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Dynamically Stable 3D Quadrupedal Walking with Multi-Domain

Hybrid System Models and Virtual Constraint Controllers*

Kaveh Akbari Hamed1, Wen-Loong Ma2, and Aaron D. Ames2

Abstract— Hybrid systems theory has become a powerful ap-
proach for designing feedback controllers that achieve dynam-
ically stable bipedal locomotion, both formally and in practice.
This paper presents an analytical framework 1) to address
multi-domain hybrid models of quadruped robots with high
degrees of freedom, and 2) to systematically design nonlinear
controllers that asymptotically stabilize periodic orbits of these
sophisticated models. A family of parameterized virtual con-
straint controllers is proposed for continuous-time domains of
quadruped locomotion to regulate holonomic and nonholonomic
outputs. The properties of the Poincaré return map for the full-
order and closed-loop hybrid system are studied to investigate
the asymptotic stabilization problem of dynamic gaits. An
iterative optimization algorithm involving linear and bilinear
matrix inequalities is then employed to choose stabilizing virtual
constraint parameters. The paper numerically evaluates the
analytical results on a simulation model of an advanced 3D
quadruped robot, called GR Vision 60, with 36 state variables
and 12 control inputs. An optimal amble gait of the robot
is designed utilizing the FROST toolkit. The power of the
analytical framework is finally illustrated through designing
a set of stabilizing virtual constraint controllers with 180

controller parameters.

I. INTRODUCTION

This paper establishes an analytical foundation to sys-

tematically design nonlinear controllers that asymptotically

stabilize periodic orbits for multi-domain hybrid models of

3D quadruped locomotion with high degrees of freedom. We

present a family of virtual constraint controllers that regulate

holonomic and nonholonomic outputs for different domains

of locomotion. The paper presents a scalable algorithm to

design stabilizing controllers for the full-order hybrid models

of locomotion rather than simplified ones. The framework

can ameliorate specific challenges in the design of nonlinear

controllers for hybrid systems of quadruped robots arising

from high dimensionality and underactuation.

A. Related Work

Models of legged locomotion are hybrid with continuous-

time domains representing the Lagrangian dynamics and

discrete-time transitions representing the change in the phys-

ical and unilateral constraints [1]–[25]. Steady-state walking

*The work of K. Akbari Hamed is supported by the National Science
Foundation (NSF) under Grant Number 1637704. The work of A. D.
Ames is supported by the NSF under Grant Numbers 1544332, 1724457,
and 1724464 as well as Disney Research LA. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the NSF.

1K. Akbari Hamed is with the Department of Mechanical
Engineering, Virginia Tech, Blacksburg, VA 24061 USA
kavehakbarihamed@vt.edu

2W. Ma and A. D. Ames are with the Department of Mechanical and
Civil Engineering, California Institute of Technology, Pasadena, CA 91125
USA wma@caltech.edu and ames@cds.caltech.edu

Fig. 1: Vision 60, a 3D quadruped robot with 18 DOFs,

designed and manufactured by Ghost Robotics [46].

locomotion can be considered as periodic solutions of these

multi-domain hybrid systems. State-of-the-art controller de-

sign methods that address hybrid nature of models of legged

locomotion are developed based on hybrid reduction [26]–

[29], controlled symmetries [4], transverse linearization [6],

[30], and hybrid zero dynamics (HZD) [15], [31]. From

these methods, transverse linearization and HZD can address

underactuation. The notion of HZD was introduced in [31] to

design feedback controllers that can explicitly accommodate

underactuation in bipedal robots and move beyond flat-footed

walking gaits arising from the Zero Moment Point (ZMP)

criterion [32], [33]. In the HZD method, a set of output

functions, referred to as virtual constraints [34], [35], is de-

fined and enforced by input-output (I-O) linearizing feedback

controllers [36]. HZD-based controllers have been validated

numerically and experimentally for 2D and 3D bipedal robots

[14], [37]–[41], 2D and 3D powered prosthetic legs [42],

[43], exoskeletons [44], monopedal [16], and simple (i.e.,

reduced-order) models of quadruped robots [45].

B. Motivation

The extension of the HZD approach to design nonlinear

controllers for full-order and multi-domain hybrid models

of quadruped robots is a significant challenge. In particular,

the mechanical systems of these machines may form closed

kinematic chains during multi-contact domains of locomo-

tion for which at least two legs are in contact with the

ground. This complicates the design procedure of virtual

constraints such that 1) the I-O linearization results in a

full-rank decoupling matrix and 2) the corresponding zero

dynamics manifold becomes nontrivial. In addition to this,

we have observed that the proper selection of the virtual

constraints (i.e., output functions) can drastically affect the

stability properties of walking gaits [47]. The most basic tool

to investigate the stability of hybrid periodic orbits is the
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Poincaré sections analysis [1], [25], [48]. One drawback of

the Poincaré sections approach is the lack of closed-form

expressions for the Poincaré return map that complicates

the design of stabilizing virtual constraint controllers. To

overcome this difficulty, our previous work [12], [47], [49]

presented an iterative optimization algorithm involving bi-

linear matrix inequalities (BMIs) to systematically choose

stabilizing virtual constraints. This algorithm was success-

fully employed for the centralized/decentralized feedback

control design of autonomous bipedal robots with up to 13
degrees of freedom (DOFs) [47] and powered prosthetic legs

