hardcore Bit. Finally, we need to show the adaptive hardcore bit property. Formally, letting

x0, x1 ∈ Zn
q be a collision, and letting z0, z1 ∈ {0, 1}n log q be their binary representations, respectively,

we need to show that it is intractable to come up with a pair (b, zb), for some b ∈ {0, 1}, together with a

nontrivial vector d and with the value d · (z0 ⊕ z1), with probability noticeably better than 1
2 . “Nontrivial”

here means belonging to a well defined and efficiently recognizable set D with density ≈ 1 in {0, 1}n log q

(e.g. the zero vector is obviously excluded). Assume for the sake of this overview that we get a tuple

(z0, d, c). We first notice that since x0, x1 is a collision, then x1 = x0 − s (mod q). We now use the fact

that s is a binary vector to show, using simple arithmetic, that z0 ⊕ z1 can be expressed as a linear function

of the bits of s, so that d · (z0 ⊕ z1) = d̂ · s (mod 2), for some d̂ ∈ {0, 1}n. (the description of this

transformation will effect our choice of the set D). We thus need to show that it is intractable, given the

instance (A, u = As + e), to come up with d̂, d̂ · s (mod 2). To prove this we use the lossiness technique

used in [GKPV10] and show that this is equivalent to coming up with d̂, d̂ · s (mod 2) given B, Bs where

B ∈ Zk×n
q is now a highly shrinking function, even for binary inputs, i.e. k log q ≪ n. This seems like

an easy task since the adversary now doesn’t have the complete information about s so it shouldn’t be able

to compute d̂ · s (mod 2) for any reasonable d̂, except d̂ might depend on B itself (recall that d̂ is chosen

adversarially). We prove via Fourier analysis that if B is sufficiently shrinking, then there is no d̂ that can

take advantage of the dependence on B, which completes the proof.

Concurrent and related work. The idea of using a TCF as a basic primitive in interactions between an

efficient quantum prover and a classical verifier has been further developed in recent work by Mahadev

[Mah17b], giving the first construction of a quantum fully homomorphic encryption scheme with classical

keys. In further follow-up work, Mahadev [Mah18] shows a remarkable use of a NTCF family with adaptive

hardcore bit. Namely, that the NTCF can be used to certify that a prover measures a qubit in a prescribed

basis (standard or Hadamard). This allows to achieve single prover verifiability for quantum computations

using a purely classical verifier (but relying on computational assumptions).

Independently of this work, a construction of trapdoor one-way functions with second preimage resis-

tance based on LWE was recently introduced in [CCKW18], where it is used to achieve delegated compu-

tation in the weaker honest-but-curious model for the adversary (i.e. without soundness against provers not

following the protocol). The family of functions considered in [CCKW18] is not sufficient for our purposes,

as it lacks the adaptive hardcore bit property.

We believe that the technique of constraining the power of a quantum device using NTCFs promises to

be a powerful tool for the field of untrusted quantum devices.

3Another possible variant is to define fb(x) = ⌊Ax + b · (As)⌉ where ⌊·⌉ is a rounding function that truncates “many” of the

least significant bits of its operand. However, we remain with the Gaussian variant which is easier to analyze.
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Organization. We start with some notation and preliminaries in Section 2. Section 3 contains the defini-

tion of a noisy trapdoor claw-free family (NTCF). Our construction for such a family is given in Section 4

(with Appendix 2.3 containing relevant preliminaries on the learning with errors problem). The randomness

generation protocol is described in Section 5. In Section 6 we introduce our formalism for modeling the

actions of an arbitrary prover, or device, in the protocol. In Section 7 we analyze a single round of the

protocol, and in Section 8 we show that randomness accumulates across multiple rounds.
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2 Preliminaries

2.1 Notation

Z is the set of integers, and N the set of natural numbers. For any q ∈ N such that q ≥ 2 we let Zq denote

the ring of integers modulo q. We generally identify an element x ∈ Zq with its unique representative

[x]q ∈ (− q
2 ,

q
2 ] ∩Z. For x ∈ Zq we define |x| = |[x]q|. When considering an s ∈ {0, 1}n we sometimes

also think of s as an element of Zn
q , in which case we write it as s.

We use the terminology of polynomially bounded and negligible functions. A function n : N → R+

is polynomially bounded if there exists a polynomial p such that n(λ) ≤ p(λ) for all λ ∈ N. A function

n : N → R+ is negligible if for every polynomial p, p(λ)n(λ) →λ→∞ 0. We write negl(λ) to denote an

arbitrary negligible function of λ. For two parameters κ, λ we write κ ≪ λ to express the constraint that κ

should be “sufficiently smaller than” λ, meaning that there exists a small universal constant c > 0 such that

κ ≤ cλ, where c is usually implicit for context.

H always denotes a finite-dimensional Hilbert space. We use indices HA, HB, etc., to refer to distinct

spaces. Pos(H) is the set of positive semidefinite operators onH, and D(H) the set of density matrices, i.e.

the positive semidefinite operators with trace 1. For an operator X onH, we use ‖X‖ to denote the operator

norm (largest singular value) of X, and ‖X‖tr =
1
2‖X‖1 = 1

2Tr
√

XX† for the trace norm.

2.2 Distributions

We generally use the letter D to denote a distribution over a finite domain X, and f for a density on X,

i.e. a function f : X → [0, 1] such that ∑x∈X f (x) = 1. We often use the distribution and its density

interchangeably. We write U for the uniform distribution. We write x ← D to indicate that x is sampled

from distribution D, and x ←U X to indicate that x is sampled uniformly from the set X. We write DX for

the set of all densities on X. For any f ∈ DX , SUPP( f ) denotes the support of f ,

SUPP( f ) =
{

x ∈ X | f (x) > 0
}

.
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For two densities f1 and f2 over the same finite domain X, the Hellinger distance between f1 and f2 is

H2( f1, f2) = 1− ∑
x∈X

√
f1(x) f2(x) . (1)

The total variation distance between f1 and f2 is

‖ f1 − f2‖TV =
1

2 ∑
x∈X

| f1(x)− f2(x)| ≤
√

2H2( f1, f2) . (2)

The following immediate lemma relates the Hellinger distance and the trace distance of superpositions.

Lemma 2.1. Let X be a finite set and f1, f2 ∈ DX . Let

|ψ1〉 = ∑
x∈X

√
f1(x)|x〉 and |ψ2〉 = ∑

x∈X

√
f2(x)|x〉 .

Then

‖|ψ1〉 − |ψ2〉‖tr =
√

1− (1− H2( f1, f2))2 .

We say that a family of quantum circuits {Cλ}λ∈N is polynomial-time generated if there exists a

polynomial-time deterministic Turing machine that, on every input λ ∈N, returns a gate-by-gate encoding

of the circuit Cλ. We introduce a notion of efficient distinguishability between distributions.

Definition 2.2. We say that two families of distributions D0 = {D0,λ}λ∈N and D1 = {D1,λ}λ∈N on the

same finite set {Xλ} are computationally indistinguishable if for every polynomial-time generated family

of quantum circuits A = {Aλ : Xλ → {0, 1}} it holds that
∣∣∣ Pr

x←D0,λ

[Aλ(x) = 0]− Pr
x←D1,λ

[Aλ(x) = 0]
∣∣∣ = negl(λ) . (3)

The next definition generalizes the previous one to the case of quantum states.

Definition 2.3. We say that two families of sub-normalized densities σ0 = {σ0,λ}λ∈N and σ1 = {σ1,λ}λ∈N

on the same Hilbert space {Hλ} are computationally indistinguishable if for every polynomial-time gener-

ated family of observables O = {Oλ}λ∈N it holds that
∣∣Tr
(
Oλ(σ0,λ − σ1,λ)

)∣∣ = negl(λ) .

2.3 The Learning with Errors problem

We give some background on the Learning with Errors problem (LWE). For a positive real B and a positive

integer q, the truncated discrete Gaussian distribution over Zq with parameter B is the distribution supported

on {x ∈ Zq : ‖x‖ ≤ B} with density

D
Zq,B(x) =

e
−π‖x‖2

B2

∑
x∈Zq, ‖x‖≤B

e
−π‖x‖2

B2

. (4)

More generally, for a positive integer m the truncated discrete Gaussian distribution over Zm
q with parameter

B is the distribution supported on {x ∈ Zm
q : ‖x‖ ≤ B

√
m} with density

∀x = (x1, . . . , xm) ∈ Zm
q , D

Z

m
q ,B(x) = D

Zq,B(x1) · · ·DZq,B(xm) . (5)
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Lemma 2.4. Let B be a positive real and q, m positive integers. Let e ∈ Zm
q . The Hellinger distance between

the distribution D = D
Z

m
q ,B and the shifted distribution D + e, with density (D + e)(x) = D(x − e),

satisfies

H2(D, D + e) ≤ 1− e
−2π

√
m‖e‖

B , (6)

and the statistical distance between the two distributions satisfies

∥∥D− (D + e)
∥∥2

TV
≤ 2

(
1− e

−2π
√

m‖e‖
B

)
. (7)

Proof. Let τ = ∑
x∈Zq, ‖x‖≤B

e
−π‖x‖2

B2 . We can compute

∑
e0∈Zm

q

√
D
Z

m
q ,B(e0)D

Z

m
q ,B(e0 − e) = ∑

e0∈Zm
q

√
DB(e)DB(e0 − e)

=
1

τm ∑
e∈Zm

q

e
−π(‖e0‖2+‖e0−e‖2)

2B2

≥ 1

τm ∑
e0∈Zm

q

e
−π(‖e0‖2+(‖e0‖+‖e‖)2)

2B2

=
1

τm ∑
e0∈Zm

q

e
−π(‖e0‖2)

B2 e
−π(2‖e0‖‖e‖)

2B2 e
−π(‖e‖2)

2B2

≥ e
−π(‖e‖2+2‖e0‖‖e‖)

2B2
1

τm ∑
e0∈Zm

q

e
−π(‖e0‖)2

B2

= e
−π(‖e‖2+2‖e0‖‖e‖)

2B2

≥ e
−2π‖e0‖‖e‖

B2 .

Using the fact that for any e0 in the support of D
Z

m
q ,B, ‖e0‖ ≤ B

√
m, gives the claimed bound. The bound

on the statistical distance follows from the bound on the Hellinger distance using the inequality in (2).

We define the main assumption that underlies all computational hardness claims made in the paper.

Definition 2.5. For a security parameter λ, let n, m, q ∈ N be integer functions of λ. Let χ = χ(λ)
be a distribution over Z. The LWEn,m,q,χ problem is to distinguish between the distributions (A, As + e

(mod q)) and (A, u), where A ←U Zn×m
q , s ←U Z

n
q , e ← χm, and u ←U Z

m
q . Often we consider the

hardness of solving LWE for any function m such that m is at most a polynomial in n log q. This problem

is denoted LWEn,q,χ.

In this paper we make the assumption that no quantum polynomial-time procedure can solve the LWEn,q,χ

problem with more than a negligible advantage in λ, even when given access to a quantum polynomial-size

advice state depending on the parameters n, m, q and χ of the problem. We refer to this assumption as “the

LWEn,q,χ assumption”.

As shown in [Reg05, PRS17], for any α > 0 such that σ = αq ≥ 2
√

n the LWEn,q,D
Zq,σ

problem, where

D
Zq,σ is the discrete Gaussian distribution, is at least as hard as approximating the shortest independent vec-

tor problem (SIVP) to within a factor of γ = Õ(n/α), where Õ hides factors logarithmic in the argument,
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in worst case dimension n lattices. This is proven using a quantum reduction. Classical reductions (to a

slightly different problem) exist as well [Pei09, BLP+13] but with somewhat worse parameters. The best

known (classical or quantum) algorithm for these problems run in time 2Õ(n/ log γ). For our construction,

given in Section 4, we assume hardness of the problem against a quantum polynomial-time adversary in the

case that γ is a super polynomial function in n. This is a commonly used assumption in cryptography (for

e.g. homomorphic encryption schemes such as [GSW13]).

We use two additional properties of the LWE problem. The first is that it is possible to generate LWE

samples (A, As + e) such that there is a trapdoor allowing recovery of s from the samples.

Theorem 2.6 (Theorem 5.1 in [MP12]). Let n, m ≥ 1 and q ≥ 2 be such that m = Ω(n log q). There is

an efficient randomized algorithm GENTRAP(1n, 1m, q) that returns a matrix A ∈ Zm×n
q and a trapdoor

tA such that the distribution of A is negligibly (in n) close to the uniform distribution. Moreover, there is

an efficient algorithm INVERT that, on input A, tA and As + e where ‖e‖ ≤ q/(CT

√
n log q) and CT is a

universal constant, returns s and e with overwhelming probability over (A, tA)← GENTRAP(1n, 1m, q).

The second property is the existence of a “lossy mode” for LWE. The following definition is Defini-

tion 3.1 in [AKPW13].

Definition 2.7. Let χ = χ(λ) be an efficiently sampleable distribution over Zq. Define a lossy sampler

Ã← LOSSY(1n, 1m, 1ℓ, q, χ) by Ã = BC + F, where B←U Z
m×ℓ
q , C←U Z

ℓ×n
q , F← χm×n.

Theorem 2.8 (Lemma 3.2 in [AKPW13]). Under the LWEℓ,q,χ assumption, the distribution of a random

Ã← LOSSY(1n, 1m, 1ℓ, q, χ) is computationally indistinguishable from A←U Z
m×n
q .

2.4 Entropies

For p ∈ [0, 1] we write H(p) = −p log p − (1 − p) log(1− p) for the binary Shannon entropy. We

measure randomness using Rényi conditional entropies. For a positive semidefinite matrix σ ∈ Pos(H) and

ε ≥ 0, let 〈
σ
〉

1+ε
= Tr

(
σ1+ε

)
.

