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Abstract 

Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided 

into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and 

heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin 

is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila deposition 

of most of the H3K9me3 mark depends on SUMO and the SUMO-ligase Su(var)2-10, which recruits the 

histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3  also influences 

expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are 

required to suppress spurious non-canonical transcription and ensure proper gene expression. In 

euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation 

ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed 

by this pathway providing a negative feedback mechanism to ensure chromatin homeostasis. 
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Highlights 

- Proper expression of host genes residing in heterochromatin requires Su(var)2-10-dependent installation 

of the H3K9me3 mark to suppress spurious non-canonical transcription. 

- A set of euchromatic host genes is repressed by transposon-independent installation of H3K9me3 in a 

process that depends on Su(var)2-10 and SUMO.  

- Installation of H3K9me3 via Su(var)2-10 ensures tissue-specific gene expression. 

- H3K9me3-dependent silencing of genes encoding proteins involved in heterochromatin formation 

provides negative feedback regulation to maintain heterochromatin homeostasis. 
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Introduction 

Eukaryotic DNA is packaged in nucleosomes comprised of DNA and histone octamers to form chromatin. 

Post-translational modifications of histone proteins regulate chromatin compaction, which is critical for nuclear 

architecture and essential processes such gene expression control, recombination, replication, and DNA 

repair (reviewed in Bannister and Kouzarides, 2011). Chromatin has historically been differentiated into 

euchromatin and heterochromatin based on density reflected by differential staining (Heitz, 1928). 

Euchromatin is relatively uncondensed, ‘open’ chromatin where transcription is active, whereas 

heterochromatin is compact, and transcription is repressed in these regions of DNA. Heterochromatin regions 

are relatively gene-poor and repeat-rich, including satellite repeats concentrated around chromosomal arm 

ends, as well as transposable elements (TEs) – parasitic DNA elements capable of copying/cutting and 

integrating their sequences within host genomes (Allshire and Madhani, 2018; Henikoff, 2000). Such loci are 

typically condensed in all cell types and are referred to as ‘constitutive heterochromatin’. Constitutive 

heterochromatin is essential for genome stability, as it prevents illicit recombination between repetitive regions 

(Janssen et al., 2018; Peng and Karpen, 2009). ‘Facultative’ heterochromatin includes regions repressed in 

a cell-type specific manner, such as genes that are switched off during differentiation. Of note, although 

considered transcriptionally silenced, certain regions of heterochromatin, such as rRNA loci, are highly 

transcribed (Gatti and Pimpinelli, 1992; Weiler and Wakimoto, 1995; Yasuhara and Wakimoto, 2006). In 

Drosophila, some genes residing in heterochromatin in fact require this environment to be properly expressed 

(Eberl et al., 1993; Lu et al., 1996, 2000; Wakimoto et al., 1990; Yasuhara and Wakimoto, 2006), although 

the molecular mechanism of this phenomenon remains elusive.  

In the past several decades, significant efforts have been dedicated to identifying factors that regulate 

the deposition, erasure, and recognition of different histone modifications and to elucidating the biological 

functions of such marks. The best studied repressive marks associated with heterochromatin are histone 3 

lysine 9 trimethylation (H3K9me3) and H3 lysine 27 trimethylation (H3K27me3). H3K27me3 is deposited by 

the polycomb repressive complex 2 (PRC2) and is primarily involved in facultative heterochromatin formation 

(Margueron and Reinberg, 2011; Schuettengruber et al., 2017). PRC2/H3K27me3 silencing targets a large 

numbers of developmental genes such as the homeobox complex genes (Margueron and Reinberg, 2011; 

Schuettengruber et al., 2017). H3K9me3 is a conserved hallmark of constitutive heterochromatin, highly 

enriched at centrometric and telomeric repeats from yeast to human, and has a well-established role in 

transposon silencing in metazoans (Karimi et al., 2011; LeThomas et al., 2013; Martens et al., 2005; Matsui 

et al., 2010; Mikkelsen et al., 2007; Pezic et al., 2014; Rozhkov et al., 2013; Sienski et al., 2012). H3K9me3 

is deposited by a conserved class of SET-domain containing K9-specific histone methyltransferase enzymes 

(HMTs), such as SETDB1 and SUV39 (Nakayama, 2001; Rea et al., 2000; Schultz et al., 2002), and provides 

a high-affinity binding site for members of the conserved heterochromatin protein 1 (HP1) family (Bannister 

et al., 2001; Jacobs et al., 2001; Lachner et al., 2001). HP1 proteins can oligomerize, resulting in local 

chromatin compaction, and can further recruit additional H3K9me3 writer complexes enabling 
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heterochromatin spreading (Canzio et al., 2011; Hiragami-Hamada et al., 2016). Thus, H3K9me3 deposition 

is a critical step in heterochromatin regulation.  

Efforts to understand the recruitment of H3K9 methyltransferases to target loci have revealed a number 

of different pathways that employ a diversity of guides such as DNA binding proteins and non-coding RNAs. 

For example, in yeast small interfering RNAs (siRNAs) and Argonaute proteins are required for recruitment 

of the silencing machinery to pericentric heterochromatin, while DNA-binding factors that recognize specific 

regulatory elements can also nucleate heterochromatin formation at the mating type locus and at telomeres 

(Hall, 2002; Jia, 2004; Kanoh et al., 2005; Verdel et al., 2004; Volpe et al., 2002). In the germ cells and ovarian 

somatic cells of Drosophila, Piwi-associated RNAs (piRNAs), a dedicated class of small RNAs antisense to 

TEs, direct H3K9 trimethylation at TE loci (LeThomas et al., 2013; Rozhkov et al., 2013; Sienski et al., 2012). 

Similarly, piRNAs and Piwi proteins are required for H3K9me3 deposition and LINE element silencing in 

mouse germ cells (Pezic et al., 2014). The vertebrate-specific Krüppel-associated box-containing zinc finger 

proteins (KRAB-ZFPs) are another class of HMT guides. KRAB-ZFPs recognize specific DNA motifs of 

endogenous retrovirus and recruit the mammalian homolog of dSetDB1, ESET/SETDB1, resulting in 

H3K9me3 deposition and silencing of endogenous retrovirus regions (Wolf et al., 2015). Thus, 

heterochromatin can be established by different molecular pathways in different organisms, different cell 

types, and even at different genomic loci within the same cell. A complete picture of the principles and 

molecular mechanisms that recruit H3K9me3 methyltransferases to different target loci is yet to be 

established.  

We have identified the conserved SUMO E3 ligase Su(var)2-10/dPIAS as a novel factor essential for 

H3K9me3 deposition in Drosophila. The Su(var)2-10 locus was originally identified in a genetic screen as a 

suppressor of positional effect variegation – a phenomenon in which euchromatic genes translocated near 

heterochromatin are silenced (Elgin and Reuter, 2013; Reuter and Wolff, 1981), strongly suggesting that it is 

important in heterochromatin formation. Further, Su(var)2-10 is required for chromosomal stability (Hari et al., 

2001). In the accompanying manuscript, we report that Su(var)2-10 is required for genome-wide H3K9me3 

deposition and transcriptional repression of TEs in female germ cells. In female germ cells, Su(var)2-10 

interacts with and acts downstream of the piRNA-Piwi complex, and its SUMO ligase activity is required to 

recruit the SetDB1 silencing complex to target TE loci (Ninova et al., accompanying manuscript). Reduction 

in Su(var)2-10 levels in germ cells affected the vast majority of H3K9me3-rich domains, and also affected the 

expression of multiple host genes. Here we describe the distinct mechanisms though which H3K9me3 

deposition is involved in gene regulation. First, we found that host gene expression can be altered as a result 

of H3K9me3 spreading from adjacent TEs, demonstrating that novel TE integrations are an important source 

of epigenetic diversity. Second, we showed that the H3K9me3 mark and Su(var)2-10 are required for the 

activity of genes residing in heterochromatin, likely by preventing interfering transcription from adjacent TEs. 