[12]. In this paper, we aim to answer these fundamental

questions: 1) how can we present holonomic and nonholo-

nomic virtual constraint controllers for single- and multi-

contact domains of quadruped locomotion, 2) how can we

address the asymptotical stabilization problem of gaits for

high-dimensional hybrid models of quadruped robots, and 3)

can the BMI algorithm look for optimal and stabilizing HZD-

based controllers of quadruped robots in a scalable manner?

C. Goals, Objectives, and Contributions

The primary goal of this paper is to establish an analytical

foundation to 1) address multi-domain hybrid models of

quadruped robots with high degrees of freedom, and 2)

systematically design HZD-based controllers that stabilize

hybrid periodic orbits. This goal will be achieved through

the following objectives and contributions. 1) A family of

parameterized HZD-based controllers is presented for single-

and multi-contact domains of quadruped locomotion. These

controllers are utilized to zero a combination of parameter-

ized holonomic and nonholonomic outputs; 2) The properties

of the full-order Poincaré return map are investigated to ad-

dress the asymptotic stabilization problem of dynamic gaits;

3) The stabilization problem of multi-domain hybrid periodic

orbits is then translated into an iterative BMI optimization

problem that solves for the virtual constraint parameters;

4) An optimal and dynamic amble gait is designed for an

advanced quadruped robot, called Vision 60 (see Fig. 1), with

36 state variables and 12 control inputs. The motion planning

algorithm is based on a nonlinear programming problem that

is effectively solved using the FROST toolkit [50]; and 5)

Analytical results are finally confirmed through designing a

stabilizing HZD-based controller with 180 parameters.

II. HYBRID MODEL OF LOCOMOTION

A. Vision 60

Vision 60 is a mid-sized tele-op and autonomous all-

terrain ground drone designed and manufactured by Ghost

Robotics [46] for research markets (see Fig. 1). It weighs

approximately 20 (kg) and supports a total payload of 14
(kg). Vision 60 has 18 DOFs of which 12 leg DOFs are

actuated. In particular, each leg of the robot consists of a

1 DOF actuated knee joint with pitch motion and a 2 DOF

actuated hip joint with pitch and roll motions. The remaining

6 DOFs are associated with the translational and rotational

movements of the torso. The robot can transverse a range of

unstructured terrains and substrates, and even stairs.

Fig. 2: Floating base model of the robot with the associated

configuration variables.

B. Robot Model

To describe the configuration of the robot, we make use

of a floating base coordinates system. For this purpose, let

us attach a body frame Rb to the base of the robot. The

Cartesian coordinates of the origin of this fame with respect

to an inertial world frame, denoted by R0, can be given by

pb ∈ R
3 (see Fig. 2). Furthermore, the orientation of Rb

with respect to R0 is expressed by φb ∈ SO(3). Next let us

suppose that qbody ∈ Qbody denotes a set of coordinates to

describe the body (shape) of the robot. The generalized coor-

dinates vector is then taken as q := col(pb, φb, qbody) ∈ Q :=
R

3 × SO(3) × Qbody, where Q represents the configuration

space. For future purposes, we define nq := dim(q) as the

number of degrees of freedom for the floating base model.

The state vector of the mechanical system is finally taken

as x := col(q, q̇) ∈ TQ, in which TQ denotes the tangent

bundle of Q.

C. Hybrid Systems Formulation for Locomotion

The open-loop hybrid model of quadruped locomotion can

be given by the following tuple

H L
ol = (Λ,X ,U ,D,S,∆, FG) , (1)

where Λ := (V , E) represents a directed cycle with the

vertices set V and the edges E ⊆ V × V (see Fig. 3). In

this formulation, the vertices represent the continuous-time

dynamics of locomotion, referred to as domains or phases.

The evolution of the system during each domain is described

by ordinary differential equations (ODEs) arising from the

Lagrangian dynamics. The edges denote the discrete-time

transitions between two continuous-time domains that arise

from the change in the number of physical constraints.