This quantity satisfies the following approximate linearity relations:

∀ε ∈ [0, 1] , 〈σ〉1+ε + 〈τ〉1+ε ≤ 〈σ + τ〉1+ε ≤
(
1 + O(ε)

)(
〈σ〉1+ε + 〈τ〉1+ε

)
. (8)

In addition, for positive semidefinite σ, ρ ∈ Pos(H) such that the support of ρ is included in the support of

σ, and ε ≥ 0, let

Q̃1+ε(ρ‖σ) = 〈σ−
ε

2(1+ε) ρσ
− ε

2(1+ε) 〉1+ε . (9)

Quantum analogues of the conditional Rényi entropies can be defined as follows.

Definition 2.9. Let ρAB ∈ Pos(HA⊗HB) be positive semidefinite. Given ε > 0, the (1+ ε) Rényi entropy

of A conditioned on B is defined as

H1+ε(A|B)ρ = sup
σ∈D(HB)

H1+ε(A|B)ρ|σ ,

where for any σB ∈ D(HB),

H1+ε(A|B)ρ|σ = −1

ε
log Q̃1+ε(ρ‖σ) .

.
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Rényi entropies are used in the proofs because they have better “chain-rule-like” properties than the

min-entropy, which is the most appropriate measure for randomness quantification.

Definition 2.10. Let ρAB ∈ Pos(HA ⊗ HB) be positive semidefinite. Given a density matrix the min-

entropy of A conditioned on B is defined as

H∞(A|B)ρ = sup
σ∈D(HB)

H∞(A|B)ρ|σ ,

where for any σB ∈ D(HB),

H∞(A|B)ρ|σ = max
{

λ ≥ 0 | 2−λ IdA⊗σB ≥ ρAB

}
.

It is often convenient to consider the smooth min-entropy, which is obtained by maximizing the min-

entropy over all positive semidefinite operators matrices in an ε-neighborhood of ρAB. The definition of

neighborhood depends on a choice of metric; the canonical choice is the “purified distance”. Since this

choice will not matter for us we defer to [Tom15] for a precise definition.

Definition 2.11. Let ε ≥ 0 and ρAB ∈ Pos(HA ⊗HB) positive semidefinite. The ε-smooth min-entropy of

A conditioned on B is defined as

Hε
∞(A|B)ρ = sup

σAB∈B(ρAB,ε)

H∞(A|B)σ ,

where B(ρAB, ε) is the ball of radius ε around ρAB, taken with respect to the purified distance.

The following theorem relates the min-entropy to the the Rényi entropies introduced earlier. The theorem

expresses the fact that, up to a small amount of “smoothing” (the parameter δ in the theorem), all these

entropies are of similar order.

Theorem 2.12 (Theorem 4.1 [MS14]). Let ρXE ∈ Pos(HX ⊗ HE) be positive semidefinite of the form

ρXE = ∑x∈X |x〉〈x| ⊗ ρx
E

, where X is a finite alphabet. Let σE ∈ D(HE) be an arbitrary density matrix.

Then for any δ > 0 and 0 < ε ≤ 1,

Hδ
∞(X|E)ρ ≥ −

1

ε
log
(

∑
x

Q̃1+ε

(
ρx

E
‖σE

))
− 1 + 2 log(1/δ)

ε
.

3 Trapdoor claw-free hash functions

Let λ be a security parameter, and X and Y finite sets (depending on λ). For our purposes an ideal family

of functions F would have the following properties. For each public key k, there are two functions { fk,b :
X → Y}b∈{0,1} that are both injective and have the same range, and are invertible given a suitable trapdoor

tk (i.e. tk can be used to compute x given b and y = fk,b(x)). Furthermore, the pair of functions should be

claw-free: it must be hard for an attacker to find two pre-images x0, x1 ∈ X such that fk,0(x0) = fk,1(x1).
Finally, the functions should satisfy an adaptive hardcore bit property, which is a stronger form of the

claw-free property: assuming for convenience that X = {0, 1}w, we would like that it is computationally

infeasible to simultaneously generate a pair (b, xb) ∈ {0, 1} × X and a d ∈ {0, 1}w \ {0w} such that with

non-negligible advantage over 1
2 the equation d · (x0⊕ x1) = 0, where x1−b is defined as the unique element

such that fk,1−b(x1−b) = fk,b(xb), holds.
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Unfortunately, we do not know how to construct a function family that exactly satisfies all these re-

quirements under standard cryptographic assumptions. Instead, we construct a family that satisfies slightly

relaxed requirements, that we will show still suffice for our purposes, based on the hardness of the learning

with errors problem introduced in Section 2.3. The requirements are relaxed as follows. First, the range of

the functions is no longer a set Y ; instead, it is DY , the set of probability densities over Y . That is, each

function returns a density, rather than a point. The trapdoor injective pair property is then described in terms

of the support of the output densities: these supports should either be identical, for a colliding pair, or be

disjoint, in all other cases.

The consideration of functions that return densities gives rise to an additional requirement of efficiency:

there should exist a quantum polynomial-time procedure that efficiently prepares a superposition over the

range of the function, i.e. for any key k and b ∈ {0, 1}, the procedure can prepare the state

1√
X ∑

x∈X ,y∈Y

√(
fk,b(x)

)
(y)|x〉|y〉 . (10)

In our instantiation based on LWE, it is not possible to prepare (10) perfectly, but it is possible to create a

superposition with coefficients
√
( f ′k,b(x))(y), such that the resulting state is within negligible trace distance

of (10). The density f ′k,b(x) is required to satisfy two properties used in our protocol. First, it must be easy

to check, without the trapdoor, if an y ∈ Y lies in the support of f ′k,b(x). Second, the inversion algorithm

should operate correctly on all y in the support of f ′k,b(x).
We slightly modify the adaptive hardcore bit requirement as well. Since the set X may not be a subset

of binary strings, we first assume the existence of an injective, efficiently invertible map J : X → {0, 1}w .

Next, we only require the adaptive hardcore bit property to hold for a subset of all nonzero strings, instead

of the set {0, 1}w \ {0w}. Finally, membership in the appropriate set should be efficiently checkable, given

access to the trapdoor.

A formal definition follows.

Definition 3.1 (NTCF family). Let λ be a security parameter. Let X and Y be finite sets. LetKF be a finite

set of keys. A family of functions

F =
{

fk,b : X → DY
}

k∈KF ,b∈{0,1}

is called a noisy trapdoor claw free (NTCF) family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm GENF which gen-

erates a key k ∈ KF together with a trapdoor tk:

(k, tk)← GENF (1
λ) .

2. Trapdoor Injective Pair. For all keys k ∈ KF the following conditions hold.

(a) Trapdoor: For all b ∈ {0, 1} and x 6= x′ ∈ X , SUPP( fk,b(x)) ∩ SUPP( fk,b(x′)) = ∅. More-

over, there exists an efficient deterministic algorithm INVF such that for all b ∈ {0, 1}, x ∈ X
and y ∈ SUPP( fk,b(x)), INVF (tk, b, y) = x.

(b) Injective pair: There exists a perfect matching Rk ⊆ X × X such that fk,0(x0) = fk,1(x1) if

and only if (x0, x1) ∈ Rk.
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3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a function f ′k,b :
X → DY such that the following hold.

(a) For all (x0, x1) ∈ Rk and y ∈ SUPP( f ′k,b(xb)), INVF (tk, b, y) = xb and INVF (tk, b⊕ 1, y) =
xb⊕1.

(b) There exists an efficient deterministic procedure CHKF that, on input k, b ∈ {0, 1}, x ∈ X and

y ∈ Y , returns 1 if y ∈ SUPP( f ′k,b(x)) and 0 otherwise. Note that CHKF is not provided the

trapdoor tk.

(c) For every k and b ∈ {0, 1},

Ex←UX
[

H2( fk,b(x), f ′k,b(x))
]
≤ µ(λ) ,

for some negligible function µ(·). Here H2 is the Hellinger distance; see (1). Moreover, there

exists an efficient procedure SAMPF that on input k and b ∈ {0, 1} prepares the state

1√
|X | ∑

x∈X ,y∈Y

√
( f ′k,b(x))(y)|x〉|y〉 . (11)

4. Adaptive Hardcore Bit. For all keys k ∈ KF the following conditions hold, for some integer w that

is a polynomially bounded function of λ.

(a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such that Prd←U{0,1}w [d /∈
Gk,b,x] is negligible, and moreover there exists an efficient algorithm that checks for membership

in Gk,b,x given k, b, x and the trapdoor tk.

(b) There is an efficiently computable injection J : X → {0, 1}w , such that J can be inverted

efficiently on its range, and such that the following holds. If

Hk =
{
(b, xb, d, d · (J(x0)⊕ J(x1))) | b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0

∩ Gk,1,x1

}
, 4

Hk = {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk

}
,

then for any quantum polynomial-time procedure A there exists a negligible function µ(·) such

that ∣∣∣ Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk]− Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk]
∣∣∣ ≤ µ(λ) . (12)

4 A Trapdoor Claw-Free family based on LWE

In this section we present our LWE-based construction of an NTCF. For LWE-related preliminaries and

definitions see Section 2.3. Let λ be a security parameter. All other parameters are functions of λ. Let

q ≥ 2 be a prime. Let ℓ, n, m, w ≥ 1 be polynomially bounded functions of λ and BL, BV , BP be positive

4Note that although both x0 and x1 are referred to to define the set Hk, only one of them, xb , is explicitly specified in any 4-tuple

that lies in Hk.
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integers such that the following conditions hold:

1. n = Ω(ℓ log q) and m = Ω(n log q),

2. w = n⌈log q⌉,

3. BP = q

2CT

√
mn log q

, for CT the universal constant in Theorem 2.6,

4. 2
√

n ≤ BL < BV < BP,

5. The ratio BP
BV

and BV
BL

are both super-polynomial in λ.

(13)

Given a choice of parameters satisfying all conditions in (13), we describe the function family FLWE. Let

X = Z

n
q and Y = Z

m
q . The key space KFLWE

is a subset of Zm×n
q × Zm

q defined in Section 4.1. For

b ∈ {0, 1}, x ∈ X and key k = (A, As + e), the density fk,b(x) is defined as

∀y ∈ Y , ( fk,b(x))(y) = D
Z

m
q ,BP

(y−Ax− b ·As) , (14)

where the density D
Z

m
q ,BP

is defined in (4). It follows from the definition of the key generation procedure

GENFLWE
given in Section 4.1 that fk,b is well-defined given k = (A, As + e), as for our choice of param-

eters k uniquely identifies s.

The four properties required for a noisy trapdoor claw-free family, as specified in Definition 3.1, are

verified in the following subsections, providing a proof of the following theorem. Recall the definition of

the hardness assumption LWEn,q,χ given in Definition 2.5.

Theorem 4.1. For any choice of parameters satisfying the conditions (13), the function family FLWE is a

noisy trapdoor claw free family under the hardness assumption LWEℓ,q,D
Zq,BL

.

4.1 Efficient Function Generation

GENFLWE
is defined as follows. First, the procedure samples a random A ∈ Zm×n

q , together with trapdoor

information tA. This is done using the procedure GENTRAP(1n, 1m, q) from Theorem 2.6. The trapdoor

allows the evaluation of an inversion algorithm INVERT that, on input A, tA and b = As + e returns s and e

as long as ‖e‖ ≤ q

CT

√
n log q

. Moreover, the distribution on matrices A returned by GENTRAP is negligibly

close to the uniform distribution on Zm×n
q .

Next, the sampling procedure selects s ∈ {0, 1}n uniformly at random, and a vector e ∈ Zm
q by sampling

each coordinate independently according to the distribution D
Zq,BV

defined in (4). GENFLWE
returns k =

(A, As + e) and tk = tA.

4.2 Trapdoor Injective Pair

(a) Trapdoor. It follows from (14) and the definition of the distribution D
Z

m
q ,BP

in (4) that for any key

k = (A, As + e) ∈ KFLWE
and for all x ∈ X ,

SUPP( fk,0(x)) =
{

Ax + e0 | ‖e0‖ ≤ BP

√
m
}

, (15)

SUPP( fk,1(x)) =
{

Ax + As + e0 | ‖e0‖ ≤ BP

√
m
}

. (16)
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The procedure INVFLWE
takes as input the trapdoor tA, b ∈ {0, 1}, and y ∈ Y . It uses the algorithm

INVERT to determine s0, e0 such that y = As0 + e0, and returns the element s0 − b · s ∈ X . Using

Theorem 2.6, this procedure returns the unique correct outcome provided y = As0 + e0 for some e0

such that ‖e0‖ ≤ q

CT

√
n log q

. This condition is satisfied for all y ∈ SUPP( fk,b(x)) provided BP is

chosen so that

BP ≤
q

CT

√
mn log q

. (17)

(b) Injective Pair. We let Rk be the set of all pairs (x0, x1) such that fk,0(x0) = fk,1(x1). By definition

this occurs if and only if x1 = x0 − s, and so Rk is a perfect matching.

4.3 Efficient Range Superposition

For k = (A, As + e) ∈ KFLWE
, b ∈ {0, 1} and x ∈ X , let

( f ′k,b(x))(y) = D
Z

m
q ,BP

(y−Ax− b · (As + e)) . (18)

Note that f ′k,0(x) = fk,0(x) for all x ∈ X . The distributions f ′k,1(x) and fk,1(x) are shifted by e. Given the

key k and x ∈ X , the densities f ′k,0(x) and f ′k,1(x) are efficiently computable. For all x ∈ X ,

SUPP( f ′k,0(x)) = SUPP( fk,0(x)) , (19)

SUPP( f ′k,1(x)) =
{

Ax + e0 + As + e | ‖e0‖ ≤ BP

√
m
}

. (20)

(a) Using that BV < BP, it follows that the norm of the term e0 + e in (20) is always at most 2BP

√
m.