Furthermore, H3K9me3 is required to repress cryptic promoters upstream or within host gene introns, thereby 

suppressing aberrant gene isoforms. Finally, we showed that Su(var)2-10/SUMO-dependent H3K9me3 

islands regulate a subset of host genes without proximal TE insertions, indicating the existence of piRNA-
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independent H3K9me3 deposition.  Targets of piRNA-independent H3K9me3 deposition include protein-

coding genes and non-coding RNAs normally expressed in other tissues, highlighting the role of this mark in 

cell lineage commitment. Remarkably, several genes that encode proteins required for heterochromatin 

formation are also the targets of heterochromatin repression pointing to a negative feedback mechanism of 

heterochromatin control.  
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Results 

Su(var)2-10 controls the expression of host genes 

We have shown that Su(var)2-10 represses transposons recognized by the Piwi/piRNA complex (Ninova 

et al., accompanying manuscript). However, in contrast to Piwi and piRNA, which are predominantly 

expressed in the germline and required for fertility but not somatic development, Su(var)2-10 is expressed 

ubiquitously and null-mutants are lethal, suggesting that Su(var)2-10 might have other, piRNA-independent, 

targets and functions. To identify genes that are regulated by Su(var)2-10, we inhibited expression of 

Su(var)2-10 in ovarian germ cells (GLKD) using small hairpin RNA (shRNA) driven by the maternal tubulin 

GAL4 driver (mtGAL4) and analyzed changes in steady state RNA levels in shSu(var)2-10-expressing and 

control shWhite lines (shW). Differential gene expression analysis of RNA-seq libraries performed in 

duplicates showed that 662 and 417 genes were more than two-fold up- and down-regulated, respectively, 

upon depletion of Su(var)2-10 (FDR 5%, DESeq2; Fig. 1A). Thus, Su(var)2-10 regulates the expression of a 

subset of host genes in addition to its function in transposon silencing described in the accompanying 

manuscript (Ninova et al., accompanying manuscript). 

 

Spreading of the H3K9me3 mark from transposon sequences leads to repression of adjacent genes 

We showed that silencing of transposons by Su(var)2-10 involves deposition of the H3K9me3 mark by 

the SetDB1/Wde histone methyltransferase complex (Ninova et al., accompanying manuscript). Repressive 

chromatin marks can spread from transposon sequences up to several kilobases (kb) and influence the 

expression of adjacent host genes (Lee and Karpen, 2017; Pezic et al., 2014; Sentmanat and Elgin, 2012; 

Sienski et al., 2012). We found that several genes regulated by Su(var)2-10 harbor or are adjacent to 

transposon insertions present in the reference genome sequence. For example, we observed H3K9me3 

spreading from the BARI element at the jheh locus into the downstream jheh3 gene. GLKD of Su(var)2-10 

led to reduced H3K9me3 levels and increased expression of jheh3 in the ovary (Fig. 1B, left). This result 

indicates that the transposon insertion influences jheh3 expression through its effect on the local chromatin 

state rather than through disruption of gene regulatory elements in the DNA sequence. The BARI insertion at 

the jheh3 locus was shown to be positively selected in the D. melanogaster population (Gonzalez et al., 2009; 

González et al., 2008) indicating that Su(var)2-10-dependent repression caused by a transposon insertion 

can be used for beneficial re-wiring of host gene regulatory networks. 

Many genes regulated by Su(var)2-10 do not have transposon insertions in their vicinities in the reference 

genome sequence. However, previous studies that mapped TE insertions in various D. melanogaster strains 

revealed that many TE insertions are polymorphic, i.e., they are present in some strains and absent in others 

(Rahman et al., 2015). As the strain used in our study is different from the strain used for the reference 

genome assembly, we mapped non-reference transposon insertions in our strain using the TIDAL pipeline 

(Rahman et al., 2015). This analysis revealed over 400 non-reference TE insertions common to our control 

and to the Su(var)2-10 GLKD strain. Similar to transposon sequences present in the reference genome, many 

non-reference TE insertions are targets of piRNA-dependent silencing and show H3K9me3 enrichment that 
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is dependent on Su(var)2-10 (Ninova et al., accompanying manuscript). We found that several host genes 

are affected by Su(var)2-10 knockdown as a consequence of H3K9me3 deposition on non-reference TEs; an 

example is the Frl/CG43986 gene (Fig. 1B, right). Thus, spreading of repressive chromatin from both 

reference and non-reference TE insertions can lead to repression of adjacent host genes confirming that 

transposons contribute to regulation of host gene expression. Importantly, our results show that transposons 

do not need to disrupt cis-regulatory DNA sequences in order to influence gene expression. Instead, 

spreading of chromatin marks from a transposon into gene regulatory elements can result in repression. 

 

Su(var)2-10-dependent H3K9me3 installation ensures proper expression levels and isoform selection 

of heterochromatic genes 

Though new transposon insertions often occur in gene-dense regions in euchromatin, the vast majority 

of transposons accumulate in heterochromatin. The heterochromatic compartment of D. melanogaster is well 

characterized cytologically and through genome-wide profiling of chromatin marks and includes nearly the 

entire chromosomes Y and 4 as well as pericentromeric and telomeric regions of chromosomes X, 2, and 3 

(Gatti and Pimpinelli, 1992; Hoskins et al., 2002, 2007; Riddle et al., 2011). Heterochromatin-euchromatin 

boundaries are similar in different tissues and developmental stages (Riddle et al., 2011; see methods for 

heterochromatin domain annotation), and our H3K9me3 ChIP-seq profiles from ovaries of control flies (shW) 

largely overlap with annotated domains (Fig. 2A). Despite its relatively low gene density, several hundred 

protein-coding genes reside in heterochromatin (Hoskins et al., 2002): Of the 8255 protein-coding genes 

expressed in the ovary, 228 reside in heterochromatin including genes that encode conserved proteins with 

well-established functions such as Parp encoding poly-(ADP-ribose) polymerase and AGO3 required for 

piRNA repression.  

We found that heterochromatic genes are significantly over-represented among Su(var)2-10 targets 

(p<0.0001 Fisher’s exact test): 86 of the 228 heterochromatic genes expressed in the ovary displayed 

significant (≥2 fold) change in expression in cells depleted of Su(var)2-10 compared to control cells. However, 

in contrast to genes adjacent to TE insertions in euchromatin such as jheh3 and Frl/CG43986, where loss of 

Su(var)2-10 led to transcriptional up-regulation, the majority of heterochromatic Su(var)2-10 targets (59 of the 

86) were down-regulated upon Su(var)2-10 KD (Fig. 2A).  

Heterochromatic genes typically have long introns enriched in TEs and other repetitive sequences. We 

found that heterochromatic genes regulated by Su(var)2-10 have high levels of H3K9me3 throughout their 

bodies (both over introns and exons) but not over their promoter regions, which are instead enriched in 

H3K4me2/3 and RNA polymerase II (Pol II), typical marks of active transcription (Fig. 2B, C). Thus, the 

allegedly repressive H3K9me3 mark is compatible with gene expression if present on the gene body and 

excluded from the promoter region. To understand the opposite effects of Su(var)2-10 on genes in eu- and 

heterochromatin, we analyzed the chromatin mark profile and expression of heterochromatic genes. Depletion 

of Su(var)2-10 changed the profiles of H3K9me3, H3K4me2/3, and Pol II over heterochromatic genes (Fig. 

2C). Su(var)2-10 depletion led to a decrease in H3K9me3 signal on gene bodies and flanking regions. At the 
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same time, marks of active transcription (H3K9me2/3 and Pol II) were also reduced at gene promoters, 

indicating that the observed change in steady-state RNA levels is due to transcriptional down-regulation. 

Taken together, our results indicate that Su(var)2-10-dependent deposition of H3K9me3 is required for the 

expression of genes residing in heterochromatin.  This observation is in stark contrast with the canonical role 

of H3K9me3 as a repressive mark as in the case of TEs and euchromatic genes that have flanking transposon 

insertions (Fig. 1A).  