The discrete-time transitions are further supposed to be

instantaneous. In this paper, we assume that µ : V → V
denotes the index of the next domain function for the studied

locomotion pattern. Using this notation, the set of edges can

be expressed as E := {e = (v → µ(v))}v∈V . The set of state

manifolds for the graph (1) is represented by X := {Xv}v∈V ,

in which Xv ⊆ R
2nq denotes the state manifold for the vertex

(i.e., domain) v ∈ V . The set of admissible controls is also

given by U := {Uv}v∈V , where Uv ⊆ R
m represents the

set of admissible control inputs for the domain v ∈ V and

some positive integer m. We remark that for the Vision 60,

Xv ⊆ R
36 and Uv ⊆ R

12. D := {Dv}v∈V denotes the set of

domain of admissibility, in which Dv ⊆ Xv×Uv is a smooth

submanifold of R2nq ×R
m. FG := {(fv, gv)}v∈V represents



Fig. 3: Illustration of the multi-domain hybrid model of

3D amble gait. Continuous-time domains and discrete-time

transitions are represented by the vertices and edges of a

directed cycle Λ = (V , E), respectively.

the set of control systems, where (fv, gv) is a control system

on Dv . In particular, the evolution of the continuous-time

domain v ∈ V is expressed by the input-affine state equation

ẋ = fv(x) + gv(x)u for (x, u) ∈ Dv with fv and columns

of the gv matrix being smooth (i.e., C∞) on Xv. The set of

guards for the hybrid system (1) is then represented by S :=
{Se}e∈E on which the discrete-time transition v → µ(v)
occurs when the state and control trajectories (x(t), u(t))
intersect the guard Sv→µ(v) ⊂ Dv . ∆ := {∆e}e∈E is finally

a set of reset laws to describe discrete-time transitions, where

∆v→µ(v) is a smooth discrete-time system represented by

x+ = ∆v→µ(v) (x
−) for v ∈ V . In our notation, x−(t) :=

limτրt x(τ) and x+(t) := limτցt x(τ) denote the left and

right limits of the state trajectory x(t), respectively.

Example 1 (Amble Gait): In this example, we consider an

eight-domain directed cycle illustrating a typical amble gait

shown in Fig. 3. The legs of the robot are enumerated as

{0, 1, 2, 3}. The directed cycle Λ = (V , E) for this gait

then consists of eight vertices and edges. In particular, V =
{l2,3, l2, l2,1, l1, l0,1, l0, l0,3, l3} and E = {l2,3 → l2, l2 →
l2,1, l2,1 → l1, l1 → l0,1, l0,1 → l0, l0 → l0,3, l0,3 → l3, l3 →
l2,3}, where li, i ∈ {0, 1, 2, 3} denotes the domains for which

the leg i is in contact with the ground. Furthermore, li,j ,

i 6= j ∈ {0, 1, 2, 3} represents the domains in which the legs

i and j are simultaneously in contact with the ground.

D. Continuous-Time Dynamics

During the continuous-time domain v ∈ V , we assume that

Cv represents the indexing set of holonomic constraints de-

fined on Dv . In particular, the holonomic physical constraints

are expressed as ηv(q) = 0, where ηv := {ηc}c∈Cv
∈ R

nv .

The associated velocity constraints can be given by Jv(q) q̇ =
0, in which Jv(q) := ∂ηv

∂q
(q) ∈ R

nv×nq denotes the corre-

sponding Jacobian matrix that is assumed to be full-rank. The

evolution of the mechanical system during the continuous-

time domain v is then expressed as the following second-

order ODE arising from the Euler-Lagrange equations and

principle of virtual work

D(q) q̈ + C (q, q̇) q̇ +G(q) = B u+ J⊤
v (q)λ

Jv(q) q̈ +
∂

∂q
(Jv(q) q̇) q̇ = 0, (2)

where D(q) ∈ R
nq×nq denotes the positive definite mass-

inertia matrix, C(q, q̇) q̇ ∈ R
nq represents the Coriolis and

centrifugal terms, and G(q) ∈ R
nq contains the gravitational

terms. The input distribution matrix and Lagrange multipliers

are given by B ∈ R
nq×m with the property rankB = m and

λ ∈ R
nv , respectively. By eliminating the Lagrange mul-

tipliers from (2), one can obtain the following constrained

dynamics for the domain v

D(q) q̈ + Fv (q, q̇) = Tv(q)u, (3)

in which Fv := projv F + J⊤
v (Jv D

−1 J⊤
v )−1 ∂

∂q
(Jv q̇)q̇,

F = C(q, q̇) q̇ + G(q), Tv := projv B, and projv :=
I − J⊤

v (Jv D
−1 J⊤

v )−1Jv D
−1. The equations of motion

in (3) can be rewritten in the state equation form ẋ =
fv(x) + gv(x)u for which the state manifold is given by

Xv := {x = col (q, q̇) ∈ TQ | ηv(q) = 0, Jv(q) q̇ = 0} .

According to the construction procedure, Xv is forward-

invariant under the flow of the state equation. Furthermore,

dim(Xv) = 2(nq − nv).

E. Discrete-Time Dynamics

Discrete-time transitions occur when there is a change in

physical constraints. If one of the existing contacts breaks

during the discrete-transition e = (v → µ(v)), the discrete-

time dynamics are simply taken as the identity map, i.e.,

x+ = ∆e (x
−) := x− to preserve the continuity of position

and velocity. However, if there is a new contact point, the

state of the mechanical system would undergo an abrupt

change in the velocity components according to the instan-

taneous impact model between two rigid bodies [51]. More

precisely, the conservation of the generalized momentum

during the infinitesimal period of the impact results in

D(q) q̇+ −D(q) q̇− = J⊤
µ(v) δλ, Jµ(v)(q) q̇

+ = 0, (4)

in which q̇− and q̇+ represent the generalized velocity right

before and after the impact, respectively, and δλ denotes

the intensity of the impulsive Lagrange multipliers. Using

(4) and the continuity of position (i.e., q+ = q−), one can

express the discrete-time mapping as x+ = ∆e(x
−).