Therefore, the inversion procedure INVFLWE
can be guaranteed to return x on input tA, b ∈ {0, 1},

y ∈ SUPP( f ′k,b(x)) if we strengthen the requirement on BP given in (17) to

BP ≤
q

2CT

√
mn log q

. (21)

This strengthened trapdoor requirement also implies that for all b ∈ {0, 1}, (x0, x1) ∈ Rk, and

y ∈ SUPP( f ′k,b(xb)), INVFLWE
(tA, b⊕ 1, y) = xb⊕1.

(b) On input k = (A, As + e), b ∈ {0, 1}, x ∈ X , and y ∈ Y , the procedure CHKFLWE
operates as

follows. If b = 0, it computes e′ = y − Ax. If ‖e′‖ ≤ BP

√
m, the procedure returns 1, and 0

otherwise. If b = 1, it computes e′ = y− Ax − (As + e). If ‖e′‖ ≤ BP

√
m, it returns 1, and 0

otherwise.

(c) We bound the Hellinger distance between the densities fk,b(x) and f ′k,b(x). If b = 0 they are identical.

If b = 1, both densities are shifts of D
Z

m
q ,BP

, where the shifts differ by e. Each coordinate of e is

drawn independently from D
Zq,BV

, so ‖e‖ ≤ √mBV . Applying Lemma 2.4, we get that

H2( fk,1(x), f ′k,1(x)) ≤ 1− e
−2πmBV

BP .

Using the assumption that BP/BV is super-polynomial, this is negligible, as desired. It remains to

describe the procedure SAMPFLWE
. At the first step, the procedure creates the following superposition

∑
e0∈Zm

q

√
D
Z

m
q ,BP

(e0)|e0〉 . (22)
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This state can be prepared efficiently as described in [Reg05, Lemma 3.12].5

At the second step, the procedure creates a uniform superposition over x ∈ X , yielding the state

q−
n
2 ∑

x∈X
e0∈Zm

q

√
D
Z

m
q ,BP

(e0)|x〉|e0〉 . (23)

At the third step, using the key k = (A, As + e) and the input bit b the procedure computes

q−
n
2 ∑

x∈X
e0∈Zm

q

√
D
Z

m
q ,BP

(e0)|x〉|e0〉|Ax + e0 + b · (As + e)〉 . (24)

At this point, observe that e0 can be computed from x, the last register, b and the key k. The procedure

can then uncompute the register containing e0, yielding

q−
n
2 ∑

x∈X
e0∈Zm

q

√
D
Z

m
q ,BP

(e0)|x〉|Ax + e0 + b · (As + e)〉

= q−
n
2 ∑

x∈X ,y∈Y

√
D
Z

m
q ,BP

(y−Ax− b · (As + e))|x〉|y〉

= q−
n
2 ∑

x∈X ,y∈Y

√
( f ′k,b(x))(y)|x〉|y〉 . (25)

4.4 Adaptive Hardcore Bit

This section is devoted to the proof of the adaptive hardcore bit condition. The main statement is provided

in Lemma 4.7 in Section 4.4.3. The proof of the lemma proceeds in three steps. First, in Section 4.4.1 we

establish some preliminary results on the distribution of the inner product (d̂ · s mod 2), where d̂ ∈ {0, 1}n

is a fixed nonzero binary vector and s ←U {0, 1}n a uniformly random binary vector, conditioned on

Cs = v for some randomly chosen matrix C ∈ Zℓ×n
q and arbitrary v ∈ Zℓ

q. This condition is combined with

the LWE assumption in Section 4.4.2 to argue that (d̂ · s mod 2) remains computationally indistinguishable

from uniform even when the matrix C is an LWE matrix A, and the adversary is able to choose d̂ after being

given access to As + e for some error vector e ∈ Zm
q . Finally, in Section 4.4.3 the required hardcore bit

condition is reduced to the one established in Section 4.4.2 by relating the inner product appearing in the

definition of Hk (in condition 4.(b) of Definition 3.1) to an inner product of the form d̂ · s, where d̂ can be

efficiently computed from d.

4.4.1 Moderate matrices

The following lemma argues that, provided the matrix C ∈ Zℓ×n
q is a uniformly random matrix with suffi-

ciently few rows, the distribution (C, Cs) for arbitrary s ∈ {0, 1}n does not reveal any parity of s.

5Specifically, the state can be created using a technique by Grover and Rudolph ([GR02]), who show that in order to create such

a state, it suffices to have the ability to efficiently compute the sum
d
∑

x=c
D
Zq ,BP

(x) for any c, d ∈ {−⌊√BP⌋, . . . , ⌈√BP⌉} ⊆ Zq

and to within good precision. This can be done using standard techniques used to sample from the normal distribution.
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Lemma 4.2. Let q be a prime, ℓ, n ≥ 1 integers, and C ∈ Zℓ×n
q a uniformly random matrix. With probability

at least 1− qℓ · 2− n
8 over the choice of C the following holds. For a fixed C, all v ∈ Zℓ

q and d̂ ∈ {0, 1}n \
{0n}, the distribution of (d̂ · s mod 2), where s is uniform in {0, 1}n conditioned on Cs = v, is within

statistical distance O(q
3ℓ
2 · 2− n

40 ) of the uniform distribution over {0, 1}.
To prove the lemma we introduce the notion of a moderate matrix.

Definition 4.3. Let b ∈ Z

n
q . We say that b is moderate if it contains at least n

4 entries whose unique

representative in (−q/2, q/2] has its absolute value in the range ( q
8 ,

3q
8 ]. A matrix C ∈ Zℓ×n

q is moderate if

its entire row span (except 0n) is moderate.

Lemma 4.4. Let q be prime and ℓ, n be integers. Then

Pr
C←UZ

ℓ×n
q

(
C is moderate

)
≥ 1− qℓ · 2− n

8 .

Proof. Consider an arbitrary non zero vector b in the row-span of a uniform C. Then the marginal distribu-

tion of b is uniform. By Chernoff, b is moderate with probability at least 1− e−
2n
16 ≥ 1− 2−

n
8 . Applying

the union bound over all at most qℓ − 1 non zero vectors in the row span, the result follows.

Lemma 4.5. Let C ∈ Zℓ×n
q be an arbitrary moderate matrix and let d̂ ∈ {0, 1}n \ {0n} be an arbitrary non

zero binary vector. Let s be uniform over {0, 1}n and consider the random variables v = Cs mod q and

z = d̂ · s mod 2. Then (v, z) is within total variation distance at most q
ℓ

2 · 2− n
40 of the uniform distribution

over Zℓ
q × {0, 1}.

Proof. Let f be the probability density function of (v, z). Interpreting z as an element of Z2, let f̂ be

the Fourier transform over Zℓ
q × Z2. Let U denote the density of the uniform distribution over Zℓ

q × Z2.

Applying the Cauchy-Schwarz inequality,

1

2

∥∥ f −U
∥∥

1
≤
√

qℓ

2

∥∥ f −U
∥∥

2

=
1

2

∥∥ f̂ − Û
∥∥

2

=
1

2

(
∑

(v̂,ẑ)∈Zℓ
q×Z2\{(0,0)}

∣∣ f̂ (v̂, ẑ)
∣∣2
)1/2

, (26)

where the second line follows from Parseval’s identity, and for the third line we used f̂ (0, 0) = Û(0, 0) = 1
and Û(v̂, ẑ) = 0 for all (v̂, ẑ) 6= (0ℓ, 0). To bound (26) we estimate the Fourier coefficients of f . Denoting

ω2q = e
− 2πi

2q , for any (v̂, ẑ) ∈ Zℓ
q ×Z2 we can write

f̂ (v̂, ẑ) = Es

[
ω

(2·v̂TC+q·ẑd̂T)s
2q

]

= Es

[
ωwTs

2q

]

= ∏
i

Esi

[
ω

wisi
2q

]
, (27)

where we wrote wT = 2 · v̂TC + q · ẑd̂T ∈ Z

n
2q. It follows that f̂ (0ℓ, 1) = 0, since (d · s mod 2) is

uniform for s uniform.
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We now observe that for all i ∈ {1, . . . , n} such that the representative of (v̂TC)i in (−q/2, q/2] has

its absolute value in ( q
8 ,

3q
8 ] it holds that

wi
q ∈ ( 1

4 , 3
4 ] mod 1, in which case

∣∣Esi
[ωwisi

2q ]
∣∣ =

∣∣∣ cos
(π

2
· wi

q

)∣∣∣ ≤ cos
(π

8

)
≤ 2−

1
10 . (28)

Since C is moderate, there are at least n
4 such entries, so that from (27) it follows that | f̂ (v̂, ẑ)| ≤ 2−

n
40 for

all v̂ 6= 0. Recalling (26), the lemma is proved.

We now prove Lemma 4.2 by generalizing Lemma 4.5 to adaptive d (i.e. d can depend on C, Cs).

Proof of Lemma 4.2. We assume C is moderate; by Lemma 4.4, C is moderate with probability at least

1− qℓ · 2− n
8 . Let s be uniform over {0, 1}n , D1 = (Cs, d̂ · s mod 2), and D2 uniformly distributed over

Z

ℓ
q × {0, 1}. Using that C is moderate, it follows from Lemma 4.5 that

ε = ‖D1 − D2‖TV ≤ q
ℓ

2 · 2−n
40 . (29)

Fix v0 ∈ Zℓ
q and let

∆ =
1

2 ∑
b∈{0,1}

∣∣∣ Pr
s←U{0,1}n

(
d̂ · s mod 2 = b

∣∣Cs = v0

)
− 1

2

∣∣∣ . (30)

To prove the lemma it suffices to establish the appropriate upper bound on ∆, for all v0. By definition,

ε = ‖D1 − D2‖TV =
1

2 ∑
b∈{0,1},v∈Zℓ

q

∣∣∣ Pr
(
Cs = v

)
Pr
(
d̂ · s mod 2 = b

∣∣Cs = v
)
− 1

2qℓ

∣∣∣

≥ 1

2 ∑
b∈{0,1}

∣∣∣Pr
(
Cs = v0

)
Pr
(
d̂ · s mod 2 = b

∣∣Cs = v0

)
− 1

2qℓ

∣∣∣

=
1

2 ∑
b∈{0,1}

∣∣∣Pr
(
Cs = v0

)(1

2
+ (−1)b∆

)
− 1

2qℓ

∣∣∣ , (31)

where all probabilities are under a uniform choice of s ←U {0, 1}n , and the last line follows from the

definition of ∆ in (30). Applying the inequality |a| + |b| ≥ max(|a − b|, |a + b|), valid for any real a, b,

to (31) it follows that

Pr
(
Cs = v0

)
· ∆ ≤ ε and Pr

(
Cs = v0

)
≥ 1

qℓ
− 2ε . (32)

If q3ℓ/22−
n
40 >

1
3 the bound claimed in the lemma is trivial. If q3ℓ/22−

n
40 ≤ 1

3 , then εqℓ ≤ 1
3 , so it follows

from (32) that ∆ ≤ 3qℓε, which together with (29) proves the lemma.

4.4.2 LWE Hardcore bit

The next step is to use Lemma 4.2 to obtain a form of the hardcore bit statement that is appropriate for our

purposes. We use the following notation: we write s ∈ {0, 1}n as s = (s0, s1), where s0, s1 ∈ {0, 1} n
2 are

the n
2 -bit prefix and suffix of s respectively (for simplicity, assume n is even; if not, ties can be broken arbi-

trarily). We will show computational indistinguishability based on the hardness assumption LWEℓ,q,D
Zq,BL

specified in Definition 2.5.

For reasons that will become clear in the next section, we consider procedures that output a tuple

(b, x, d, c) ∈ {0, 1} × X × {0, 1}w × {0, 1}.
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Lemma 4.6. Assume a choice of parameters satisfying the conditions (13). Assume the hardness assumption

LWEℓ,q,D
Zq,BL

holds. Let

A : Zm×n
q ×Zm

q → {0, 1} × X × {0, 1}w × {0, 1}

be a quantum polynomial-time procedure. For b ∈ {0, 1} and x ∈ X let Ib,x : {0, 1}w → {0, 1}n be an

efficiently computable map. For every s = (s0, s1) ∈ {0, 1}n and (b, x) ∈ {0, 1} × X , let Ĝsb⊕1,b,x ⊆
{0, 1}w be a set depending only on b, x and sb⊕1 and such that for all d ∈ Ĝsb⊕1,b,x the first (if b = 0) or

last (if b = 1) n
2 bits of Ib,x(d) are not all 0. Then the distributions

D0 =
(
(A, As + e)← GENFLWE

(1λ), (b, x, d, c) ← A(A, As + e), Ib,x(d) · s mod 2
)

(33)

and

D1 =
(
(A, As + e)← GENFLWE

(1λ), (b, x, d, c) ← A(A, As + e), (δd∈Ĝsb⊕1,b,x
r)⊕ (Ib,x(d) · s mod 2)

)
, (34)

where r ←U {0, 1} and δd∈Ĝsb⊕1,b,x
is 1 if d ∈ Ĝsb⊕1,b,x and 0 otherwise, are computationally indistinguish-

able.

Proof. We prove computational indistinguishability by introducing a sequence of hybrids. For the first step

we let

D(1) =
(
(Ã, Ãs + e), (b, x, d, c) ← A(Ã, Ãs + e), Ib,x(d) · s mod 2

)
, (35)

where Ã = BC + F ← LOSSY(1n, 1m, 1ℓ, q, D
Zq,BL

) is sampled from a lossy sampler (see Definition 2.7).