To understand how loss of H3K9me3 interferes with the expression of heterochromatic genes, we 

carefully examined the RNA-seq profiles and enrichment of RNA polymerase II and H3K4me2/3 at the 

affected loci. We found that in several cases transcriptional down-regulation of the target gene upon Su(var)2-

10 depletion was associated with the appearance of non-canonical transcripts from within introns or flanking 

regions, as illustrated for the nAChRalpha4 gene (Fig. 2D). In wild-type ovaries, RNA-seq reads from 

nAChRalpha4 mapped predominantly to exons, and few reads were generated from the long introns, which 

contain repetitive sequences. Upon Su(var)2-10 KD, the signals from exons were reduced, and signals from 

intronic transcripts, both sense and antisense with respect to the coding gene, were increased (Fig. 2D). The 

appearance of these non-canonical transcripts was associated with the presence of new H3K4me3 and Pol 

II peaks (Fig. 2D). The simultaneous appearance of intronic H3K4me2/3 signal marking active promoters and 

sense and antisense intronic transcripts indicates that loss of H3K9me3 upon Su(var)2-10 KD leads to 

activation of spurious transcription, potentially initiated by transposon promoters. Transcriptome analysis 

showed that intronic transcripts are non-canonical rather than inefficiently spliced pre-mRNA. Globally, there 

were increased levels of antisense intronic reads from the heterochromatic genes that were down-regulated 

upon germline depletion of Su(var)2-10 (Fig. 2E). Taken together, these results indicate that Su(var)2-10 is 

required for repression of spurious transcription likely initiated from TE promoters located in heterochromatin. 

Transcription on either strand of long intronic regions or in flanking sequences of heterochromatic genes might 

interfere with promoter function.  

Analysis of gene expression upon Su(var)2-10 GLKD revealed additional effects of H3K9me3 loss on 

heterochromatic genes. Loss of H3K9me3 correlated with activation of a cryptic promoter in an intron of the 

Nipped-B gene that led to the appearance of a new mRNA isoform (Fig. 3A). This new isoform is missing 14 

coding exons of the canonical Nipped-B transcript and has one new exon, which shares homology with the 

gypsy retrotransposon. Expression of the full-length Nipped-B isoform is only moderately affected by 

Su(var)2-10 depletion, but expression of the truncated protein from the new mRNA isoform might cause 

dominant negative effects and interfere with proper protein function. In the case of unc-13, Su(var)2-10 GLKD 

and associated H3K9me3 loss resulted in the up-regulation of a longer isoform from an upstream transcription 

start site (TSS) adjacent to an Invader transposon and in reduced activity of the canonical TSS (Fig. 3B). 

Ectopic transcriptional activation can affect genes at long distances as evident for the gene CG10417, which 

encodes a conserved protein phosphatase (Fig. 3C). H3K9me3 loss and transcriptional up-regulation near a 

TE-rich region about 5 kb upstream of the canonical CG10417 promoter resulted in the emergence of a long 

fusion transcript between the upstream region and the protein-coding gene. As was observed for unc-13, up-
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regulation of transcription from the upstream TSS was associated with reduced H3K4me3 at the canonical 

promoter and with repression of the normal mRNA isoform (Fig. 3C). Collectively, these examples show that 

loss of H3K9me3 causes activation of TE transcription within introns or in regions adjacent to host genes and 

interferes with the activity of gene promoters, leading to reduced gene expression and/or appearance of new 

mRNA isoforms encoding novel proteins. Overall, our results indicate that genes positioned in 

heterochromatin have very different properties than their euchromatin counterparts: Genes in 

heterochromatin require high levels of H3K9me3 for proper expression and canonical isoform selection.  

 

Su(var)2-10-dependent installation of H3K9me3 restricts expression of tissue-specific genes  

The presence of TE sequences that are targeted by Su(var)2-10 in close proximity to either hetero- or 

euchromatic genes explains the effect of Su(var)2-10 on such genes. However, a number of euchromatic 

genes repressed by Su(var)2-10 do not have proximal TE insertions in the reference genome, and we did not 

find evidence of non-reference insertions using TIDAL analysis. Some of these genes might be secondary 

targets that have altered expression upon depletion of Su(var)2-10 as a result of changes in expression of 

primary target genes. However, a subset of euchromatic Su(var)2-10 targets have local H3K9me3 peaks and 

examination of additional H3K9me3 ChIP-seq datasets from previous studies (LeThomas et al., 2013; 

Muerdter et al., 2013; Yu et al., 2015, see Methods) showed that a number of these H3K9me3 peaks are 

present in different D. melanogaster strains (Fig. 4A). Thus, these genes may represent Su(var)2-10 targets 

that are repressed though H3K9me3 deposition independently of TEs.  

It is well established that H3K9me3 deposition at transposons is mediated by the piRNA pathway. To 

further confirm that the putative TE-independent H3K9me3 peaks on euchromatic Su(var)2-10 targets are 

deposited independently of the piRNA pathway, we analyzed whether piRNAs map within the gene bodies 

and flanking regions of these genes using small RNA libraries from ovaries of the same strain. In contrast to 

genes with TE insertions inside or proximal to the gene, regions flanking Su(var)2-10 targets with no TE 

insertions were devoid of piRNA-sized reads (Fig. 4B).   

We then asked if H3K9me3 peaks at Su(var)2-10 repressed genes in euchromatin are conserved in 

evolution. Analysis of available H3K9me3 ChIP-seq data (LeThomas et al., 2014) indicated that more than 

half (32 out of 58) of the D. melanogaster genes suppressed by Su(var)2-10 that do not have adjacent TE 

insertions have D. virilis homologs marked by H3K9me3 peaks. D. virilis diverged from D. melanogaster more 

than 45 million years ago (Hedges and Kumar, 2009), and it is unlikely that active TEs are conserved between 

the two species. Therefore, conserved H3K9me3 signals on homologous genes of the two species are 

indicative of TE-independent deposition. Taken together these data suggest that Su(var)2-10 is recruited to 

a number of genes in euchromatin in a transposon-independent fashion to restrict their expression. 

Genes that are regulated by Su(var)2-10 due to proximal TE insertions are not enriched in certain 

pathways (data not shown).  However, we found that many targets of TE-independent repression by Su(var)2-

10/H3K9me3 have expression patterns that are biased to specific tissues such as the central nervous system 

or head, larval imaginal discs, or the testis (Fig. 4C). These genes were typically not expressed in control 
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ovaries, but depletion of Su(var)2-10 led to ectopic expression in the female germline.  For example, the 

testis-specific gene mtsh (which encodes a factor involved in male meiosis) is repressed in the ovary and 

marked by a strong H3K9me3 peak at its putative promoter region that depends on Su(var)2-10 and SUMO, 

but not on Piwi (Fig. 4D). Su(var)2-10 GLKD led to loss of the H3K9me3 peak and ectopic expression of mtsh. 

H3K9me3 regulation is not limited to protein coding-genes: Transcription from two well-characterized testis-

biased endogenous hp-siRNA loci (Wen et al., 2015) is repressed through Su(var)2-10-dependent H3K9me3 

deposition (Fig. 4E; Fig. S1). The putative promoter region of the testis-specific microRNA (miRNA) cluster 

mir-992/991/2498 (Mohammed et al., 2014) is also marked by a strong H3K9me3 peak, and expression of 

these miRNAs is repressed in the ovary. Su(var)2-10 GLKD led to loss of the H3K9me3 peak and concomitant 

ectopic expression of the three microRNAs as shown by analysis of small RNA-seq libraries (Fig. 4F). Thus, 

Su(var)2-10 plays a role in maintaining appropriate female-specific expression patterns in germline cells by 

repression of testis-expressed genes. More generally, Su(var)2-10 prevents inappropriate expression of 

genes that are normally expressed tissue specifically through a mechanism that is independent of transposon 

suppression.  