F. Solutions and Periodic Orbits

Solutions of the open-loop hybrid model (1) are con-

structed by piecing together the flows of the continuous-time

domains such that the discrete-time transitions occur when

the state and control trajectories cross the switching mani-

folds. To make this concept more precise, we parameterize

the solutions by the continuous time t as well as the vertex

number v and present the following definition.

Definition 1 (Solutions): (x, u) : [0, tf ) × V → D, tf ∈
R>0 ∪ {∞} is said to be a solution for (1) if

1) x(t, v) and u(t, v) are right continuous on [0, tf ) for

every v ∈ V ;

2) The left and right limits x−(t, v) := limτրt x(τ, v),
u−(t, v) := limτրt u(τ, v), x+(t, v) :=
limτցt x(τ, v), and u+(t, v) := limτցt u(τ, v),
exist for every t ∈ (0, tf ) and v ∈ V ; and



3) There exists a closed discrete subset T := {t0 <
t1 < t2 < · · · } ⊂ [0, tf ), referred to as the

switching times, such that (a) for every (t, v) ∈
[0, tf) \ T × V , x(t, v) is differentiable with respect

to t, ∂x
∂t
(t, v) = fv(x(t, v)) + gv(x(t, v))u(t, v),

(x−(t, v), u−(t, v)) /∈ Sv→µ(v), and (b) for t = tj ∈
T , (x−(tj , v), u

−(tj , v)) ∈ Sv→µ(v), x
+(tj , µ(v)) =

∆v→µ(v)(x
−(tj , v)).

Assumption 1 (Periodic Solution): There exist (i) a nom-

inal solution (x⋆, u⋆) : [0,∞) × V → D to (1) and (ii)

a fundamental period T ⋆ > 0 such that x⋆(t + T ⋆, v) =
x⋆(t, v) and u⋆(t + T ⋆, v) = u⋆(t, v) for every (t, v) ∈
R≥0 × V . The corresponding periodic orbit is defined as

O := ∪v∈VOv := {x = x⋆(t, v) | (t, v) ∈ [0, T ⋆)× V} ,

where Ov is the projection of O onto the state manifold Xv.

III. FAMILY OF PARAMETERIZED VIRTUAL

CONSTRAINT CONTROLLERS

The objective of this section is to present a family of pa-

rameterized virtual constraint controllers that asymptotically

stabilize dynamic gaits for multi-domain hybrid models of

quadruped locomotion. In Section IV, we will show that the

stability of the gaits depends on the proper selection of the

virtual constraints and that is the reason to parameterize the

constraints by a set of finite-dimensional and adjustable pa-

rameters ξv ∈ Ξv . Here, ξv represents the virtual constraint

parameters for the domain v ∈ V and Ξv ⊂ R
pv denotes the

corresponding set of admissible parameters for some positive

integer pv > 2nq. The virtual constraint controllers are then

assumed to be time-invariant and nonlinear state feedback

laws, based on input-output linearization [36], to zero a

combination of parameterized holonomic and nonholonomic

outputs. The BMI algorithm of Section V will optimize these

parameters for the asymptotic stabilization of the gait.

Virtual constraints are defined as output functions for the

continuous-time domains of hybrid models of walking to

coordinate the links of robots within a stride [14], [16],

[34], [35], [37]–[44], [52]. In this paper, for single-contact

domains of locomotion with only one lege on the ground, we

regulate a holonomic virtual constraint for position tracking

purposes. For multi-contact domains with at least two legs in

contact with the ground, we propose a combination of holo-

nomic and nonholonomic virtual constraints. The holonomic

constraint is again utilized for position tracking purposes. In

addition, if there are enough admissible actuators present,

the forward velocity of the robot can be controlled as well

through zeroing a nonholonomic constraint. The idea of

using nonholonomic constraints has been motivated by the

velocity modulating outputs in [38], [53], [54] to regulate the

speed of the mechanical system. To present the main idea,

we define the concept of a phasing variable.

Assumption 2 (Phasing Variable): There exists a real-

valued function τ : X × V → R, referred to as the phasing

variable, which is (i) C∞ with respect to x and (ii) strictly

increasing function of time along the orbit Ov for every

v ∈ V .

The phasing variable replaces time, which is a key to

obtaining time-invariant controllers that realize orbital sta-

bility of O. More precisely, one can express the desired

evolution of the state variables on Ov in terms of τ rather

t as x⋆(τ, v). For the purpose of this paper, we assume that

phasing variables are taken as holonomic quantities. Now we

are in a position to present the virtual constraint controllers

for multi- and single-contact domains.