From the definition, F ∈ Z

m×n
q has entries i.i.d. from the distribution D

Zq,BL
over Zq. To see that D0

and D(1) are computationally indistinguishable, first note that the distribution of matrices A generated by

GENFLWE
is negligibly far from the uniform distribution (see Theorem 2.6). Next, by Theorem 2.8, under

the LWEℓ,q,D
Zq,BL

assumption a uniformly random matrix A and a lossy matrix Ã are computationally

indistinguishable. Note that this step, as well as subsequent steps, uses that A and Ib,x are efficiently

computable.

For the second step we remove the term Fs from the lossy LWE sample Ãs+ e to obtain the distribution

D(2) =
(
(BC + F, BCs + e), (b, x, d, c) ← A(BC + F, BCs + e), Ib,x(d) · s mod 2

)
. (36)

Using that s is binary and the entries of F are taken from a BL-bounded distribution, it follows that ‖Fs‖ ≤
n
√

mBL. Applying Lemma 2.4, the statistical distance between D(1) and D(2) is at most

γ =
√

2
(

1− e
−2πmnBL

BV

)1/2
, (37)

which is negligible, due to the requirement that BV
BL

is superpolynomial given in (13).

For the third step, observe that the distribution D(2) in (36) only depends on sb through Cs and Ib,x(d) · s,

where C is uniformly random. It follows from Lemma 4.2 that provided n
2 = Ω(ℓ log q), with overwhelm-

ing probability over the choice of C, if we fix all variables except for sb, the distribution of (Ib,x(d) · s
mod 2) is statistically indistinguishable from r ←U {0, 1} as long as the n

2 bits of Ib,x(d) associated with
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sb are not all 0 (i.e. the first n
2 bits if b = 0 or the last n

2 bits if b = 1). Using that for d ∈ Ĝsb⊕1,b,x the n
2 bits

of Ib,x(d) associated with sb are not all 0, the distribution D(2) in (36) is statistically indistinguishable from

D(3) =
(
(BC + F, BCs + e), (b, x, d, c)← A(BC + F, BCs + e), (δd∈Ĝsb⊕1,b,x

r)⊕ (Ib,x(d) · s mod 2))
)

,

where r ←U {0, 1}.
For the fourth step we reinsert the term Fs to obtain

D(4) =
(
Ã, Ãs + e, (b, x, d, c) ← A(Ã, Ãs + e), (δd∈Ĝsb⊕1,b,x

r)⊕ (Ib,x(d) · s mod 2)
)

.

Statistical indistinguishability between D(3) and D(4) follows similarly as between D(1) and D(2). Finally,

computational indistiguishability between D(4) and D1 follows similarly to between D(1) and D0.

4.4.3 Adaptive hardcore lemma

We now prove that condition 4 of Definition 3.1 holds. Recall that X = Z

n
q and w = n⌈log q⌉. Let

J : X → {0, 1}w be such that J(x) returns the binary representation of x ∈ X . For b ∈ {0, 1}, x ∈ X ,

and d ∈ {0, 1}w , let Ib,x(d) ∈ {0, 1}n be the vector whose each coordinate is obtained by taking the inner

product mod 2 of the corresponding block of ⌈log q⌉ coordinates of d and of J(x)⊕ J(x− (−1)b1), where

1 ∈ Zn
q is the vector with all its coordinates equal to 1 ∈ Zq. For k = (A, As + e), b ∈ {0, 1} and x ∈ X ,

we define the set Gk,b,x as

Gk,b,x =
{

d ∈ {0, 1}w
∣∣∣ ∃i ∈

{
b

n

2
, . . . , b

n

2
+

n

2

}
: (Ib,x(d))i 6= 0

}
.

Observe that for all b ∈ {0, 1} and x ∈ X , if d is sampled uniformly at random, d /∈ Gk,b,x with negligible

probability. This follows simply because for any b ∈ {0, 1}, J(x)⊕ J(x− (−1)b1) is non-zero, since J is

injective. Observe also that checking membership in Gk,b,x is possible given only b, x. This shows condition

4.(a) in the adaptive hardcore bit condition in Definition 3.1.

Given (x0, x1) ∈ Rk (where k = (A, As + e)), recall from Section 4.2 that x1 = x0 − s. For conve-

nience we also introduce the following set, where y = fk,0(x0) = fk,1(x1):

Ĝs1,0,x0 = Ĝs0,1,x1
= Gk,0,x0

∩ Gk,1,x1
. (38)

The motivation for using two different notation for the same set is to clarify that membership in the set can

be decided given (sb⊕1, b, xb), for either b ∈ {0, 1}. This point is important in the proof of Lemma 4.6.

The following lemma establishes item 4.(b) in Definition 3.1.

Lemma 4.7. Assume a choice of parameters satisfying the conditions (13). Assume the hardness assumption

LWEℓ,q,D
Zq,BL

holds. Let s ∈ {0, 1}n . Let 6

Hs =
{
(b, x, d, d · (J(x)⊕ J(x− (−1)b

s))) | b ∈ {0, 1}, x ∈ X , d ∈ Ĝsb⊕1,b,x

}
, (39)

Hs =
{
(b, x, d, c) | (b, x, d, c⊕ 1) ∈ Hs

}
. (40)

Then for any quantum polynomial-time procedure

A : Zm×n
q ×Zm

q → {0, 1} × X × {0, 1}w × {0, 1}
6We write the sets as Hs instead of Hk to emphasize the dependence on s.
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there exists a negligible function µ(λ) such that

∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A, As + e) ∈ Hs

]
− Pr

(A,As+e)←GENFLWE
(1λ)

[
A(A, As + e) ∈ Hs

]∣∣∣ ≤ µ(λ) .

(41)

Proof. The proof is by contradiction. Assume that there exists a quantum polynomial-time procedure A
such that the left-hand side of (41) is at least some non-negligible function η(λ). We derive a contradiction

by showing that the two distributions D0 and D1 in Lemma 4.6, for Ib,x defined at the start of this section

and Ĝsb⊕1,b,x defined in (38), are computationally distinguishable, giving a contradiction.

Let (A, As + e) ← GENFLWE
(1λ) and (b, x, d, c) ← A(A, As + e). To link A to the distributions

in Lemma 4.6 we relate the inner product condition in (39) to an inner product d̂ · s of the form appearing

in (33), for d̂ = Ib,x(d) that can be computed efficiently from b, x and d. This is based on the following

claim.

Claim 4.8. For all b ∈ {0, 1}, x ∈ X , d ∈ {0, 1}w and s ∈ {0, 1}n the following equality holds:

d · (J(x)⊕ J(x− (−1)b
s) = Ib,x(d) · s . (42)

Moreover, the function Ib,x is efficiently computable given b, x.

Proof. We do the proof in case n = 1 and w = ⌈log q⌉, as the case of general n follows by linearity. In this

case s is a single bit. If s = 0 then both sides of (42) evaluate to zero, so the equality holds trivially. It then

suffices to define Ib,xb
(d) so that the equation holds when s = 1. A choice of either of

I0,x0(d) = d · (J(x0)⊕ J(x0 − 1)) , I1,x1
(d) = d · (J(x1)⊕ J(x1 + 1))

satisfies all requirements. It is clear from the definition of Ib,x that it can be computed efficiently given

b, x.

The procedure A, the function Ib,x defined at the start of this section and the sets Ĝsb⊕1,b,x in (38)

fully specify D0 and D1. To conclude we construct a distinguisher A′ between D0 and D1. Consider two

possible distinguishers, A′u for u ∈ {0, 1}. Given a sample w = ((A, As + e), (b, x, d, c), t), A′u returns 0
if c = t⊕ u, and 1 otherwise. First note that

∑
u∈{0,1}

∣∣∣ Pr
w←D0

[
A′u(w) = 0

]
− Pr

w←D1

[
A′u(w) = 0

]∣∣∣

= ∑
u∈{0,1}

∣∣∣ Pr
w←D0

[
A′u(w) = 0 ∧ d ∈ Ĝsb⊕1,b,x

]
− Pr

w←D1

[
A′u(w) = 0 ∧ d ∈ Ĝsb⊕1,b,x

]∣∣∣ (43)

since if d /∈ Ĝsb⊕1,b,x the distributions D0 and D1 are identical by definition. Next, if the sample held by

A′u is from the distribution D0 and if (b, x, d, c) ∈ Hs, then by the definition of Hs and (42) it follows that

c = d · (J(x) ⊕ J(x − (−1)bs) = Ib,x(d) · s = t. If instead (b, x, d, c) ∈ Hs then c⊕ 1 = d · (J(x) ⊕
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J(x− (−1)bs) = Ib,x(d) · s = t. The expression in (43) is thus equal to:

(43) =
∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A, As + e) ∈ Hs

]
− 1

2
Pr

w←D1

[
d ∈ Ĝsb⊕1,b,x

]∣∣∣

+
∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A, As + e) ∈ Hs

]
− 1

2
Pr

w←D1

[
d ∈ Ĝsb⊕1,b,x

]∣∣∣

≥
∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A, As + e) ∈ Hs

]
− Pr

(A,As+e)←GENFLWE
(1λ)

[
A(A, As + e) ∈ Hs

]∣∣∣

≥ η .

Therefore, at least one of A′0 or A′1 must successfully distinguish between D0 and D1 with advantage at

least
η
2 , a contradiction with the statement of Lemma 4.6.

5 Protocol description

We introduce two protocols. The first we call the (general) randomness expansion protocol, or Protocol 1.

This is our main randomness expansion protocol. It is introduced in Section 5.1, and summarized in Figure 1.

The protocol describes the interaction between a verifier and prover. Ultimately, we aim to obtain the

guarantee that any computationally bounded prover that is accepted with non-negligible probability by the

verifier in the protocol must generate transcripts that contain information-theoretic randomness.

The second protocol is called the simplified protocol, or Protocol 2. It is introduced in Section 5.2, and

summarized in Figure 2. This protocol abstracts some of the main features Protocol 1, and will be used as a

tool in the analysis (it is not meant to be executed literally).

5.1 The randomness expansion protocol

Our randomness expansion protocol, Protocol 1, is described in Figure 1. The protocol is parametrized by a

security parameter λ and a number of rounds N. The other parameters, the error tolerance parameter γ ≥ 0
and the testing parameter q ∈ (0, 1], are assumed to be specified as a function of λ and N. For intuition, γ

can be thought of as a small constant and q as a parameter that scales as poly(λ)/N.

At the start of the protocol, the verifier executes (k, tk) ← GENF (1λ) to obtain the public key k and

trapdoor tk for a pair of functions { fk,b : X → DY}b∈{0,1} from the NTCF family (see Definition 3.1). The

verifier sends the public key k to the prover and keeps the associated trapdoor private.

In each of the N rounds of the protocol, the prover is first required to provide a value y ∈ Y . For each

b ∈ {0, 1}, the verifier uses the trapdoor to compute x̂b ← INVF (tk, b, y). (If the inversion procedure fails,

the verifier requests another sample from the prover.) For convenience, introduce a set

Ĝy = Gk,0,x0
∩ Gk,1,x1

, (44)

where for b ∈ {0, 1} the set Gk,b,xb
is defined in 4.(a) of Definition 3.1. The verifier then chooses a round

type G ∈ {0, 1} according to a biased distribution: either a test round, G = 0, chosen with probability

Pr(G = 0) = q, or a generation round, G = 1, chosen with the remaining probability Pr(G = 1) = 1− q.

The former type of round is less frequent, as the parameter q will eventually be set to a very small value,

that goes to 0 with the number of rounds of the protocol. The prover is not told the round type.

Depending on the round type, the verifier chooses a challenge C ∈ {0, 1} that she sends to the prover.

In the case of a test round the challenge is chosen uniformly at random; in the case of a generation round
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the challenge is always C = 1. In case C = 0 the prover is asked to return a pair (u, d) ∈ {0, 1} × {0, 1}w .

The pair is called valid if u = d · (J(x̂0) ⊕ J(x̂1)) and d ∈ Ĝy, where the function J is as in 4.(b) of

Definition 3.1. If d ∈ Ĝy, the verifier sets a decision bit W = 1 if the answer is valid, and W = 0 if not.

If d /∈ Ĝy, the verifier sets the decision bit W ∈ {0, 1} uniformly at random.7 In case C = 1, the prover

should return a pair (b, x) ∈ {0, 1} × X . The pair is called valid if CHKF (k, b, x, y) = 1. The verifier sets

a decision bit W = 1 in case the pair is valid, and W = 0 otherwise. The set of valid pairs on challenge

C = c ∈ {0, 1} is denoted Vy,c.

After each test round the verifier samples a fresh (k, tk) ← GENF (1λ) and communicates the new

public key k to the prover.

At the end of the protocol, the verifier computes the fraction of test rounds in which the decision bit has

been set to 1. If this fraction is smaller than (1− γ), the verifier aborts. Otherwise, the verifier returns the

concatenation of the bits b obtained from the prover in generation rounds. (These bits are recorded in the

verifier’s output string O1 · · ·ON , such that Oi = 0 whenever the round is a test round.)

5.2 The simplified protocol

For purposes of analysis only we introduce a simplified variant of Protocol 1, which is specified in Figure 2.

We call it the simplified protocol, or Protocol 2. The protocol is very similar to the randomness expansion

protocol described in Figure 1, except that the prover’s answers and the verifier’s checks are simplified, and

in test rounds there is an additional challenge bit T ∈ {0, 1}. This new challenge asks the prover to perform

a projective measurement on its private space that indicates whether the state lies in a “good subspace”

(indicated by an outcome K = 0) or in the complementary “bad subspace” (outcome K = 1). The “good”

and “bad” subspaces represent portions of space where the device’s other two measurements, M and Π are

anti-aligned and aligned respectively; see the definition of a simplified device in Section 6.2 for details.