 

Su(var)2-10 represses a set of genes involved in heterochromatin formation 

Su(var)2-10 also represses several genes that encode proteins involved in heterochromatin formation 

and maintenance (Fig. 5A). Heterochromatin is established and maintained though an interplay between 

histone mark writer complexes that deposit repressive histone marks such as H3K9me3 and reader 

complexes that recognize repressive marks and recruit downstream heterochromatin components. Su(var)2-

10 GLKD led to increased expression of wde. This gene encodes a conserved co-factor of the essential H3K9 

methyltransferase SetDB1/Eggless, which is responsible for the installation of the H3K9me3 mark at a large 

proportion of heterochromatic domains (Clough et al., 2007; Koch et al., 2009; Rangan et al., 2011; Seum et 

al., 2007; Timms et al., 2016; Tzeng et al., 2007; Wang et al., 2003). Su(var)2-10 also represses expression 

of two recently identified proteins that interact with the protein HP1, which is critical for heterochromatin 

packaging: Sov and CG30403. Sov is a suppressor of positional effect variegation and plays a role in 

recruitment of HP1 to chromatin (Alekseyenko et al., 2014; Jankovics et al., 2018). To further investigate the 

role of Sov in heterochromatin formation, we tested the effect of sov GLKD on the genome-wide distribution 

of the H3K9me3 mark in the ovary using ChIP-seq. H3K9me3 levels decreased globally upon depletion of 

sov (Fig. S2A, B), indicating that Sov is required for H3K9me3 deposition, explaining its role in HP1a 

recruitment.  

CG30403 encodes a DNA-binding protein that emerged as an HP1a interactor in a proteomic screen 

(Alekseyenko et al., 2014). We confirmed that CG30403 interactrs with HP1 by co-immunoprecipitation from 

Drosophila S2 cell lysate (Fig. S2C). We were unable to achieve efficient depletion of CG30403 using an 

shRNA prohibiting further investigation of its function. Finally, Su(var)2-10 GLKD led to up-regulation of the 

smt3 gene encoding the Drosophila SUMO (Small Ubiquitin-like Modifier) homolog. SUMO has been 

implicated in various aspects of heterochromatin formation and transcriptional repression in organisms 
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ranging from yeast to human, and we showed that SUMO is required for H3K9me3 deposition downstream 

of Su(var)2-10 and for TE repression in the Drosophila ovary in the accompanying manuscript (Ninova et al., 

accompanying manuscript) .  

The four genes encoding proteins involved in heterochromatin formation, wde, sov, CG30403, and smt3, 

all have H3K9me3 peaks that are deposited in a manner dependent on both Su(var)2-10 and SUMO (Fig. 

5A). In all four cases, the peaks were conserved at the orthologous genes in D. virilis (Fig. 5A). Furthermore, 

we found no evidence of transposons adjacent to wde, smt3, or CG30403 (from DNA-seq data and genomic 

PCR, data not shown) or for piRNAs aligning to these regions, strongly suggesting that these genes are direct, 

TE-independent targets of H3K9me3 deposition through Su(var)2-10/SUMO. Examination of the chromatin 

environment around these loci suggested that in all cases, increased expression upon Su(var)2-10 GLKD is 

a consequence of H3K9me3 loss and transcriptional up-regulation (Fig. 5A). For instance, wde is expressed 

from two alternative promoters located on the opposite sides of a prominent H3K9me3 island. Loss of 

H3K9me3 upon Su(var)2-10 depletion correlated with an increased use of the upstream promoter and an 

overall increase in wde expression as evidenced by RNA-seq and Pol II and H3K4me3 ChIP-seq (Fig. 5A). 

Similarly, Su(var)2-10 and SUMO were required for the presence of H3K9me3 islands and for the repression 

of sov, CG30403, and smt3 (Fig. 5A). In the case of sov, we observed increased transcriptional activity from 

an upstream TSS upon Su(var)2-10 depletion, whereas CG30403 and smt3 up-regulation occurred due to 

enhanced transcription from single promoters. Taken together, our data suggests that Su(var)2-10 is involved 

in H3K9me3-mediated repression of four genes that encode proteins involved in heterochromatin formation.  

 

Expression of genes encoding heterochromatin proteins is regulated by a negative feedback loop 

The observation that genes encoding heterochromatin proteins are themselves repressed by local 

H3K9me3-rich chromatin islands suggests that their expression might be controlled by a negative feedback 

loop in which gene activity is repressed by its own product. To test if such negative feedback occurs, we 

asked if depletion of the gene product affected the corresponding gene expression. To this end, we took 

advantage of the facts that RNAi destroys mRNAs in the cytoplasm causing protein depletion and that the 

abundance of nascent (non-spliced) pre-mRNA can by analyzed by RT-PCR to give a proxy of the level of 

transcription. We found that GLKD of wde and sov led to increases in abundance of their respective pre-

mRNAs, confirming that expression of these genes is auto-regulated (Fig. 5B). sov auto-regulation was further 

evident on the level of chromatin, as sov GLKD resulted in a decrease in the H3K9me3 ChIP-seq signal at 

the sov promoter (Fig. 5A). We were unable to test CG30403 and smt3 auto-regulation due to poor knock-

down efficiency and lack of utilizable introns, respectively.  

In the accompanying manuscript, we show that tethering of Su(var)2-10 to chromatin induces SUMO-

dependent recruitment of the SetDB1/Wde histone methyltransferase complex, resulting in H3K9me3 

deposition and transcriptional silencing (Ninova et al., accompanying manuscript). Wde, SUMO(smt3), 

CG30403, and Sov might function independently to mediate heterochromatin formation or may participate in 

one common pathway that regulates expression of all four genes. To discriminate between these two 
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possibilities, we explored the dependence of these genes on each other as well as on the effector 

methyltransferase SetDB1. Analysis of RNA-seq data from ovaries in which smt3 expression was inhibited in 

germ cells showed that wde, CG30403, and sov are up-regulated upon smt3 loss (Fig. 5A). Expression of 

CG30403 and wde was increased >2 fold upon GLKD of SetDB1 and wde, and slightly in sov GLKD ovaries 

(Fig. 5C, D). In contrast, smt3 and sov transcript levels showed modest or no significant increase upon 

SetDB1 and wde depletion. Taken together, these results indicate that Su(var)2-10, SetDB1/Wde, and Smt3 

act in the same pathway to confer H3K9me3 deposition and transcriptional repression at the wde and 

CG30403 loci. The observation that repression of smt3 and sov is not strongly impacted by depletion of 

SetDB1 and Wde implies existence of a distinct SUMO/Su(var)2-10/Sov-dependent silencing pathway that 

does not require the SetDB1/Wde complex. 

.     

Discussion 

Su(var)2-10 and H3K9me3 play important roles in the regulation of gene expression 

Histone modifications play an essential role in the control of gene expression and in the nuclear 

packaging of the genome. H3K9me3 is a conserved hallmark of constitutive heterochromatin from yeast to 

human and is generally associated with gene repression. We identified Su(var)2-10 as a crucial factor 

required for deposition of the H3K9me3 mark in large heterochromatic domains of the D. melanogaster 

genome, such as pericentromeric regions and the 4th chromosome, as well as at discrete islands in 

euchromatin. In the accompanying manuscript, we demonstrate that Su(var)2-10 localization to chromatin 

induces strong transcriptional silencing and that Su(var)2-10 acts in a SUMO-dependent manner to recruit 

the histone-methyltransferase complex composed of SetDB1 and Wde to chromatin (Ninova et al., 

accompanying manuscript)  

Su(var)2-10-dependent H3K9me3 deposition is crucial to ensure proper TE silencing in the germ cells of 

Drosophila (Ninova et al., accompanying manuscript). Here we showed that in addition to effects on 

transposon silencing Su(var)2-10 and H3K9me3 influence regulation of gene expression of protein-coding 

genes. Su(var)2-10-dependent H3K9me3 deposition on TEs impacts expression of genes located in 

heterochromatin and expression of euchromatic genes adjacent to TE insertions. Su(var)2-10 is also involved 

in H3K9me3 deposition on host genes independently of TEs. This process is essential for suppression of 

ectopic expression of tissue-specific genes, thereby conferring correct cell type identity.  

 

Epigenetic effects of transposons influence host gene expression 

Approximately half of the human genome is comprised of transposon sequences, and the TE fraction is 

as high as 90% in several plant species (Lander et al., 2001; Sabot et al., 2005; Schnable et al., 2009). It is 

estimated that in humans one new transposon insertion per generation is propagated to offspring (Kazazian, 

2004). The numbers of somatic TE insertions, although difficult to detect, are likely much higher (Kazazian 

and Jr, 2011). Thus, transposon activity is a major source of genetic variation, and this variation can occur on 

a very short time scale. The effects of transposons on the host transcriptome have been the subject of many 
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studies beginning with the pioneering work by Barbara McClintock, who identified “control” elements that 

regulate gene expression before genome compositions were known (McClintock, 1950). Subsequent work in 

many organisms has shown that transposons can disrupt gene expression by inserting into coding gene 

regions or into or close to cis-regulatory sequences such as promoters and enhancers (Chuong et al., 2017). 