1) Multi-Contact Domains: For multi-contact domains

v ∈ V , we consider a smooth and parameterized output

function yv to be regulated as follows

yv(x, ξv) := col (y1v(x), y2v(x, ξv)) ∈ R
1+m2v , (5)

where y1v(x) ∈ R and y2v(x, ξv) ∈ R
m2v denote the relative

degree one and relative degree two portions of the output,

respectively, for some positive integer m2v . The relative

degree one (i.e., nonholonomic) component y1v is chosen

to regulate the speed of the robot, i.e.,

y1v(x) := s (q, q̇)− s⋆ (τ, v) ∈ R, (6)

in which s(q, q̇) := Js(q) q̇ denotes the forward speed of

a point on the robot and s⋆(τ, v) represents the desired

evolution of s on the orbit Ov in terms of the phasing variable

τ . The relative degree two (i.e., holonomic) component is

then defined as the following parameterized output

y2v (x, ξv) := H2v (ξv) (q − q⋆ (τ, v)) ∈ R
m2v , (7)

where H2v(ξv) ∈ R
m2v×nq is a parameterized output matrix

to be determined and q⋆(τ, v) represents the desired evo-

lution of the configuration variables on Ov in terms of τ .

We remark that the output matrix H2v(ξv) is parameterized

by the virtual constraint parameters ξv ∈ Ξv . One typical

way for this parameterization is to assume that ξv forms

the columns of H2v , i.e., ξv = vec(H2v), where “vec”

denotes the matrix vectorization operator. The BMI algorithm

of Section V will look for the optimal parameters ξv to

asymptotically stabilize the gait.

Using standard input-output linearization, the output dy-

namics become
[

ẏ1v
ÿ2v

]

= Av (x, ξv)u+ bv (x, ξv) , (8)

where

Av (x, ξv) :=

[

Lgvy1v(x)
LgvLfvy2v (x, ξv)

]

∈ R
(1+m2v)×m (9)

bv (x, ξv) :=

[

Lfvy1v(x)
L2
fv
y2v (x, ξv)

]

∈ R
1+m2v . (10)

Assuming m2v < m − 1 and having a full-rank de-

coupling matrix on an open neighborhood of Ov, i.e.,

rankAv(x, ξv) = 1 + m2v , one can employ a nonlinear

feedback law Γv : Xv × Ξv → Uv as follows

u = Γv (x, ξv) := −A⊤
v

(

Av A
⊤
v

)−1
(bv + wv) (11)

to yield the output dynamics
[

ẏ1v
ÿ2v

]

= −wv := −

[

kp y1v
kp y2v + kd ẏ2v

]

. (12)



Here, kp and kd are positive PD gains that exponentially sta-

bilize the origin (y1v, y2v, ẏ2v) = (0, 0, 0) for (12). The feed-

back law (11) also renders the parameterized zero dynamics

manifold Zv (ξv) := {x ∈ Xv | y1v(x) = 0, y2v(x, ξv) =
Lfvy2v(x, ξv) = 0} attractive and forward-invariant under

the flow of the closed-loop system ẋ = f cl
v (x, ξv), where

f cl
v (x, ξv) := fv(x) + gv(x) Γv(x, ξv). According to the

construction procedure, dim(Zv) = 2(nq − nv −m2v)− 1.

2) Single-Contact Domains: For single-contact domains

v ∈ V , we only consider parameterized holonomic output

functions to be regulated as follows

yv (x, ξv) = y2v (x, ξv) := H2v (ξv) (q − q⋆ (τ, v)) ∈ R
m,

for which dim(y) = dim(u) = m and H2v(ξv) ∈ R
m×nq .

Analogous to the analysis for the multi-contact domains,

we can show that ÿ2v = Av(x, ξv)u + bv(x, ξv), in which

Av (x, ξv) := LgvLfvy2v (x, ξv) ∈ R
m×m and bv (x, ξv) :=

L2
fv
y2v (x, ξv) ∈ R

m. Therefore, the input-output linearizing

controller is taken as

u = Γv (x, ξv) := −A−1
v (bv + kdẏ2v + kpy2v) (13)

that renders the parameterized zero dynamics manifold

Zv (ξv) := {x ∈ Xv | y2v(x, ξv) = Lfvy2v(x, ξv) = 0}
attractive and forward-invariant under the flow of the closed-

loop continuous-time domain ẋ = f cl
v (x, ξv). We also remark

that dim(Zv) = 2(nq − nv − m). For future purposes, we

suppose that the family of parameterized controllers Γ :=
{Γv}v∈V satisfies the following assumption.

Assumption 3 (Nominal Parameters): There exist nomi-

nal controller parameters ξ⋆v ∈ Ξv , v ∈ V such that

Γv (x
⋆ (t, v) , ξ⋆v) = u⋆ (t, v) , ∀t ∈ [0, T ⋆), v ∈ V . (14)

IV. STABILIZATION PROBLEM

The objective of this section is to address the asymptotic

stabilization problem of periodic gaits for the hybrid model

of quadruped locomotion. We make use of the Poincaré

sections analysis for the orbital stability of gaits.