For the case of a challenge C = 0, in Protocol 1 the prover returns an equation (u, d). In the simplified

protocol the prover returns a single bit e ∈ {0, 1} that is meant to directly indicate the verifier’s decision

(i.e. the bit W). If moreover T = 1 the prover is required to reply with an additional bit k ∈ {0, 1}. In this

case, the verifier makes the decision to accept, i.e. sets W = 1, if and only if e = 1 and k = 0. For the case

of a challenge C = 1, in Protocol 1 the prover returns a pair (b, x). In the simplified protocol the prover

returns a value v ∈ {0, 1, 2} that is such that v = b in case (b, x) is valid, i.e. (b, x) ∈ Vy,1, and v = 2
otherwise.

Note that this “honest” behavior for the prover is not necessarily efficient. Moreover, it is easy for a

“malicious” prover to succeed in Protocol 2, e.g. by always returning u = 1 (valid equation), k = 0 (good

subspace) and v ∈ {0, 1} (valid pre-image). Our analysis will not consider arbitrary provers in Protocol 2,

but instead provers whose measurements satisfy certain constraints that arise from the analysis of Protocol 1.

For such provers, it will be impossible to succeed in the simplified protocol without generating randomness.

Further details are given in Section 7.

5.3 Completeness

We describe the intended behavior for the prover in Protocol 1. Fix an NTCF family F and a key k ∈ KF .

In each round, the “honest” prover performs the following actions.

7This choice if made for technical reasons that have to do with the definition of the adaptive hardcore bit property; see Section 7

and the proof of Proposition 7.4 for details.
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Let λ be a security parameter, N ≥ 1 a number of rounds, and γ, q > 0 functions of λ and N. Let F be an

NTCF family.

At the start of the protocol, the verifier communicates N to the prover. In addition, the verifier samples an

initial key (k, tk)← GENF (1λ), sends k to the prover and keeps the trapdoor information tk private.

1. For i = 1, . . . , N:

(a) The prover returns a y ∈ Y to the verifier. For b ∈ {0, 1} the verifier uses the trapdoor to

compute x̂b ← INVF (tk, b, y).

(b) The verifier selects a round type Gi ∈ {0, 1} according to a Bernoulli distribution with parameter

q: Pr(Gi = 0) = q and Pr(Gi = 1) = 1− q. In case Gi = 0 (test round), she chooses

a challenge Ci ∈ {0, 1} uniformly at random. In case Gi = 1 (generation round), she sets

Ci = 1. The verifier keeps Gi private, and sends Ci to the prover.

i. In case Ci = 0 the prover returns (u, d) ∈ {0, 1} × {0, 1}w . If d /∈ Ĝy, the set defined

in (44), the verifier sets W to a uniformly random bit. Otherwise, the verifier sets W = 1 if

d · (J(x̂0)⊕ J(x̂1)) = u and W = 0 if not.

ii. In case Ci = 1 the prover returns (b, x) ∈ {0, 1} × X . The verifier sets W as the value

returned by CHKF (k, b, x, y).

(c) In case Gi = 1, the verifier sets Oi = b. In case Gi = 0, she sets Wi = W.

(d) In case Gi = 0, the verifier samples a new key (k, tk) ← GENF (1λ). She sends k to the prover

and keeps the trapdoor information tk private. This key will be used until the next test round,

included.

2. If ∑i:Gi=0 Wi < (1 − γ)qN, the verifier aborts. Otherwise, she returns the string O obtained by

concatenating the bits Oi for all i ∈ {1, . . . , N} such that Gi = 1.

Figure 1: The randomness expansion protocol, Protocol 1. See Definition 3.1 for notation associated with

the NTCF family F .

27



Let λ be a security parameter, N ≥ 1 a number of rounds, and γ, η, κ, q > 0 functions of λ and N.

1. For i = 1, . . . , N:

(a) The verifier selects a round type Gi ∈ {0, 1} according to a Bernoulli distribution with parameter

q: Pr(Gi = 0) = q and Pr(Gi = 1) = 1− q. In case Gi = 0 (test round), she chooses Ci ∈
{0, 1} uniformly at random and Ti ∈ {0, 1} such that Pr(Ti = 0) = 1− κ and Pr(Ti = 1) = κ.

In case Gi = 1 (generation round), she sets Ci = 1 and Ti = 0. The verifier keeps Gi private,

and sends (Ci, Ti) to the prover.

i. In case Ci = 0 the prover returns e ∈ {0, 1}. If Ti = 1 the prover in addition reports

k ∈ {0, 1}.8 If Ti = 0 the verifier sets Wi = e. If Ti = 1 the verifier sets Wi = e(1− k).

ii. In case Ci = 1 the prover returns v ∈ {0, 1, 2}. The verifier sets Oi = v and Wi = 1v∈{0,1}.

2. If ∑i:Gi=0∧Ti=1 Wi < (1− γ
κ − η)κqN, the verifier rejects the interaction. Otherwise, she returns the

string O obtained by concatenating the bits Oi for all i ∈ {1, . . . , N} such that Gi = 1.

Figure 2: The simplified protocol, Protocol 2.

1. The prover executes the efficient procedure SAMPF in superposition to obtain the state

|ψ(1)〉 = 1√
|X | ∑

x∈X ,y∈Y ,b∈{0,1}

√
( f ′k,b(x))(y)|b, x〉|y〉 .

2. The prover measures the last register to obtain an y ∈ Y . Using item 2. from the definition of an

NTCF, the prover’s re-normalized post-measurement state is

|ψ(2)〉 = 1√
2

(
|0, x0〉+ |1, x1〉

)
|y〉 ,

where for b ∈ {0, 1}, xb = INVF (tk, b, y).

(a) In case Ci = 0, the prover evaluates the function J on the second register, containing xb, and

then applies a Hadamard transform to all w + 1 qubits in the first two registers. Tracing out the

register that contains y, this yields the state

|ψ(3)〉 = 2−
w+2

2 ∑
d,b,u

(−1)d·J(xb)⊕ub|u〉|d〉

= (−1)J(x0)2−
w
2 ∑

d∈{0,1}w

|d · (J(x0)⊕ J(x1))〉|d〉 .

The prover measures both registers to obtain an (u, d) that it sends back to the verifier.

(b) In case Ci = 1, the prover measures the first two registers of |ψ(2)〉 in the computational basis,

and returns the outcome (b, xb) to the verifier.

8The bit k should not be confused with the public key k for the NTCF that is used in Protocol 1. In Protocol 2, there is no NTCF,

and no key.
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Lemma 5.1. For any λ and k← GENF (1λ), the strategy for the honest prover (on input k) in one round of

the protocol can be implemented in time polynomial in λ and is accepted with probability negligibly close

to 1.

Proof. Both efficiency and correctness of the prover follow from the definition of an NTCF (Definition 3.1).

The prover fails only if it obtains an outcome d /∈ Ĝy, which by item 4(a) in the definition happens with

negligible probability.

6 Devices

We model an arbitrary prover in the randomness expansion protocol (Protocol 1 in Figure 1) as a device that

implements the actions of the prover: the device first returns an y ∈ Y ; then, depending on the challenge

C ∈ {0, 1}, it either returns an equation (u, d) (case C = 0), or a candidate pre-image (b, x) (case C = 1).

For simplicity we assume that the device makes the same set of measurements in each round of the protocol.

This is without loss of generality, as we allow the state of the device to change from one round to the next;

in particular the device is allowed to use a quantum memory as a control register for the measurements.

In Section 6.1 we introduce our notation for modeling provers in Protocol 1 as devices. In Section 6.2

we consider a simplified form of device, that is appropriate for modeling a prover in the simplified protocol,

Protocol 2. In Section 7 we give a reduction showing how to associate a specific simplified device to any

computationally efficient general device, such that the randomness generation properties of the two devices

can be related to each other (this is done in Section 8).

For the remainder of this section we fix an NTCF family F satisfying the conditions of Definition 3.1,

and use notation introduced in the definition.

6.1 General devices

The following notion of device models the behavior of an arbitrary prover in the randomness expansion

protocol, Protocol 1 (Figure 1).

Definition 6.1. Given k ∈ KF , a device D = (φ, Π, M) (implicitly, compatible with k) is specified by the

following:

1. A (not necessarily normalized) positive semidefinite φ ∈ Pos(HD ⊗HY). Here HD is an arbitrary

space private to the device, and HY is a space of the same dimension as the cardinality of the set Y ,

also private to the device. For every y ∈ Y , define

φy = (IdD⊗〈y|Y) φ (IdD⊗|y〉Y) ∈ Pos(HD) .

Note that φy is not normalized, and ∑y∈Y Tr(φy) = Tr(φ).

2. For every y ∈ Y , a projective measurement {M
(u,d)
y } on HD, with outcomes (u, d) ∈ {0, 1} ×

{0, 1}w .

3. For every y ∈ Y , a projective measurement {Π(b,x)
y } on HD, with outcomes (b, x) ∈ {0, 1} × X .

For each y, this measurement has two designated outcomes (0, x0) and (1, x1), which are the answers

that are accepted on challenge C = 1 in the protocol; recall that we use the notation Vy,1 for this set.

For b ∈ {0, 1} we use the shorthand Πb
y = Π

(b,xb)
y , Πy = Π0

y + Π1
y, and Π2

y = Id−Π0
y −Π1

y.
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By Naimark’s theorem, up to increasing the dimension ofHD the assumption that {Π(b,x)
y } and {M

(u,d)
y }

are projective is without loss of generality.

We explain the connection between the notion of device in Definition 6.1 and a prover in Protocol 1.

Given a device D = (φ, Π, M), we can define actions for the prover in Protocol 1 as follows. The prover

is initialized in state φ. When a round of the protocol is initiated, the prover measures register Y in the

computational basis and returns the outcome y ∈ Y . We always assume that the prover directly measures

the register, as any pre-processing unitary can be incorporated in the definition of the state φ. When sent

challenge C = 0 (resp. C = 1), the prover measures register D using the device’s projective measurement

{M
(u,d)
y } (resp. {Π(b,x)

y }), and returns the outcome to the verifier.

Definition 6.2. We say that a device D = (φ, Π, M) is efficient if

1. There is a polynomial-size circuit to prepare φ, given the NTCF key k;

2. For every y ∈ Y , the measurements {M
(u,d)
y } and {Π(b,x)

y } can be implemented by polynomial-size

circuits.

Using the definition of an NTCF family (Definition 3.1), it is straightforward to verify that the device

associated with the “honest” prover described in Section 5.3 is efficient.

We introduce notation related to the post-measurement states generated by a device in Protocol 1. An

execution of Protocol 1 involves a choice of round types g ∈ {0, 1}N and challenges c ∈ {0, 1}N by the

verifier, and a sequence of outputs o ∈ {0, 1, 2}N computed by the verifier as a function of the answers

provided by the device. Here, in case g = 0 (test round) we use o ∈ {0, 1} to denote the outcome of

the test (called W in the protocol description), and in case g = 1 (generation round) we use o ∈ {0, 1, 2}
such that o = 2 in case W = 0, and o = O as recorded by the verifier in case W = 1. We call the tuple

(g, c, o) the transcript of the protocol; it contains all the information relevant to the verifier’s final acceptance

decision and to the extraction of randomness. Additional information such as the choice of NTCF key and

the prover’s complete answers (including the value y) is discarded for ease of presentation. We let ACC

denote the set of transcripts (g, c, o) that are accepted by the verifier in the last step of the protocol, i.e. such

that ∑i:gi=0 oi ≥ (1− γ)qN.

Definition 6.3. Let D = (φ, Π, M) be a device. For any transcript (g, c, o) for an execution of Protocol 1

with D, let φco
D

be the post-measurement state of the device, conditioned on having received challenges c
and returned outcomes o. The joint state of the transcript and the device at the end of the N rounds (but

before the verifier’s decision to abort) is

φ
(N)
COD

= ∑
g,c,o

q(g, c) |c〉〈c|C ⊗ |o〉〈o|O ⊗ φco
D

, (45)

where q(g, c) is the probability that the sequence of round types and challenges (g, c) is chosen by the

verifier in the protocol.

We write |φ〉DE for a purification of the initial state φD of the device, with E the purifying register, and

ρco
E

for the post-measurement state on register E conditioned on the transcript being (c, o).

6.2 Simplified devices

Next we introduce a simplified notion of device, that can be used to model the actions of a prover in the

simplified protocol, Protocol 2 (Figure 2).
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Definition 6.4. A simplified device is a tuple (φ, Π, M, K) such that:

1. φ = {φy}y∈Y ⊆ Pos(HD) is a family of positive semidefinite operators on an arbitrary space HD;

2. For each y ∈ Y , {M0
y, M1

y = Id−M0
y}, {Π0

y, Π1
y, Π2

y = Id−Π0
y −Π1

y}, and {K0
y, K1

y = Id−K0
y}

are projective measurements on HD;

3. For each y ∈ Y , the measurement operators Ky commute with the My and with the Πy. (My and Πy

do not necessarily commute with each other.)

We introduce a quantity called overlap that measures how “incompatible” a simplified device’s mea-

surements are. This measure is analogous to the measure of overlap used to quantify incompatibility in the

derivation of entropic uncertainty relations (see e.g. [MU88]).

Definition 6.5. Given a simplified device D = (φ, Π, M, K), the overlap of D is

∆(D) = max
y∈Y

∥∥K0
y

(
Π0

yM1
yΠ0

y + Π1
yM1

yΠ1
y

)∥∥ .

Note that the overlap only quantifies the measurement incompatibility in the “good subspace” K0
y.