In fact, many transposons tend to insert close to promoters and enhancers  (Chuong et al., 2017; Galvan et 

al., 2009; de Jong et al., 2014; LaFave et al., 2014; Liao et al., 2000; Wu et al., 2003). Notably, TE insertions 

are not always disruptive: Insertions into non-coding regions can bring new regulatory elements that change 

gene expression patterns resulting in increased fitness (Feschotte, 2008). Instances of positive selection for 

TE insertions are well documented in Drosophila (González et al., 2008; Maside et al., 2002; Schlenke and 

Begun, 2004). Transposon-derived promoters also drive expression of numerous mouse and human genes, 

suggesting that TE insertions can be co-opted into gene regulatory pathways (Chuong et al., 2017; Jordan et 

al., 2003; Nigumann et al., 2002; Peaston et al., 2004).  

In addition to direct changes in the DNA sequence, TE insertions may also introduce local epigenetic 

effects (Slotkin and Martienssen, 2007). Active transposons are transcriptionally silenced by H3K9 

trimethylation and/or DNA methylation. The H3K9me3 mark can spread several kilobases outside the 

transposon region (Lee and Karpen, 2017; Pezic et al., 2014; Sentmanat and Elgin, 2012; Sienski et al., 

2012). Therefore, H3K9me3 deposition due to TE integration may affect adjacent cis-regulatory elements of 

host genes, interfering with their normal expression.  Indeed, TE insertions with high levels of H3K9me3 are 

strongly selected against, supporting a model that TEs can alter expression of host genes through epigenetic 

changes (Lee and Karpen, 2017). 

The finding that Su(var)2-10 is responsible for deposition of H3K9me3 on TE bodies and flanking 

sequences allows us to separate the effect of direct damage to cis-regulatory elements from the effect on 

chromatin. We found evidence that TE insertions can lead to H3K9me3-dependent changes in gene 

expression. As shown for the jheh3 and frl loci (Fig. 1B), loss of the TE-associated H3K9me3 peak upon 

Su(var)2-10 GLKD resulted in up-regulation of expression of both genes. Notably, it was previously shown 

that the BARI insertion at the jheh locus was under positive selection in D. melanogaster populations 

(Gonzalez et al., 2009), indicating that transposon-induced epigenetic repression of jheh3 is beneficial for the 

host. Overall, our results suggest that transposons can rewire gene regulatory networks on a short time scale 

due not only to alterations in the genome but also to effects on chromatin. Euchromatic H3K9me3 peaks due 

to TE insertions are widespread in Drosophila (Lee, 2015; Lee and Karpen, 2017; Sienski et al., 2012), 

indicating that gene expression modulation by proximal TE insertion may be a common mode of introducing 

gene regulatory variation. Our results suggest that differential gene expression between Drosophila strains 

might be partly due to polymorphic TE insertions. New TE insertions during development reportedly generate 

genomic diversity between different cell types in human and mouse with implications for tumorigenesis and 

brain development (Faulkner and Garcia-Perez, 2017). Future studies are required to elicit the epigenetic 

effects of somatic TE insertions on gene regulatory networks.  
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Genes located in heterochromatin require H3K9me3 for proper expression 

In Drosophila, heterochromatin domains include nearly 30% of the genome (Hoskins et al., 2002, 2007). 

Even though these regions are relatively gene poor, heterochromatin hosts several hundred protein-coding 

genes. Studies of chromosomal rearrangements suggested that heterochromatic localization is in fact 

required for proper expression of genes in heterochromatin (Yasuhara and Wakimoto, 2006). For example, 

translocation of the light gene, which is normally localized in the pericentromeric region of chromosome 2L, 

to euchromatin results in reduced and variegated expression (Wakimoto et al., 1990). However, the molecular 

mechanism of the positive effect of the heterochromatin environment on expression is not completely 

understood.  

Consistent with previous studies, our results indicate that despite residing in H3K9me3-enriched loci, 

certain heterochromatic genes are not silenced (Riddle et al., 2011, 2012). Unlike genes adjacent to TE 

insertions in euchromatin, which are suppressed by Su(var)2-10-dependent deposition of H3K9me3 mark, a 

substantial fraction of expressed heterochromatic genes require Su(var)2-10 and the H3K9me3 mark for their 

expression (Fig. 2, 3). Thus, our results show that the allegedly repressive H3K9me3 mark does not interfere 

with transcription but is actually necessary for the expression of genes in heterochromatin. 

How can the same chromatin mark lead to repression of genes in euchromatin and activation in 

heterochromatin? The H3K9me3 mark is present over the gene bodies and regions flanking heterochromatic 

genes; however, promoters of these loci are depleted of H3K9me3 and instead carry typical marks of active 

promoters such as H3K4me3 and Pol II occupancy. Thus, H3K9me3 over gene bodies appears to be 

compatible with transcription.  Depletion of H3K9me3 upon Su(var)2-10 GLKD correlated with increased 

levels of intronic RNAs and the appearance of H3K4me2/3 and Pol II signals in introns, indicating up-

regulation of non-canonical transcripts originating from within host-gene introns. One possible source of such 

transcripts is the activation of transposon promoters that are highly abundant within introns and flanking 

sequences of heterochromatic genes. For instance, activation of transposon promoters in the unc-13 and 

CG10417 loci reduced the expression from the canonical gene promoters (Fig. 3B, C). We propose that 

transcription from transposon promoters located in introns and flanking sequences interferes with proper gene 

expression through transcriptional interference (Shearwin et al., 2005).   

Loss of the H3K9me3 mark also disrupted normal isoform regulation of heterochromatic genes, as we 

observed both truncated and extended mRNA isoforms with coding potential distinct from the canonical gene 

mRNA upon depletion of Su(var)2-10 (Fig. 3). Activation of cryptic promoters upon H3K9me3 loss might 

disrupt proper gene expression through mechanisms other than simple reduction in canonical mRNA output. 

For example, expression of novel proteins from non-canonical mRNA isoforms might cause dominant 

negative effects. It should be noted that not all Su(var)2-10-dependent heterochromatic genes that lose 

H3K9me3 upon Su(var)2-10 GLKD show signs of non-canonical transcription activation. This indicates that 

H3K9me3 might have other functions in heterochromatic gene activation. For example, compaction of 

heterochromatin by H3K9me3-associated HP1 might bring distant enhancers of heterochromatic genes into 

physical proximity of promoters to activate expression. Overall, our results combined with previous studies 
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indicate that, in contrast to euchromatic genes, genes positioned in heterochromatin require high H3K9me3 

levels for proper expression and isoform selection.  

 

H3K9me3 in euchromatin restricts gene expression to correct cell lineages  

Although the H3K9me3 mark is usually associated with constitutive heterochromatin and TE repression, 

discrete Su(var)2-10-dependent H3K9me3 peaks are present at a number of euchromatic genes. We found 

no evidence of TEs in the vicinity of some of these euchromatic genes, and their H3K9me3-based repression 

was conserved between D. melanogaster and D. virilis – two species that separated more than 45 million 

years ago and have no common transposon insertions (Fig. 4A, B). We found that expression of many of the 

genes marked by TE-independent H3K9me3 is restricted to specific tissues and cell types such testis, 

digestive system, or central nervous system and that the loss of H3K9me3 upon Su(var)2-10 depletion 

resulted in ectopic expression in the female germline. Our finding that H3K9me3 represses testis-specific 

genes is in line with a recent report that SetDB1 depletion in the female germline was associated with loss of 

the H3K9me3 mark and results in mis-expression of male-specific genes (Smolko et al., 2018). Thus, gene 

repression through H3K9me3 plays a crucial role in maintaining proper expression patterns in female 

germline. H3K9me3, the SetDB1 methyltransferase, and the SUMO pathway are also implicated in lineage-

specific gene expression and cell fate commitment in mammalian systems (Becker et al., 2016; Cheloufi et 

al., 2015; Cossec et al., 2018; Ivanov et al., 2007; Wang et al., 2018; Yang et al., 2015). Collectively, these 

data suggest that a TE-independent H3K9me3 deposition via the SUMO-SetDB1 pathway plays an important 

and evolutionarily conserved role in restricting gene expression to proper cell types and lineages.  