Let ϕv(t;x0, ξv) denote the unique solution of the closed-

loop ODE ẋ = f cl
v (x, ξv), v ∈ V with the initial condition

x(0) = x0 for all t ≥ 0 in the maximal interval of

existence. For the closed-loop system, since the control laws

u = Γv(x, ξv) are already determined, one can analyze the

discrete-time transitions v → µ(v) on a set of reduced-order

and parameterized switching manifolds Ŝv→µ(v)(ξv) ⊂ Xv

rather than the original ones Sv→µ(v) ⊂ Xv × Uv . Here,

Ŝv→µ(v)(ξv) represents the set of all points x ∈ Xv for which

(x, u) = (x,Γv(x, ξv)) ∈ Sv→µ(v).

Assumption 4: For every v ∈ V and all ξv ∈ Ξv ,

Ŝv→µ(v)(ξv) is an embedded submanifold of Xv with the

property dim(Ŝv→µ(v)(ξv)) = dim(Xv)− 1.

We now define the time-to-switching function for the

domain v ∈ V as the first time at which the state solution

ϕv(t;x0, ξv) intersects the switching manifold Ŝv→µ(v), i.e.,

Tv (x0, ξv) := inf{t > 0 |ϕv(t;x0, ξv) ∈ Ŝv→µ(v)(ξv)}.

The generalized Poincaré map for the domain v ∈ V is

then defined as the flow of the closed-loop domain v ∈ V

evaluated on Ŝv→µ(v)(ξv), i.e., Pv : Xµ−1(v) × Ξv →

Ŝv→µ(v) and

Pv (x, ξv) :=ϕv

(

Tv

(

∆µ−1(v)→v(x), ξv
)

;∆µ−1(v)→v(x), ξv
)

.

Next, let us take the parameters vector as ξ :=
col(ξv1 , ξv2 , · · · , ξvN ) ∈ Ξ ⊂ R

p, where N := |V|
denotes the cardinal number of V , Ξ := Ξv1 × Ξv2 ×
· · ·ΞvN , and p :=

∑

v∈V pv . The nominal parame-

ters are also shown by ξ⋆. Suppose further that ω :=
{

v1, µ (v1) , µ
2 (v1) , · · · , µ

N−1 (v1)
}

represents the exe-

cuted sequence of the vertices for the desired locomotion

pattern O, in which µk(v1) := µ(µk−1(v1)) for k =
1, 2, · · · and µ0(v1) := v1. We remark that according to the

periodicity of the desired gait, µN (v1) = v1. The full-order

Poincaé return map is finally taken as the composition of

the generalized maps Pv along the switching path ω, i.e.,

P (x, ξ) :=

Pv1

(

PµN−1(v1)

(

· · ·
(

Pµ(v1)

(

x, ξµ(v1)
))

· · ·, ξµN−1(v1)

)

, ξv1
)

.

The evolution of the closed-loop hybrid model on the

Poincaré section Ŝv1→µ(v1)(ξ1) can then be described by the

following discrete-time system

x[k + 1] = P (x[k], ξ) , k = 0, 1, 2, · · · , (15)

in which k represents the step number.

Assumption 5 (Transversality): We assume that the orbit

Ov is transversal to the switching manifold Ŝv→µ(v)(ξv) for

all v ∈ V and ξv ∈ Ξv . In particular, Ov ∩ Ŝv→µ(v)(ξv) is

a singleton for all controller parameters ξv . In our notation,

Ov denotes the set closure of Ov .

Theorem 1 (Poincaré Map): Suppose Assumptions 1-5

are satisfied. Then, there exist (i) a subset Ξ̂ ⊂ Ξ and (ii)

a fixed point of P (., ξ) : Ŝv1→µ(v1)(ξv1 ) → Ŝv1→µ(v1)(ξv1),
represented by x⋆

1, that is invariant under the choice of the

controller parameters ξ ∈ Ξ̂. That is, x⋆
1 ∈ Ŝv1→µ(v1)(ξv1 )

and P (x⋆
1, ξ) = x⋆

1 for all ξ ∈ Ξ̂. Furthermore, Ψ(ξ) :=
∂P
∂x

(x⋆
1, ξ) is well-defined and differentiable with respect to

ξ on Ξ̂.

Proof: The proof is available online1.

Problem 1 (Asymptotic Stabilization): The asymptotic

(exponential) stabilization problem consists of finding the

controller parameters ξ ∈ Ξ̂ such that the eigenvalues of the

Jacobian matrix Ψ(ξ) lie inside the unit circle.