To any simplified device D = (φ, Π, M, K) we associate the post-measurement states

∀e ∈ {0, 1}, φe
00 = ∑

y∈Y
|y〉〈y| ⊗Me

yφyMe
y ,

∀e, k ∈ {0, 1}, φek
01 = ∑

y∈Y
|y〉〈y| ⊗ Kk

yMe
yφyMe

yKk
y ,

∀v ∈ {0, 1, 2}, φv
1 = ∑

y∈Y
|y〉〈y| ⊗Πv

yφyΠv
y . (46)

A simplified device can be used in the simplified protocol in a straightforward way: upon receipt of a

challenge C = 0 (resp. C = 1), the device first samples an y ∈ Y according to the distribution with weights

Tr(φy). It then performs the projective measurement {M0
y, M1

y} followed by, if T = 1, {K0
y, K1

y} (resp.

{Π0
y, Π1

y, Π2
y}) on φy, and returns the outcomes e, k ∈ {0, 1} (resp. v ∈ {0, 1, 2}) to the verifier.

Definition 6.6. Let D = (φ, Π, M, K) be a simplified device. For any transcript (g, c, t, o, k) for an exe-

cution of Protocol 1 with D, let φctok
D

be the post-measurement state of the device, conditioned on having

received challenges (c, t) and returned outcomes (o, k). The joint state of the transcript and the device at the

end of the N rounds (but before the verifier’s decision to abort) of the protocol is

φ
(N)
CTOKD

= ∑
g,c,t,o,k

q(g, c, t) |c, t〉〈c, t|CT ⊗ |o, k〉〈o, k|OK ⊗ φctok
D

, (47)

where q(g, c, t) = q(g, c)κ(t) with κ(t) = ∏i κti(1− κ)1−ti is the probability that the sequence of round

types and challenges (g, c, t) is chosen by the verifier in the protocol.

7 Single-round analysis

In this section we consider the behavior of an arbitrary device D in a single round of the randomness ex-

pansion protocol, Protocol 1 in Figure 1. Our goal is to introduce a simplified device D′ such that analyzing
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the randomness generation properties of D′ is easier than it is for D, and such that bounds on the amount of

randomness generated by D′ in the simplified protocol, Protocol 2 in Figure 2, imply bounds on the amount

of randomness generated by D in Protocol 1. Throughout the section we fix an NTCF family F (Defini-

tion 3.1) and a key k ∈ KF sampled according to GEN(1λ), for a parameter λ that plays the role of security

parameter.

7.1 A constraint on the measurements of any efficient device

We start with a lemma showing that for any efficient device D = (φ, Π, M), the measurements Π and M
must be strongly incompatible, in the sense that if the device first measures Π, and then measures M, it is

unable to determine if the pair (u, d) returned by M corresponds to a valid pair, i.e. (u, d) ∈ Vy,0. Indeed,

if this were the case the device could be used to violate the hardcore bit property (12). Recall the definition

of the set Ĝy ⊆ {0, 1}w in (44).

Lemma 7.1. Let D = (φ, Π, M) be an efficient device. Define a sub-normalized density

φ̃YBXD = ∑
y∈Y
|y〉〈y|Y ⊗ ∑

b∈{0,1}
|b, xb〉〈b, xb|BX ⊗Π

(b,xb)
y φy Π

(b,xb)
y

= ∑
b∈{0,1}

|b, xb〉〈b, xb|BX ⊗ φ̃
(b)
YD

. (48)

Let

σ0 = ∑
b∈{0,1}

|b, xb〉〈b, xb|BX ⊗ ∑
(u,d)∈Vy,0

|u, d〉〈u, d|U ⊗ (IdY⊗M
(u,d)
y )φ̃

(b)
YD

(IdY⊗M
(u,d)
y ) ,

σ1 = ∑
b∈{0,1}

|b, xb〉〈b, xb|BX ⊗ ∑
(u,d)/∈Vy,0

1d∈Ĝy
|u, d〉〈u, d|U ⊗ (IdY⊗M

(u,d)
y )φ̃

(b)
YD

(IdY⊗M
(u,d)
y ) . (49)

Then σ0 and σ1 are computationally indistinguishable.

Proof. Suppose for contradiction that there exists an efficient observable O such that

Tr(O(σ0 − σ1)) ≥ µ , (50)

for some non-negligible function µ(λ). Consider the following efficient procedure. The procedure first

prepares the state φ̃YBXD in (48). This can be done efficiently by first preparing φYD, then measuring a

y ∈ Y , then applying the measurement {Π(b,x)
y } to φy, and returning a special abort symbol if the outcome

is invalid, i.e. CHKF (k, b, x, y) = 0.

The procedure then applies the measurement {M
(u,d)
y } to φ̃YBXD, obtaining an outcome (u, d). At this

point, conditioned on the event that d ∈ Ĝy, depending on whether (u, d) ∈ Vy,0 or (u, d) /∈ Vy,0 the

procedure has either prepared σ0 or σ1. Finally, the procedure measures O to obtain a bit v, and returns

(b, x, d, v ⊕ u). This defines an efficient procedure. Moreover, using (50) it follows that the procedure

violates the hardcore bit property (12). (The cases where d /∈ Ĝy are not taken into account by the hardcore

bit property, so it is sufficient to have a good distinguishing ability conditioned on d ∈ Ĝy.)
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7.2 Angles between incompatible measurements

We show a general lemma that argues about the principal angles between two binary-outcome measurements

that have a certain form of incompatibility.

Lemma 7.2. Let Π, M be two orthogonal projections onH and φ a state on H. Let γ = 1− Tr(Mφ) and

µ =
∣∣∣
1

2
− Tr

(
MΠφΠ

)
− Tr

(
M(Id−Π)φ(Id−Π)

)∣∣∣ .

Let 1
2 < ω ≤ 1. Let K be the orthogonal projection on the direct sum of eigenspaces of ΠMΠ +

(Id−Π)M(Id−Π) with associated eigenvalue in [1−ω, ω]. Then

Tr
(
(Id−K)φ

)
≤ 2µ + 10

√
γ

1− 4ω(1− ω)
.

Proof. Using Jordan’s lemma we find a basis ofH in which

M = ⊕j

(
c2

j cjsj

cjsj s2
j

)
and Π = ⊕j

(
1 0
0 0

)
, (51)

where cj = cos θj, sj = sin θj, for some angles θj. There may be 1-dimensional blocks in the Jordan

decomposition, but up to adding a few dimensions these can be identified with two-dimensional blocks such

that c2
j ∈ {0, 1}. Let K be the orthogonal projection on those 2-dimensional blocks such that min(c2

j , s2
j ) ≥

1− ω. Note that K commutes with both M and Π, but not necessarily with φ. It is easy to verify that this

definition of K coincides with the definition given in the lemma.

Suppose first that γ = 0. Then φ is supported on the range of M. For any block j, let Pj be the projection

on the block and αj = Tr(Pjφ). It follows from the decomposition in (51) and the definition of µ that

∣∣∣
1

2
−∑

j

αj

(
c4

j + s4
j

)∣∣∣ ≤ µ . (52)

Using that for j such that min(c2
j , s2

j ) ≥ 1− ω we have

c4
j + s4

j = 1− 2 max(c2
j , s2

j )
(
1−max(c2

j , s2
j )
)
≥ 1

2
+
(1

2
− 2ω(1− ω)

)
,

and c4
j + s4

j ≥ 1
2 always, it follows from (52) that for any ω > 1

2 ,

Tr
(
(Id−K)φ

)
≤ 2µ

1− 4ω(1− ω)
. (53)

Next consider the case where γ > 0. Assume Tr(Mφ) > 0, as otherwise the lemma is trivial. Let

φ′ = MφM/Tr(Mφ). By the gentle measurement lemma (see e.g. [Wil13, Lemma 9.4.1]),
∥∥φ′ − φ

∥∥
1
≤ 2
√

γ . (54)

Using the definition of µ, it follows that

∣∣∣
1

2
− Tr

(
MΠφ′Π

)
− Tr

(
M(Id−Π)φ′(Id−Π)

)∣∣∣ ≤ µ + 4
√

γ .

Applying the same reasoning as for the case γ = 0 yields an analogue of (53), with φ′ instead of φ on the

left-hand side and µ + 4
√

γ instead of µ on the right-hand side. Finally, using again (54) the same bound

transfers to φ up to an additional loss of 2
√

γ.
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7.3 Simulating an efficient device using a simplified device

Recall the definitions of a simplified device (Definition 6.4) and of the overlap of a simplified device

(Definition 6.5). Recall also the definition of post-measurement states {φco} associated with a device

D = (φ, Π, M) given in Definition 6.3, and of post-measurement states {(φ′)ctok} associated with a sim-

plified device D′ = (φ′, Π′, M′, K) given in Definition 6.6. These ensembles of states provide a means to

meaningfully compare a device D and a simplified device D′. We record this in the following definition.

Definition 7.3. Let D = (φ, Π, M) be a device and D′ = (φ′, Π′, M′, K) a simplified device. We say

that D′ simulates D if for every (c, o) ∈ {0, 1}N × {0, 1, 2}N and t = 0N the states φco and (φ′)cto are

identical.

The following proposition shows that any efficient device can be simulated by a simplified device whose

measurements generally make an angle that is bounded away from 1. As in Lemma 7.1, the only assumption

required on the efficient device is that it does not break the hardcore bit property (12).

Proposition 7.4. Let D = (φ, Π, M) be an efficient device and 1
2 < ω ≤ 1. Then there is a (not necessarily

efficient) simplified device D̃ = (φ, Π̃, M̃, K) such that the following hold:

1. D̃ has overlap ∆(D̃) ≤ ω;

2. The simplified device D̃ simulates the device D;

3. For any advice states φ′ = {φ′y} that are independent from the key k ∈ KF (see Definition 2.5) it

holds that

∑
y

Tr(K1
yφ′y) ≤ C

√
∑
y

Tr(M̃1
yφ′y) + negl(λ) , (55)

where C > 0 is a constant depending only on ω.

Proof. For each y ∈ Y let

M̂y = ∑
(u,d): d/∈Ĝy

M
(u,d)
y , My = ∑

(u,d)∈Vy,0

M
(u,d)
y +

1

2
M̂y ,

and for b ∈ {0, 1}, Πb
y = Π

(b,xb)
y . By introducing an isometry Uy : HD → HD

′ into a larger space,

we can embed My into a projection My such that My = U†
y MyUy. For b ∈ {0, 1} let Π

b
y be such that

U†
yΠ

b
yUy = Πb

y.

The device D̃ is defined as follows. The device first measures an y ∈ Y exactly as D would. It then

applies the isometry Uy. This defines the states {φ′y}.

• The measurement {M̃0
y, M̃1

y} is defined as follows. The device coherently performs the measurement

{M
(u,d)
y }. If d /∈ Ĝy the device returns a random outcome. Otherwise, if (u, d) ∈ Vy,0 it returns a 0,

and 1 if not.

• The measurement {Π̃0
y, Π̃1

y, Π̃2
y} is defined as follows. The device first coherently performs the mea-

surement {Π(b,x)
y }. If an outcome (b, x) ∈ Vy,1 is obtained the device returns v = b. Otherwise the

device returns v = 2.
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• Let Ky be the projection obtained by applying Lemma 7.2 to the projections Π = Π
0
y and M = My

and the state

φ =
(Π

0
y + Π

1
y)φ
′
y(Π

0
y + Π

1
y)

Tr
(
(Π

0
y + Π

1
y)φ
′
y

) .

The measurement {K0
y, K1

y} is defined by setting

K0
y = (Π

0
y + Π

1
y)K + (Id−Π

0
y −Π

1
y) and K1

y = (Π
0
y + Π

1
y)(Id−K) .

The first two conditions on D′ claimed in the lemma follow by definition. The overlap property holds

by definition of K0
y. For the simulation property, note that it is possible for D′ to further measure the post-

measurement states to locally obtain an equation, or a pre-image, as D would have; this guarantees that the

post-measurement states of the two devices are identical in each round.

It remains to show the third item. It follows from computational indistinguishability of σ0 and σ1 shown

in Lemma 7.1 that both operators have a trace that is within negligible of each other. Using the notation

introduced here, and in particular the definition of My, this implies that the difference

∣∣∣ ∑
b∈{0,1}

Tr
(

MyΠ
b
yφ′yΠ

b
y

)
− ∑

b∈{0,1}
Tr
(
(Id−My)Π

b
yφ′yΠ

b
y

)∣∣∣

is negligible. Since the two expressions sum to Tr((Id−Π
2
y)φ
′
y), it follows that, letting

φ̃y =
(Id−Π

2
y)φ
′
y(Id−Π

2
y)

Tr((Id−Π
2
y)φ
′
y)

, (56)

we get that

Tr(MyΠ
0
yφ̃yΠ

0
y) + Tr(MyΠ

1
yφ̃yΠ

1
y)

is within negligible of 1
2 . To conclude we apply Lemma 7.2 to the operators Π = Π

0
and M = My. The

conclusion of the lemma gives that

Tr
(
(Id−Ky)φ̃y

)
≤ C

√
Tr((Id−M̃0

y)φ̃y) + negl(λ) , (57)

for some universal constant C (depending on ω). Using the definition (56) of φ̃y and Tr((Id−Π
2
y)φy) ≤

1, (57) implies

Tr
(
K1

yφ′y
)
≤ C

√
Tr((Id−M̃0

y)φ
′
y) + negl(λ) .

Summing this bound over all y and using concavity of the square root concludes the proof.