 

Negative feedback regulation of ‘heterochromatin sensors’ ensures chromatin homeostasis in the cell 

We found that in addition to tissue-restricted genes, SUMO- and Su(var)2-10-dependent H3K9me3 

repression is also necessary for the regulation of several factors involved in heterochromatin formation and 

maintenance, such as SUMO (smt3), the SetDB1-cofactor Wde, and two partners of HP1, Sov and CG30403. 

Wde is the homologue of the mammalian MCAF1/ATF7IP; this factor is required for nuclear localization and 

stability of SetDB1 (Koch et al., 2009; Timms et al., 2016) and promotes its methyltransferase activity (Wang 

et al., 2003). Drosophila Wde also associates with SetDB1, and germline depletion of Wde results in a 

phenotype similar to depletion of SetDB1, supporting the role of Wde as a conserved SetDB1 co-factor (Koch 

et al., 2009; Smolko et al., 2018). Our data in Drosophila and studies in mammals suggest that SUMO is 

involved in the recruitment of SetDB1/Wde complex to its chromatin targets (Ninova et al., accompanying 

manuscript, Ivanov et al., 2007). HP1 is a critical reader of the H3K9me3 mark, and HP1 multimerization is 

responsible for the structural properties of heterochromatin (Canzio et al., 2011; Hiragami-Hamada et al., 

2016; Larson et al., 2017; Strom et al., 2017). Furthermore, HP1 is a hub that interacts with many other 

heterochromatin proteins (Eissenberg and Elgin, 2014). Both Sov and CG30403 interact with HP1, and Sov 

is critical for heterochromatin maintenance (Jankovics et al., 2018, Fig. S1).   
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The genes encoding Wde, SUMO, Sov, and CG30403 reside in euchromatin and are repressed by local 

H3K9me3 marks. In contrast to tissue-restricted genes, which are often completely repressed by Su(var)2-10 

in female germline, expression of these factors is not silenced. However loss of H3K9me3 upon Su(var)2-10 

depletion leads to their transcriptional up-regulation (Fig. 5A). Our results indicate that these four genes 

encoding proteins involved in heterochromatin formation are part of a negative feedback mechanism that 

controls heterochromatin formation. Negative feedback in biological circuits often maintains protein levels 

within a certain range, providing homeostatic regulation. We propose that SUMO-dependent repression of 

heterochromatin proteins provides such homeostatic regulation to maintain the proper ratio and boundaries 

of hetero- and euchromatin. According to our model (Fig. 6), specific genes, such as wde, act as sensors of 

overall H3K9me3 levels. Insufficient levels of H3K9 methylation lead to elevated expression of the sensor 

genes due to decreased levels of H3K9me3 at their promoters. The consequential increased sensor 

expression will enhance H3K9me3 deposition and heterochromatin formation throughout the genome. This 

in turn will result in repression of sensor genes, ensuring that H3K9me3 is restricted to proper genomic 

domains and does not spread to euchromatic regions that should remain active.  

Controlling heterochromatin spreading is critical for gene expression as illustrated by the phenomenon 

of position effect variegation. Chromosomal rearrangements that bring euchromatic genes in proximity to 

heterochromatin cause their repression by spreading of heterochromatin (Elgin and Reuter, 2013). Our 

findings (Fig. 2, 3) and previous reports (reviewed in Yasuhara and Wakimoto, 2006) demonstrated that loss 

of the heterochromatic environment interferes with expression of genes located in regions that would normally 

be heterochromatic. Thus, maintaining the correct ratio and boundaries between chromatin domains via a 

negative feedback mechanism is crucial for proper gene expression in both domains. A reminiscent negative 

feedback loop was identified in yeast: Genes essential for heterochromatin assembly such as the H3K9 

methyltransferase clr4 are suppressed by H3K9me3 to restrict ectopic spreading of silencing chromatin 

(Wang et al., 2015). In mammals, genes encoding proteins from the KRAB-ZFP family of transcriptional 

repressors reside in H3K9me3- and HP1-enriched loci (Frietze et al., 2010; O’Geen et al., 2007; Vogel et al., 

2006). Collectively, these studies suggest that auto-regulation of heterochromatin effectors is a conserved 

mode of chromatin regulation, although the specific genes involved in the feedback mechanism differ between 

different organisms. In the future, it will be important to dissect the precise network architecture of 

heterochromatin regulation. As heterochromatin formation and maintenance was reported to be disrupted in 

cancer and during aging this mechanism might be a promising target of therapeutic interventions.    

 

Molecular mechanism of Su(var)2-10 recruitment to genomic targets 

Studies in various systems have identified diverse mechanisms for recruitment of H3K9me3 writer 

enzymes to target loci. In the case of TE repression in germ cells, piRNAs bound to nuclear Piwi proteins 

serve as sequence-specific guides that bind complementary nascent transcripts (LeThomas et al., 2013; 

Rozhkov et al., 2013; Sienski et al., 2012) that in turn recruit Su(var)2-10, which induces H3K9me3 deposition 

in a SetDB1-dependent manner (Ninova et al., accompanying manuscript). The majority of Piwi-bound 
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piRNAs are complementary to transposon mRNAs (Brennecke et al., 2007), ensuring that Su(var)2-10 and 

the SetDB1/Wde complex is recruited to transcribed TE copies regardless of their genomic position. H3K9me3 

targeted to TE insertions can spread to the adjacent loci encoding host genes (Lee, 2015; Lee and Karpen, 

2017; Sentmanat and Elgin, 2012). Our study demonstrates another mechanism of writer recruitment: We 

found that Su(var)2-10 identifies non-transposon targets in a piRNA-independent fashion (Fig. 4A) in 

agreement with a broader function of Su(var)2-10 in development (Hari et al., 2001). The observation that 

H3K9me3 peaks at homologous euchromatic genes are also present in the distantly related D. virilis points 

to a conserved mechanism for H3K9me3 deposition involved in host-gene regulation.   

The molecular mechanism of piRNA-independent recruitment of Su(var)2-10 remains to be explored. 

Su(var)2-10 has a putative DNA binding SAP domain that might be sufficient for its binding to DNA (Aravind 

and Koonin, 2000). However, motif enrichment analysis failed to identify a common sequence motif among 

TE-independent Su(var)2-10 targets (data not shown), suggesting that different partners might recruit 

Su(var)2-10 to distinct targets. In mammals, a large family of transcription factors, the KRAB-ZFPs, are 

responsible for the recruitment of SetDB1 and installation of H3K9me3 mark on many different targets, 

primarily endogenous retroviruses (reviewed in Wolf et al., 2015). Individual members of KRAB-ZFP family 

influence distinct targets due to differences in DNA-binding specificities of their zinc-finger DNA-binding 

domains. Notably, SetDB1 recruitment through KRAB-ZFPs occurs through a SUMO-dependent mechanism 

(Ivanov et al., 2007). The KRAB-ZFP family is vertebrate-specific, and there are no known proteins in D. 

melanogaster that can recruit H3K9me3 activity. A preliminary search for direct Su(var)2-10 interactors using 

a yeast two-hybrid screen identified several proteins with putative DNA-binding domains (Ninova et al., 

manuscript in preparation). Thus, we propose that analogously to the KRAB-ZFP pathway in mammals, 

Su(var)2-10 may link DNA-binding proteins to the SetDB1 silencing machinery. Future studies are necessary 

to identify the proteins that guide Su(var)2-10 to target loci and to elucidate the mechanism of TE-independent 

recruitment of the silencing machinery.   

 
Materials and Methods 

Fly stocks and husbandry 

shRNA-mediated knockdown experiments were performed to target the following genes of interest using 

the listed stocks obtained from the Bloomington Drosophila Stock Center encoding UASp-driven shRNAs: 

su(var)2-10 (shSv210, BDSC #32956), piwi (shPiwi, BDSC #33724), wde (shWde, BDSC #33339), CG30403 

(BDSC #57286), and white (shWhite, BDSC #33623). For UASp-shSmt3, the anti-Smt3 shRNA sequence 

based on the TRiP line HMS01540 (Supplementary Table S1) was ligated into the pValium20 vector (Ni et al. 