To solve Problem 1, one would need to find 1) a controller

parameter ξ ∈ Ξ̂, 2) a positive definite matrix W , and

3) a scalar γ such that the increment of the Lyapunov

function V (δx) := δx⊤W−1δx along the linearized discrete-

time system δx[k + 1] = Ψ(ξ) δx[k] becomes negative

definite, i.e., δV [k] := V [k + 1] − V [k] < −γ V [k], where

δx[k] := x[k]−x⋆
1. This is equivalent to solving the following

nonlinear matrix inequality (NMI)
[

W Ψ(ξ)W
⋆ (1 − γ)W

]

> 0. (16)

1https://github.com/kavehakbarihamed/ProofofTh1/blob/master/proof.pdf

https://github.com/kavehakbarihamed/ProofofTh1/blob/master/proof.pdf


V. ITERATIVE BMI ALGORITHM

The objective of this section is to employ an iterative BMI

algorithm to look for the controller parameters ξ that solve

the NMI (16). The BMI algorithm was developed in [12],

[47] to systematically design centralized and decentralized

nonlinear control algorithms for bipedal locomotion. Here,

we employ the algorithm to design nonlinear controllers for

higher-dimensional hybrid systems that describe quadruped

locomotion. The objective of the BMI algorithm is to gen-

erate a sequence of controller parameters {ξℓ} in an offline

manner that would eventually solve the NMI (16), where the

superscript ℓ = 0, 1, · · · represents the iteration number. The

algorithm includes three main steps as follows.

Step 1 (Sensitivity Analysis): During the iteration ℓ =
0, 1, · · · , the Jacobian matrix Ψ(ξℓ + ∆ξ) is approximated

using the first-order Taylor series expansion, i.e.,

Ψ
(

ξℓ +∆ξ
)

≈ Ψ
(

ξℓ
)

+ Ψ̄
(

ξℓ
)

(I ⊗∆ξ) =: Ψ̂
(

ξℓ,∆ξ
)

.

Here, “⊗” denotes the Kronecker product, Ψ̄(ξℓ) represents

the sensitivity matrix during the iteration ℓ, and Ψ̂(ξℓ,∆ξ)
denotes the first-order approximation of Ψ(ξℓ + ∆ξ) for

sufficiently small ∆ξ ∈ R
p. Our previous work has presented

a systematic and effective numerical approach based on the

variational equation in [47, Theorems 1 and 2] to compute

the sensitivity matrix. We remark that the approximate Jaco-

bian matrix Ψ̂(ξℓ,∆ξ) is affine in terms of ∆ξ which will

reduce the NMI (16) into a BMI in Step 2.

Step 2 (BMI Optimization): The objective of Step 2 is to

translate the NMI (16) into a BMI optimization problem

that can be effectively solved using available solvers, e.g.,

PENBMI [55] from TOMLAB [56]. In particular, we are in-

terested in solving the following BMI optimization problem

during the iteration ℓ

min
(W,∆ξ,ζ,γ)

− w γ + ζ (17)

s.t.

[

W Ψ̂
(

ξℓ,∆ξ
)

W
⋆ (1− γ)W

]

> 0 (18)

[

I ∆ξ
⋆ ζ

]

> 0 (19)

γ > 0, (20)

where (18) represents a BMI condition in terms of the

decision variable. From Schur complement lemma, the linear

matrix inequality (LMI) (19) introduces the dynamic upper

bound ζ on ‖∆ξ‖22, i.e., ζ > ‖∆ξ‖22. The cost function

(17) finally tries to minimize a linear combination of the

convergence rate γ and the dynamic bound ζ. Here, w > 0
is a weighting factor as a tradeoff between improving the

convergence rate or minimizing ‖∆ξ‖ to have a good ap-

proximation based on the first-order Taylor series expansion.

Step 3 (Iteration): Let (W ⋆,∆ξ⋆, ζ⋆, γ⋆) represent a local

minimum (not necessarily the global solution) for the BMI

optimization problem (17)-(20). Step 3 updates the controller

parameters for the next iteration as ξℓ+1 = ξℓ + ∆ξ⋆. If

the requirement of Problem 1 is satisfied at ξ = ξℓ+1, the

algorithm is successful and stops. Otherwise, it continuous

by coming back to Step 1 around ξ = ξℓ+1 and going

through the next steps. If the BMI problem in Step 2 is not

feasible, the algorithm is not successful and stops. Sufficient

conditions for the convergence of the algorithm to stabilizing

solutions have been presented in [12, Theorem 2].

VI. NUMERICAL SIMULATIONS

The objective of this section is to numerically validate

the analytical results on a simulated model of the Vision 60
robot.