8 Accumulating randomness across multiple rounds

To analyze the randomness generated by a device in the randomness expansion protocol we proceed in

two steps. First, we show that the randomness generated by the device can be related to the randomness

generated by the simplified device D̃ that is associated to it by Proposition 7.4, when it is used as a device

in the simplified protocol, Protocol 2. This is done in Section 8.1. Then, in Section 8.2 we analyze the

randomness generated in a single round of the simplified protocol, and in Section 8.3 we analyze multiple

rounds of the protocol.
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8.1 Reduction to the simplified protocol

Let D = (φ, Π, M, K) be a simplified device. The main difference between the behavior of the simplified

device and the original device it is derived from is that the simplified device (sometimes) performs an

additional projective measurement {K0, K1}, in addition to the “equation” measurement {M0, M1}. (Recall

that in protocol 2, the device performs the measurement whenever the verifier sends a challenge bit T = 1,

which happens with probability Pr(T = 1) = κ in the test rounds.)

In order to analyze the randomness generated by the original device in Protocol 1, it will be convenient

to obtain the guarantee that, in most test rounds of Protocol 1, the state of the device lies largely within the

“good subspace” K = K0. Recall the definition of the states {φctok} associated with the simplified device

in Definition 6.6. Let

|φco〉 = ∑
k

|φctok〉 = ∑
k

Pok
ct |φ〉 , (58)

where Pko
ct is notation for the operator that corresponds to applying the device’s (projective) measurement

operators M, Π and K indicated by c and t respectively, and obtaining the sequence of outcomes o and k
respectively. The fact that |φco〉 does not depend on t is justified by the fact that {K, Id−K} is a projective

measurement.

Our goal is to bound the contribution to (58) of terms Pok
ct |φ〉 that correspond to a large fraction of

(Id−K) (“bad subspace”) outcomes, i.e. such that the Hamming weight |k| of the string k is large. Estab-

lishing the right bound is made delicate by the possibility of interference between the branches. We first

state and prove a general lemma, and then show how the lemma can be applied in our context.

Lemma 8.1. Let n be an integer, 0 < κ < 1, and T = (T1, . . . , Tn) a sequence of independent Bernoulli

random variables such that for any t ∈ {0, 1}n , Pr(T = t) = κ(t) = ∏i κti(1 − κ)1−ti . Let M =
(M1, . . . , Mn) and K = (K1, . . . , K|T|) be arbitrary sequences of random variables over {0, 1}, that may

be correlated between themselves and with T. For an integer i ∈ {1, . . . , n} write (T, M, K)<i for the triple

formed by the length-(i − 1) prefixes of T and M, and the length-|T<i | prefix of K.9

Assume that there is a monotone concave function g : [0, 1] → [0, 1] such that g(0) = 0, g(x) ≥ x for

all x ∈ [0, 1], and for any i ∈ {1, . . . , n} and any sequences t, m ∈ {0, 1}i and k ∈ {0, 1}|t| it holds that

Pr
(
K|t|+1 = 1

∣∣ (T, M, K)<i = (t, m, k), Ti+1 = 1
)

≤ g
(

Pr
(

Mi+1 = 0
∣∣ (T, M, K)<i = (t, m, k), Ti+1 = 1

))
. (59)

Then for any 0 < γ, κ, η < 1 such that g(c1(
√

κ + γ/κ)) ≤ c2η for large enough constants c1, c2 > 0,

∑
t∈{0,1}n

κ(t) ∑
m: |m|≥(1−γ)n

(
∑

k: |k|>ηκn

√
Pr
(
(T, M, K) = (t, m, k)

))2
≤ C0 2−κn , (60)

where C0 > 0 is a constant depending on γ, κ, η.

Intuitively, the lemma holds because the condition |m| ≥ (1− γ)n ensures that the outcome Mi = 0
is fairly unlikely, in which case (59) implies that whenever Ti = 1 the outcome Kj = 1, where j is the

number of nonzero entries of T in indices less or equal to i, should also be unlikely. The proof is made a

little difficult by the square roots, whose presence is motivated by the application to norms of quantum states

9Recall that we write |T| for the Hamming weight of the string T. Here, we think of each Kj as a random variable that is

correlated with the random variable Mi, where i is the index of the j-th non-zero entry of T.
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detailed later. Nevertheless, to understand the statement of the lemma it may be useful to consider the case

when all Mi (resp. Kj) are independent and identically distributed, and the square root and the square are

not present. In this case, the lemma reduces to showing that if

G =
{

m ∈ {0, 1}n : |m| ≥ (1− γ)n
}

, B =
{
(t, m) ∈ {0, 1}2n , k ∈ {0, 1}|t| : |k| ≥ ηκn

}
, (61)

then Pr(G ∧ B) ≤ C02−κn. As a first step, note that we may safely assume that Pr(Mi = 0) ≤ 2γ, as

otherwise by a Chernoff bound Pr(G) ≤ e−Ω(η2n) ≤ C02−κn provided η2 ≫ κ. Using (59) it follows that

Pr(Kj = 1) ≤ g(2γ), so that applying Bennett’s inequality,

Pr(B) ≤ e−Ω(h(η/g(2γ))κn) ≤ C0 2−κn ,

where h(x) = (1 + u) log(1 + u)− u and the second inequality holds provided η ≫ g(2γ). This com-

pletes the argument. To extend it to the general case, we use two tail bounds for martingales that replace the

use of the Chernoff bound and Bennett’s inequality respectively. The first is Azuma’s inequality.

Theorem 8.2 (Azuma’s inequality). Let (ξi,Fi)0≤i≤n be a martingale difference sequence such that ξ0 = 0
and ξi ≤ 1 for each i ∈ {1, . . . , n}. Then for any t ≥ 0,

Pr
(∣∣∣

n

∑
i=1

ξi

∣∣∣ ≥ tn
)
≤ 2e−

t2

2 n .

The second is a version of Bennett’s inequality for martingales.

Theorem 8.3 (Corollary 2.2 in [FGL12]). Let (ξi,Fi)0≤i≤n be a supermartingale difference sequence such

that ξ0 = 0 and ξi ≤ 1 for each i ∈ {1, . . . , n}. Let

Xn =
n

∑
i=1

ξi and 〈X〉n =
n

∑
i=1

E
[
ξ2

i

∣∣Fi−1

]
.

Then for any t ≥ 0 and v > 0,

Pr
(∣∣Xn

∣∣ ≥ tn and 〈X〉n ≤ v2n
)
≤ e

− t
2 arcsinh

(
t

2v2

)
n

.

We give the proof of Lemma 8.1.

Proof of Lemma 8.1. We reduce the proof of (60) to a sequence of martingale tail bounds. Define a filtration

(F1, . . . ,Fi, . . . ,Fn) where Fi is the σ-algebra generated by (M, T, K)i. Let F<i = ∩j<iFj. Recall the

definition of the events G and B in (61). The proof proceeds in 3 steps.

First step: conditional expectations of M. [Uses the assumption: δ2
1 ≫ κ.]

For i ∈ {1, . . . , n} let Zi = Mi − E[Mi|F<i] and Wi = Z1 + · · ·+ Zi. Then the sequence (W1, . . . , Wn)
is a martingale such that |Wi −Wi−1| ≤ 1. Applying Azuma’s inequality, it follows that for any δ1 > 0,

Pr
(∣∣∣

n

∑
i=1

Zi

∣∣∣ ≥ δ1n
)
≤ 2 e−

δ2
1
2 n . (62)
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Let δ1 > 0 be large enough such that the right-hand side of (62) is less than 2−(C+1)κn, for some constant C
to be determined below. Let δ′1 = δ1 + γ and

B′ =
{
(t, m, k) :

n

∑
i=1

E
[
Mi

∣∣ (T, M, K)<i = (t, m, k)<i

]
≤ (1− δ′1)n

}
.

Then,

∑
m∈G

∑
t

κ(t)
(

∑
k:(t,m,k)∈B′

√
Pr
(
(M, K) = (m, k)|T = t

))2

≤ 2Cκn
(

∑
m∈G

∑
t,k: (t,m,k)∈B′

Pr
(
(T, M, K) = (t, m, k)

))
+ 2−κn

≤ 2 · 2−κn , (63)

where the first inequality uses the Cauchy-Schwarz inequality and the fact that by the Chernoff bound, for

C large enough, ∑|t|≥Cκn κ(t)2|t| ≤ 2−κn, and the second inequality follows from (62) since the event that

m ∈ G and (t, m, k) ∈ B′ implies |∑ Zi| ≥ δ1n.

Second step: conditional expectations of T(1−M). [Uses the assumption: δ′1 ≪ δ2.]

For i ∈ {1, . . . , n} let Z′i = Ti(1−Mi)−E [Ti(1−Mi)|F<i] and W ′i = Z′1 + · · ·+Z′i . Then the sequence

(W ′1, . . . , W ′n) is a martingale such that |W ′i −W ′i−1| ≤ 1. Let v2
Z′ = ∑i E [|Z′i |2|F<i]. For (t, m, k) /∈ B′,

using that Ti is independent from Mi and E [Ti] = κ it holds that v2
Z′ ≤ δ′1κn. Let v2 = δ′1κn. Applying

Theorem 8.3, for any δ2 > 0,

Pr
(∣∣∣∑ Z′i

∣∣∣ ≥ δ2κn ∧ v2
Z′ ≤ v2n

)
≤ e

− 1
2 δ2κ arcsinh

(
δ2

2δ′
1

)
n

. (64)

Assume δ′1 small enough, as a function of δ2, such that the right-hand side in (64) is less than 2−(C+1)κn.

Let δ′2 = δ2 + γ/κ and

B′′ =
{
(t, m, k) /∈ B′ : ∑

i

E
[
Ti(1−Mi)

∣∣ (T, M, K)<i = (t, m, k)<i

]
≥ δ′2κn

}
.

Then similarly to (63) we get

∑
m∈G

∑
t

κ(t)
(

∑
k:(t,m,k)∈B′′

√
Pr
(
(M, K) = (m, k)|T = t

))2
≤ 2−κn . (65)

Third step: conditional expectations of T(1−M)K. [Uses the assumption: g(δ′2)≪ δ3.]

Using assumption (59) and concavity of g, for any (t, m, k) /∈ (B′′ ∪ B′) it holds that

∑
i

E
[
Ti(1−Mi)Ki

∣∣ (T, M, K)<i = (t, m, k)<i

]
≤ g(δ′2)κn . (66)

For i ∈ {1, . . . , n} let Z′′i = Ti(1−Mi)Ki − E [Ti(1−Mi)Ki|F<i] and W ′′i = Z′′1 + · · ·+ Z′′i . Then the

sequence (W ′′1 , . . . , W ′′n ) is a martingale such that |W ′′i −W ′′i−1| ≤ 1 and by (66), v2
Z′′ = ∑i E[|Z′′i |2|F<i] ≤

g(δ′2)κn. Applying Theorem 8.3 once more, for any δ3 > 0,

Pr
(∣∣∣∑ Z′′i

∣∣∣ ≥ δ3κn ∧ B′′ ∪ B′
)
≤ e

− 1
2 δ3κ arcsinh

(
δ3

2g(δ′2)

)
n

.
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Assume δ′2 small enough, as a function of δ3, such that the right-hand side is less than 2−(C+1)κn. Assume

further that δ3 + γ/κ ≤ η. Let B′′′ = B′′ ∪ B′ ∩ B. Then it follows as in (63), (65) that

∑
m∈G

∑
t

Pr(T = t)
(

∑
k:(t,m,k)∈B′′′

√
Pr
(
(M, K) = (m, k)|T = t

))2
≤ 2−κn . (67)

Combining (63), (65) and (67) with the triangle inequality proves the lemma.

Recall the definition of the states |φctok〉 in (58). For a parameter η > 0 and any t ∈ {0, 1}N let

|φ̃cto〉 = ∑
k:|k|≤ηκqN

|φctok〉 , (68)

and φ̃cto the sub-normalized density obtained by taking the partial trace of |φ̃cto〉 over register E.

Corollary 8.4. Let D = (φ, Π, M, K) be a simplified device such that condition (55) from Proposition 7.4

holds. Then for any 0 < γ, κ, η < 1 such that γ≪ κ3/2 and κ ≪ η2,

∑
g,c∈{0,1}N

q(g, c) ∑
t∈{0,1}N−|g|

κ(t) ∑
o: (g,c,o)∈ACC

∥∥φco − φ̃cto
∥∥

1
= O

(
2−κqN

)
. (69)

Proof. We apply Lemma 8.1. Fix g, c ∈ {0, 1}N , let n = |{i : ci = 0}| and let M and K be distributed as

the measurement outcomes associated with the measurements {Id−M0, Id−M1} and {K0, K1} made by

the device in those rounds i ∈ {0, . . . , N} such that ci = 0. Using (55) from Proposition 7.4 it follows that

these random variables satisfy the assumptions of Lemma 8.1 for a choice of the function g(x) = C
√

x, for

a large enough constant C. The conclusion (60) of the lemma gives (69).

We conclude with a lemma that relates the randomness in the states φ̃cto to randomness in the states

φ̃ctok, for k such that |k| ≤ ηκqN, as these are the post-measurement states associated with the simplified

device in Protocol 2. The lemma relies on the following variant of the Cauchy-Schwarz inequality.

Lemma 8.5. Let ℓ ≥ 1 be an integer and |v1〉, . . . , |vℓ〉 arbitrary vectors in Cd. Then

( ℓ

∑
i=1

|vi〉
)( ℓ

∑
i=1

|vi〉
)†
≤ ℓ

ℓ

∑
i=1

|vi〉〈vi| .

Using the lemma, we show the following.

Lemma 8.6. Let D = (φ, Π, M, K) be a simplified device, and φ̃cto the ensemble of states associated with

D as described in (68). Then

∑
g,c∈{0,1}N

q(g, c) ∑
t∈{0,1}N−|g|

|t|≤2κqN

κ(t) ∑
o: (g,c,o)∈ACC

〈
φ̃cto

〉
1+ε

≤ 2O(H(η))κqN ∑
g,c∈{0,1}N

q(g, c) ∑
t∈{0,1}N−|g|

κ(t) ∑
o,k: (g,c,t,o,k)∈ACC2

〈
φctok

〉
1+ε

,

where ACC2 denotes the set of transcripts that are accepted by the verifier in Protocol 2.