2011) using T4 DNA ligase from NEB, according to the manufacturer’s instructions and was integrated at the 

attP2 landing site by BestGene. UASp-shSetDB1 stocks were a gift from Julius Brennecke, and UASp-shSov 

stocks were obtained from Miklos Erdelyi (Jankovics et al., 2018). The expression of all constructs was driven 

by maternal alpha-tubulin67C-Gal4 (MT-Gal4, BDSC #7063), except for the shSUMO H3K9me3 ChIP-seq 

samples, where the BDSC #7062 stock encoding alpha-tubulin67C-Gal4 driver was used. All flies were 
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maintained on standard medium at 24 C and were supplemented with yeast for 2 to 3 days before ovary 

dissections.  

 

qRT-PCR and data analysis 

Ovaries from 2-5 day-old females were hand dissected. Three biological replicates of 10 pairs of ovaries 

were used for each condition. RNA was extracted using TRIzol reagent (Invitrogen). Approximately 1 µg RNA 

was treated with DNase I (Invitrogen), and subsequently used as a template for cDNA synthesis using Super 

Script III Reverse Transcriptase (Invitrogen). SYBR Green qPCR was performed using MyTaq HS Mix 

(BioLine) with primers listed in Supplemental Table 1. CT values were calculated from technical duplicates or 

triplicates. Relative gene expression was calculated using Rp49/RpL13 as an endogenous reference. Data 

are presented as the averages of the biological replicates with error bars reflecting standard deviation.  

 

Heterochromatic gene definition 

Heterochromatic genes were defined as genes residing on chromosome 4, chromosome U, chromosome 

U extra, chr2RHet, chr2LHet, chr3RHet, chr3LHet, and chrXHet, as well as the cytological borders of 

heterochromatin on chromosome arms 2R, 2L, 3R, 3L, and X listed in Riddle et al. 2011, dm3 assembly. 

 

RNA-seq and data analysis 

RNA was extracted from dissected ovaries of 2-5 day old shW (control), shSu(var)2-10, and shSmt3 flies 

using TRIzol reagent (Invitrogen). Approximately 1 µg RNA was treated with DNase I (Invitrogen) followed by 

rRNA depletion using the RiboZero Gold kit (Illumina) supplemented with D. melanogaster rRNA antisense 

oligonucleotides. rRNA-depleted RNA was used as a starting material for library construction using the 

NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs). Two biological replicates 

per condition were sequenced on Illumina HiSeq 2500 instrument at Millard and Muriel Jacobs Genetics and 

Genomics Laboratory at Caltech yielding 15-20 million single-end 50-bp reads. Reads were first filtered 

against D. melanogaster rRNA sequences (Stage and Eickbush, 2007) and 5S rRNA in dm3 annotated by 

RepeatMasker available via the UCSC Genome Browser, allowing three mismatches using bowtie v0.12.17 

(Langmead et al., 2009). Less than 10% of all reads in each condition aligned to rRNA. The remaining reads 

were then aligned to the D. melanogaster genome (dm3) allowing up to two mismatches and a single mapping 

position bowtie v0.12.17 (-v 2, -m 1).  

For differential expression analysis, read counts corresponding to the exonic regions of protein-coding 

genes were calculated using a custom python script. Genes with fewer than 10 reads in all samples were 

excluded from downstream analysis. For transposon expression, reads were aligned to the D. melanogaster 

genome (dm3) allowing 10,000 mapping positions and zero mismatches. TE annotations were obtained from 

RepeatMasker tables available on the UCSC browser (Karolchik et al., 2004). Read counts for individual 

transposon families were calculated using a custom Python script correcting for multiple mapping positions. 

The resulting gene and transposon count data was analyzed using the DESeq2 R package using default 
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settings (Love et al., 2014). Significantly up- and down-regulated genes were considered to be those 

displaying >2-fold change between control and Su(var)2-10 GLKD libraries with an adjusted p-value <0.05. 

We also quantified gene expression by alignment to the reference transcriptome (dm3) followed by read count 

estimation by eXpress (Roberts and Pachter, 2013) and DESeq2 analysis; this yielded very similar results 

(data not shown). UCSC genome browser tracks were generated from the uniquely mapped read alignments 

using the UCSC utilities (Kent et al., 2010), using the total numbers of uniquely mapped reads to the genome 

per million as a normalization factor. For isoform and novel transcript analysis, reads were aligned to the D. 

melanogaster genome using hisat2 (v2.1.0), and de novo transcript assembly was performed using stringtie 

(v1.3.4d) according to the previously reported protocol (Pertea et al., 2016). Structure and expression levels 

of different isoforms were visualized using the ballgown R package (Frazee et al., 2015).  

Euchromatic genes were classified as TE-independent if the following criteria were met: no non-reference 

TE insertion within 1 kb of gene ends and no more than 10% and 1000 bp of the intronic sequence and 500 

bp of the 10-kb flaking regions sharing homology to TE elements as determined by RepeatMasker. To test if 

piRNAs mapped within gene loci, we aligned 23-29-nt reads from small RNA-seq libraries from 

mtGal4>UASp-shW ovaries to the genome allowing multiple mapping positions and calculated the number of 

reads that aligned within gene bodies and 1-kb flanking regions.  

 

ChIP-seq and data analysis 

ChIP-seq experiments were performed as described previously (Ninova et al., accompanying manuscript) 

with the following antibodies: anti-H3K9me3 (Abcam, ab8898), anti-RNA Pol II (Abcam, ab5408), and anti-

H3K4me2/3 (Abcam, ab6000). ChIP-seq library construction was performed using the NEBNext ChIP-Seq 

Library Prep Master Mix Set (NEB). Libraries were sequenced on the Illumina HiSeq 2000/2500 platform, 

generating single-end 49-bp or 50-bp reads. Reads were aligned to the D. melanogaster genome (dm3) 

allowing up to two mismatches and single mapping position using bowtie v0.12.17 (-v 2, -m 1). In order to 

determine H3K9me3-rich regions present across fly strains, we processed previously published H3K9me3 

data from the ovaries of other D. melanogaster strains including nanos-gal4>dsWhite (GSE71374, Yu et al., 

2015), nanos-gal4>dsPanx (GSE71374, Yu et al. 2015), and DGRC#204406 heterozygous strain 

(GSE46009, Muerdter et al., 2013).  

UCSC genome browser tracks were generated as for RNA-seq tracks. H3K9me3 coverage heatmaps and 

average ChIP profiles on gene bodies were performed using the ngs.plot R package (Shen et al., 2014) using 

input libraries for normalization. For genome-wide H3K9me3 enrichment, the dm3 genome was partitioned 

into 5-kb intervals. Interval coverage was calculated as the ratio of RPKM-normalized reads from IP libraries 

to input libraries using custom python and R scripts. Low coverage intervals with fewer than 1 RPKM in input 

libraries were excluded from the analysis. H3K9me3-enriched 5-kb genomic intervals were defined as 

intervals that had H3K9me3 ChIP/Input enrichment ratio >2 in both replicate control ovaries (shW), as well as 

>1.5 enrichment in control ovaries of the additional analyzed datasets (shW control of shSUMO, nanos-

gal4>dsWhite from GSE71374, DGRC#204406 heterozygous from GSE46009). Circular plots were 
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generated using Circos 0.67.7 (Krzywinski et al., 2009). H3K9me3 enrichment over gene bodies was 

calculated as the ratio of the RPKM-normalized ChIP and input read coverage within annotated D. 

melanogaster gene ends. H3K9me3 peaks were called using macs14 using the broad peak calling protocol 

with the parameters (Feng et al., 2012) –nomodel, –shiftsize 73, –B, –S, and –pvalue 1e-3 using reads 

uniquely aligned to the dm3 D. melanogaster genome assembly. Peaks consistent between strains (Fig. 4A) 

were considered those detected independently in at least five of the seven H3K9me3 ChIP-seq data sets 

analyzed (four biological replicates of control UASp>shW libraries, two replicates of nanos-gal4>dsWhite from 

GSE71374, and one replicate of DGRC#204406 from GSE46009). 