A. FROST

We consider an amble gait for the robot as illustrated in

Fig. 3. To generate the gait, we make use of FROST (Fast

Robot Optimization and Simulation Toolkit) — an open-

source MATLAB toolkit for developing model-based control

and planning of dynamic legged locomotion [50]. FROST

provides an efficient trajectory optimization framework for

nonlinear hybrid dynamical systems. It uses the Hermite-

Simpson collocation method to translate a trajectory planning

problem into a traditional constrained nonlinear program-

ming problem (NLP):

argmin
∑

v∈V

Nv

∑

i=1

Lv(.) δt+ Ev(.) (21)

subject to 1) equality constraints formed by the implicit

Runge-Kutta method, and 2) inequality constraints arising

from feasibility and physical limitations. In our notation,

Lv(.) and Ev(.) are the running and terminal costs for the

domain v ∈ V , respectively. In addition, Nv represents the

total number of grids for the domain v. FROST systemati-

cally translates the NLP problem into state-of-the-art solvers,

such as IPOPT or SNOPT. In our problem, we considered a

symmetric and periodic amble gait. The left-right symmetry

reduces the motion planning problem of the eight-domain

hybrid system into that of a four-domain hybrid system

consisting of 344 decision variables with 583 constraints.

Using a Ubuntu laptop with an i7−6820HQ CPU @ 2.70GHz

and 16GB RAM, it took 85 seconds (525 iterations) for the

FROST to find an optimal amble gait.

B. BMI Algorithm

PENBMI is a general-purpose solver for BMIs which

guarantees the convergence to a local optimal point satisfying

the Karush Kuhn Tucker optimality conditions [55]. To solve

the BMI optimization problem (17)-(20), we make use of

the PENBMI solver from TOMLAB [56] integrated with the

MATLAB environment through YALMIP [57].

Asymptotic Stabilization Problem: Vision 60 has m = 12
actuators. For multi-contact domains v ∈ V of the amble

gait, we consider a combination of relative degree one and

two outputs whose holonomic portion is chosen as 10 dimen-

sional, i.e., yv := col(y1v, y2v) ∈ R
1+m2v , m2v = 10, and

H2v(ξv) ∈ R
10×18. In particular, we have observed that for

m2v = 11, the decoupling matrix Av in (9) cannot be full-

rank, and hence, we choose m2v = 10. For single-contact

domains v ∈ V , we take a 12-dimensional output function
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Fig. 4: Phase portraits during 150 consecutive steps of 3D

quadruped walking with the BMI-optimized virtual con-

straint controllers.

to be regulated, i.e., yv := y2v ∈ R
m2v , m2v = m = 12,

and H2v(ξv) ∈ R
12×18. The phasing variable is also taken

as the horizontal displacement of the robot along the waking

direction (i.e., x-axis). We start with an initial set of output

matrices H2v , v ∈ V based on physical intuition. More

specifically, for single-contact domains, we assume that the

controlled variables are taken as the actuated body joints,

i.e., H2v q = qbody. For multi-contact domains, however, we

remove the two rows of the H2v matrix that correspond to

the knee and hip pitch angles of a contacting (i.e., stance)

leg. The nonholonomic portion, i.e., y1v, is then defined as

(6) to regulate the forward velocity of the hip joint of the

same leg. For this choice of virtual constraints, the dominant

eigenvalues and spectral radius of the Jacobian matrix Ψ(ξ0)
become {−1.0350,−1.000,−0.1811±0.8766i} and 1.0350,

respectively. Hence, the gait is not stable. Starting with this

set of parameters, we employ the iterative BMI algorithm

of Section V with the weighting factor w = 0.1. For the

purpose of this paper, we only look for the optimal output

matrix H2v during the domain v1 with 10 × 18 = 180
parameters. We can apply this algorithm for computing other

matrices as well. The algorithm successfully converges to

a set of stabilizing parameters after four iterations, where

each iteration takes approximately 30 minutes on a Windows

laptop with an i9 − 8950HK CPU @ 2.90GHz and 32GB

RAM. For the BMI-optimized solution, the dominant eigen-

values and spectral radius of the Jacobian of the Poincaré

map become {−0.9545± 0.0600i,−0.2454± 0.8600i} and

0.9563, respectively. Figure 4 depicts the phase portraits

during 150 consecutive steps of walking. Convergence to a

periodic orbit, even in the yaw position, can be seen in the

figure. The animation of this simulation can be found at [58].

VII. CONCLUSIONS

This paper presented an analytical foundation 1) to ad-

dress multi-domain and high-dimensional hybrid models of

quadruped robots, and 2) to systematically design HZD-

based controllers to asymptotically stabilize dynamic gaits.

We presented a family of parameterized nonlinear controllers

for the single- and multi-contact domains of quadruped

locomotion. The controllers zero a combination of holonomic

and nonholonomic outputs. We investigated the properties

of the parameterized and high-dimensional Poincaré map

for the full-order closed-loop hybrid system. The asymp-

totic stabilization problem of multi-domain gaits was then

translated into an iterative BMI optimization algorithm that

can be effectively solved using available software packages.

To demonstrate the power of the analytical framework, an

optimal amble gait was designed using the FROST toolkit

for the Vision 60 robot with 36 state variables and 12 control

inputs. To stabilize the gait, the iterative BMI algorithm

was successfully employed to design a set of HZD-based

controllers with 180 controller parameters.

For future research, we will use this framework to design

and experimentally implement stabilizing centralized as well

as decentralized controllers for different gait patterns of

quadruped locomotion and the Vision 60 robot.
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