Proof. The proposition follows from the definition of φ̃cto, Lemma 8.5, and the fact that for any t such that

|t| ≤ 2κqN there are at most 2O(H(η))κqN sequences k ∈ {0, 1}|t| such that |k| ≤ ηκqN. Note that the

conditions that (g, c, o) ∈ ACC and |k| ≤ ηκqN imply (g, c, t, o, k) ∈ ACC2.
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8.2 Randomness accumulation in the simplified protocol

In this section we consider the behavior of a simplified device D = (φ, Π, M, K) in a single round of

Protocol 2. The following lemma shows that, provided the device has overlap ∆(D) bounded away from 1,

then if the state φ of the device has high overlap with the projection operator M1, performing a measurement

of {Π0, Π1, Π2} on φ necessarily perturbs the state (hence generates randomness). The proof is based on

a “measurement-disturbance trade-off” from [MS14], itself a consequence of uniform convexity for certain

matrix p-norms.

Lemma 8.7. Let D = (φ, Π, M, K) be a simplified device with overlap ∆(D) ≤ ω, for some ω < 1. Let

0 ≤ ε ≤ 1
2 and

t =
〈φG〉1+ε

〈φ〉1+ε
, where G =

1

2

(
Π0 + Π1

)
+

1

2
M1K0 and φG =

√
Gφ
√

G . (70)

Then
〈φ0

1〉1+ε + 〈φ1
1〉1+ε + 〈φ2

1〉1+ε

〈φ〉1+ε
≤ 2−ελω(t) + O(ε2) ,

where the post-measurement states φv
1 , v ∈ {0, 1, 2}, are introduced in (46), and

λω(t) = 2 log(e)
(

t− 1

2
− ω

2

)2
(71)

if t ≥ 1
2 +

ω
2 , and 0 otherwise.

Proof. The proof uses ideas from [MS14]. Let φ be as in the lemma and φ′ = ∑v ΠvφΠv. Then

〈
∑
v

√
GΠvφΠv

√
G
〉

1+ε
≤∑

v

〈φ1/2ΠvGΠvφ1/2〉1+ε +O(ε)

≤
(1

2
+

ω

2

)
〈φ1/2

(
Π0 + Π1

)
φ1/2〉1+ε +

1

2
〈φ1/2Π2φ1/2〉1+ε + O(ε)

≤
(1

2
+

ω

2

)
〈φ′〉1+ε + O(ε) ,

where the first and last lines use the approximate linearity relations (8), and the second line uses the definition

of K and G ≤ Id. This allows us to proceed as in the proof of [MS14, Theorem 6.3] to obtain

〈φ− φ′〉1+ε ≥ 2
(

t− 1

2
− ω

2

)
〈φ〉1+ε −O(ε) ,

and conclude by applying [MS16, Proposition 5.3].

Using Lemma 8.7 we proceed to quantify the accumulation of randomness across multiple rounds of

the simplified protocol, when it is executed with a simplified device that has overlap bounded away from 1.

The following proposition provides a measure of the randomness present in the transcript, conditioned on

the verifier not aborting the protocol at the end, i.e. on (g, c, t, o, k) ∈ ACC2. (To see the connection with

entropy, recall the definition of the (1 + ε) conditional Rényi entropy in Definition 2.9. The connection will

be made precise in Section 8.3.)
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Proposition 8.8. Let D = (φ, Π, M, K) be a simplified device such that ∆(D) ≤ ω for some ω < 1. Let

0 < ε ≤ 1
2 . Let γ, η, κ, q > 0 and N an integer be parameters for an execution of Protocol 2 (Figure 2)

with D. Then

− 1

εN
log
(∑(g,c,t,o,k)∈ACC2

q(g, c)κ(t) 〈φctok〉1+ε

〈φ〉1+ε

)
≥ λω

(
1− γ

κ
− η

)
−O

(
q +

ε

κq

)
, (72)

where the states φctok are introduced in Definition 6.6, λω is the function defined in (71), and q(g, c) and

κ(t) are the distributions on N-bit strings (g, c) and t as selected by the verifier in Protocol 2.

Proof. Let t = 〈φG〉1+ε

〈φ〉1+ε
be as defined in Lemma 8.7. Recall the notation for the post-measurement states

introduced in (46). After one round of Protocol 2 is executed, the post-measurement state of the device

can be decomposed into three components. First, in case Gi = 1, which happens with probability (1− q),
the round is a generation round. The randomness generated in such a round is captured by the bound from

Lemma 8.7,

(1− q)
(
〈φ0

1〉1+ε + 〈φ1
1〉1+ε + 〈φ2

1〉1+ε

)
≤ (1− q)

(
1− ln(2)ελω(t) +O(ε2)

)
〈φ〉1+ε . (73)

The second case corresponds to Gi = 0, which happens with probability q. In this case, for reasons that will

become clear later in this proof we weigh the “success” and “failure” components of the post-measurement

state differently. For the “failure” part we simply write

q

2

(
(1− κ)〈φ0

00〉1+ε + κ〈φ00
01〉1+ε + κ〈φ01

01〉1+ε + κ〈φ11
01〉1+ε + 〈φ2

1〉1+ε

)
. (74)

For the “success” part we add a weight of 2
εs
κq , where s = O(1) is a real parameter to be determined later, to

the cases where Ti = 1:

(1− κ)q

2

(
〈φ1

00〉1+ε + 〈φ0
1〉1+ε + 〈φ1

1〉1+ε

)
+

κq

2
2

εs
κq
(
〈φ10

01〉1+ε + 〈φ0
1〉1+ε + 〈φ1

1〉1+ε

)

≤ (1− κ)q

2

(
〈φ1

00〉1+ε + 〈φ0
1〉1+ε + 〈φ1

1〉1+ε

)
+ κq

(
1 + ln(2)

εs

κq
+ O

( ε2

κ2q2

))
t 〈φ〉1+ε ,

(75)

where the inequality follows from the definition of t. Using the first inequality in (8) and regrouping terms,

the sum of the left-hand sides of (73), (74) and (80) is at most

(73) + (74) + (80) ≤
(

1− ε ln(2)
(

λω(t)− st + O
(

q +
ε

κq

))
〈φ〉1+ε . (76)

A convenient choice of s is to take the derivative s = λ′ω(r) for some r ∈ [0, 1] to be determined. With this

choice, using that λω is convex it follows that mint∈[0,1] λω(t) − st = λω(r) − λ′ω(r)r. By chaining the

inequality (76) N times, where at each step the density φ is updated with the one obtained from the previous

round, and using that ACC2 contains those sequences (g, c, t, o, k) such that the number of occurrences of

(c, t, o, k) ∈ {(0, 1, 1, 0), (1, ∗, 0, ∗), (1, ∗, 1, ∗)} is at least (1− γ/κ − η)κqN we obtain

− 1

εN
log
(∑(g,c,t,o,k)∈ACC2

q(g, c)κ(t) 〈φctok〉1+ε

〈φ〉1+ε

)
≥ (λω(r)− λ′ω(r)r) +

(
1− γ

κ
− η

)
λ′ω(r)

−O
(

q +
ε

κq

)
,

with the term (1− γ
κ − η)λ′ω(r) on the right-hand side correcting for the weights 2

εs
κq that would appear

on the left-hand side with an exponent derived from the acceptance criterion. Choosing r = (1− γ
κ − η)

completes the proof.
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8.3 Randomness accumulation in the general protocol

In this section we combine the results obtained in the previous two sections to analyze the randomness

generated in Protocol 1. The main step is given in the following proposition.

Proposition 8.9. Let D = (φ, Π, M) be an efficient device. Let |φ〉DE denote an arbitrary purification of

φD, and ρ
COE

the joint state of the verifier’s choice of challenges, the outputs computed by the verifier, and

the adversary’s system E, restricted to transcripts that are accepted by the verifier in the protocol.10 Then

there is a δ′ = 2−Ω(γ2/3qN) and a constant C > 0 such that for any δ > 0,

1

N
Hδ+δ′

∞ (O|CE)ρ ≥ λω

(
1− Cγ1/3

)
−O

(
q + γ1/6 +

1 + log(2/δ)

γ5/6qN

)
. (77)

Proof. Let D̃ = (φ, Π̃, M̃, K) be the elementary device obtained by applying Proposition 7.4 to the device

D, for a choice of ω = 3
4 . Let φ̃ = φ

1
1+ε , where ε > 0 is a small parameter to be specified later. We apply

Proposition 8.8 to D̃, with φ replaced by φ̃. Then (72) gives

− 1

εN
log
(∑(g,c,t,o,k)∈ACC2

q(g, c)κ(t) 〈φ̃ctok〉1+ε

〈φ̃〉1+ε

)
≥ λω

(
1− γ

κ
− η

)
−O

(
q +

ε

κq

)
. (78)

Next we apply Lemma 8.6 to obtain

− 1

εN
log
(∑(g,c,t,o):(g,c,o)∈ACC q(g, c)κ(t) 〈φ̃cto〉1+ε

〈φ̃〉1+ε

)
≥ λω

(
1− γ

κ
− η

)
−O

(
H(η)κ

q

ε
+ q +

ε

κq

)
,

(79)

where the correction H(η)κ q
ε comes from the exponential prefactor in the bound from Lemma 8.6. The

left-hand side of the bound in Lemma 8.6 only considers those sequences such that |t| ≤ 2κqN, but adding

those sequences back only incurs a negligible error 2−Ω(κqN) (inside the logarithm), due to the Chernoff

bound.

We make one ultimate re-writing step. For any fixed t, the post-measurement state φ̃cto can be expressed

as

PN · · · P1φ̃P1 · · · PN ,

where Pi is the measurement operator associated with challenge ci and outcome oi. Using 〈XX∗〉1+ε =

〈X∗X〉1+ε for any X, and recalling the definition of φ̃ = φ
1

1+ε ,

〈PN · · · P1φ̃P1 · · · PN〉1+ε = 〈φ
−ε

2(1+ε) φ
1
2 P1 · · · P2

N · · · P1φ
1
2 φ

−ε
2(1+ε) 〉1+ε .

Introduce a sub-normalized density

ρcto
E

= φ
1
2 P1 · · · P2

N · · · P1φ
1
2 ,

that corresponds to the post-measurement state of register E (recall we assumed a purification |φ〉DE of φ)

at the end of Protocol 1, for a given transcript (c, o) for the interaction.

We are in a position to apply Theorem 2.12, with

ρo
CTOE

= ∑
(g,c,t): (g,c,o)∈ACC

q(g, c)κ(t) |c, t〉〈c, t|CT ⊗ |o〉〈o|O ⊗ ρcto
E ,

10The state ρ is sub-normalized.
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and σCTE = ∑(g,c,t) q(g, c)κ(t)|c, t〉〈c, t| ⊗ φ. Applying the theorem and using (79) and 〈φ̃〉1+ε = 1 by

definition, we get that for any δ > 0,

1

N
Hδ

∞(O|CTE)ρ ≥ λω

(
1− γ

κ
− η

)
−O

(
H(η)κ

q

ε
+ q +

ε

κq

)
− 1 + 2 log(1/δ)

εN
. (80)

Using that the bound in (77) only considers registers C and O (the transcript) and E, by Corollary 8.4 for

any choice of parameters κ, η such that κ ≪ η2 and κ3/2 ≫ γ, the bound (80) extends to a lower bound on

the entropy Hδ+δ′
∞ (O|CE)ρ at the cost of an additional δ′ = O(2−κqN) in the smoothing parameter.

Choose κ, η to be sufficiently large constant multiples of γ2/3 and γ1/3 respectively, so that the con-

straints κ ≪ η2 and κ3/2 ≫ γ are satisfied. Let ε to be a sufficiently small constant multiple of γ5/6q. With

this choice of parameters, the term in the O(·) on the right-hand side of (80) is O(q + γ1/6).

Making an appropriate choice of parameters q, γ for an execution of Protocol 1, Proposition 8.9 gives

our main result.

Theorem 8.10. Let F be an NTCF family and λ a security parameter. Let N be a polynomially bounded

function of λ such that N = Ω(λ2). Set q = λ/N. Then there is a δ = 2−Ω(γqN) such that for any small

enough γ > 0, any efficient prover, and side information E correlated with the prover’s initial state,

HNδ
∞ (O|CE)ρ ≥ (ξ −O(γ1/6))N ,

where ρ is the final state of the output, challenge, and adversary registers, restricted to transcripts that are

accepted by the verifier in the protocol and ξ is a positive constant.11

Assume that an execution of GEN(1λ) requires O(λr) bits of randomness, for some constant r. (For

example, for the case of our construction of a NTCF family based on LWE, we have r = 2.) Then an execu-

tion of the protocol using the parameters in Theorem 8.10 requires only poly(λ, log N) bits of randomness

for the verifier to generate the key k and select the challenges. Taking N to be slightly sub-exponential in λ,

e.g. N = 2
√

λ, yields sub-exponential randomness expansion.

Proof of Theorem 8.10. Let D be a device that is accepted with non-negligible probability in Protocol 1,

where the parameters are a stated in the theorem. Applying Proposition 8.9 to D and choosing δ to be a

negligible function of N such that δ−1 is sub-exponential gives the result.

References

[AFDF+18] Rotem Arnon-Friedman, Frédéric Dupuis, Omar Fawzi, Renato Renner, and Thomas Vidick.

Practical device-independent quantum cryptography via entropy accumulation. Nature com-

munications, 9(1):459, 2018.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In International Collo-

quium on Automata, Languages, and Programming, pages 1–9. Springer, 1999.
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