 

H3K9me3 peak conservation in D. virilis 

H3K9me3 ChIP-seq data from D. virilis ovaries was previously published (LeThomas et al., 2014). 

Libraries were processed using the same pipeline as for D. melanogaster, using the dvir-r-1.06 genome 

assembly version from FlyBase (St. Pierre et al., 2014). Only H3K9me3 peaks detectable in both biological 

replicates were considered. Orthologous genes in D. melanogaster and D. virilis were retrieved from FlyMine 

(Lyne et al., 2007). Genic H3K9me3 peaks of D. melanogaster genes were considered conserved if present 

within 2 kb of the annotated D. virilis orthologue. 

 

Non-reference TE insertions 

Non-reference insertions were annotated using the TIDAL pipeline (Rahman et al., 2015) with default 

parameters using merged reads that do not map to the reference genome (allowing two mismatches) from all 

experiments involving DNA sequencing (DNA from Input and ChIPs) from each strain (mtGAL4>shW and 

mtGAL4>shSu(var)2-10).  

 

Co-immunoprecipitation 

Expression vectors encoding GFP-fusion HP1 protein and Flag-fusion CG30403 proteins under the 

control of the actin promoter were cloned into entry cDNA clones and then transferred into pAWG or pAFW 

destination vectors from the Drosophila Gateway Vector collection using the Gateway system. Vectors were 

co-transfected into S2 cells, cultured in Schneider’s Drosophila Medium containing 10% heat-inactivated FBS 

and 1X penicillin-streptomycin with the TransIT-LT1 reagent (Mirus). Flag-CG30403 only (no bait) transfected 

cells were used as negative control. At 24-48 hours post transfection cells were harvested and lysed in lysis 

buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.2% NP-40, 0.2% Triton-X, 5% glycerol) supplemented with 

protease inhibitor cocktail (Roche). Lysates were incubated with GFP-Trap magnetic agarose beads 

(Chromotek) for 1-2 hours at 4 °C with end-to-end rotation. After incubation, the beads were washed five 

times with 500 µl wash buffer (0.1% NP40, 20 mM Tris, pH 7.4, 150 mM NaCl) containing protease inhibitor. 

Proteins were detected by Western blot using HRP-conjugated mouse anti-FLAG (Sigma, A8592) and rabbit 

polyclonal anti-GFP (Chen et al., 2016), followed by IRDye anti-rabbit secondary antibody (Li-cor 925-32211). 
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Data availability 

All RNA-seq and ChIP-seq data generated for this study and for the accompanying manuscript (Ninova 

et al, accompanying manuscript) were deposited into the Gene Expression Omnibus (GEO) database under 

accession GSE115277. H3K9me3 ChIP-seq data for shSov and respective controls was deposited to GEO 

under accession GSE125055. 
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Figure legends 
 

Figure 1. Su(var)2-10 depletion leads to transcriptome-wide changes in gene expression that correlate 

with changes in chromatin marks. (A) Differential gene expression analysis of Su(var)2-10 GLKD vs. 

control (shW) ovaries. Scatter plot of the mean expression of genes and transposons (x-axis) and log2-

normalized fold change between Su(var)2-10 KD and control (y-axis). Significantly up- or down-regulated 

genes and TEs (>2-fold change, FDR<5%; DESeq2) are highlighted. Data are from two biological replicates. 

(B) UCSC browser tracks show examples of euchromatic genes adjacent to reference (left) and non-reference 

(right) TE insertions sensitive to Su(var)2-10 GLKD. Histograms of the normalized signal from RNA-seq and 

ChIP-seq data, as indicated, from Su(var)2-10 KD and control ovaries. For ChIP-seq tracks, ChIP and Input 

signals are overlaid. Top panels show the gene structures at corresponding loci. The position of the non-

reference insertion is marked by a red line. Arrows indicate the direction of transcription. Numbers on the right 

are the RPKM values of exonic regions (RNA-seq, estimated by eXpress) or normalized ChIP/Input signal 

(ChIP-seq) in manually selected genomic intervals indicated by black bars.  

 

Figure 2. Su(var)2-10 and H3K9me3 are required for heterochromatic gene expression. (A) Epigenetic 

landscape of heterochromatic Su(var)2-10 target genes. Circle plot of the D. melanogaster chromosome arms 

and heterochromatic scaffolds (dm3 assembly). Tracks show, from outer to inner circles, orientations of 

chromosomal arms and scaffolds with annotated heterochromatic regions (red, see Methods), repetitive 

element percentage at 5-kb genomic intervals, H3K9me3 signal in control (shW) ovaries calculated for 5-kb 

genomic windows as log2-normalized ratio of ChIP-seq to Input RPKM values, log2-transformed fold change 

of H3K9me3 signal in Su(var)2-10 GLKD versus control (shW) ovaries for regions with >2 fold enrichment in 

control ovaries across different D. melanogaster strains (see Methods), and genomic position and log2-

normalized fold change in expression of heterochromatic genes in Su(var)2-10 GLKD versus control (shW) 

ovaries (based on RNA-seq). (B) Epigenetic profiles of heterochromatic Su(var)2-10 targets. From left to right: 

Heatmap of the normalized coverage and distribution of the H3K9me3 mark in control ovaries over the gene 

bodies and 2-kb flanking regions; heatmap of the percentage of RepeatMasker annotated regions within gene 

introns and 10-kb flanking regions; barplot of the fold change of steady-state RNA levels upon Su(var)2-10 

GLKD (RNA-seq); barplot of the normalized H3K9me3 enrichment in control ovaries; and barplot of fold 

change in H3K9me3 levels in Su(var)2-10 GLKD (ChIP-seq). Data are averages from two biological 

replicates. (C) Epigenetic changes at heterochromatic genes down-regulated upon Su(var)2-10 GLKD. 

Shown are average profiles of normalized H3K9me3, H3K4me3, and Pol II ChIP signals across gene bodies 

and 2-kb flanking regions for Su(var)2-10 GLKD (orange) and control (green) ovaries. Shaded areas reflect 

standard errors. (D) Examples of transcriptomic and epigenetic changes at the heterochromatic gene 

nAChRalpha4 upon Su(var)2-10 GLKD. UCSC browser tracks show the normalized read coverage of RNA-
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seq and H3K9me3, H3K4me3, and Pol II ChIP-seq data across the locus. Arrows mark direction of 

transcription. Top panel shows repetitive element annotations (RepeatMasker). Novel transcripts inferred 

from RNA-seq data are indicated by red bars. Red asterisk indicates ChIP peaks that appear in Su(var)2-10 

GLKD libraries. Numbers on the right are the RPKM values of exonic regions (RNA-seq) or normalized 

ChIP/Input signal (ChIP-seq) in manually selected genomic intervals indicated by black bars. (E) Boxplot of 

log2-normalized RNA expression from sense exonic and antisense intronic regions of heterochromatic genes 

upon Su(var)2-10 GLKD. Data are averages of two biological replicates. 

 

Figure 3. H3K9me3 loss induces transcriptional interference and aberrant isoform expression. (A) 

Su(var)2-10 loss leads to emergence of a novel, truncated Nipped-B isoform. UCSC browser tracks show the 

normalized read coverage of RNA-seq and H3K9me3, H3K4me3, and Pol II ChIP-seq experiments across 

the locus. New isoforms (see Methods) are shown in red. Arrows mark direction of transcription. Red asterisks 

mark differentially up-regulated novel region and corresponding peaks of H3K4me3 and Pol II. Bottom panels 

show the relative expression of detected isoforms. (B, C) Su(var)2-10 loss causes activation of upstream 

alternative TSSs and repression of canonical TSSs in unc-13 and CG10417 loci. UCSC browser tracks show 

the RNA-seq and ChIP-seq signal in control and Su(var)2-10 GLKD ovaries. In all panels, numbers on the 

right to ChIP-seq tracks are the normalized ChIP/Input signal (ChIP-seq) in manually selected genomic 

intervals indicated by black bars. 

 

Figure 4. Loss of H3K9me3 islands over euchromatic genes leads to ectopic gene expression. (A) A 

subset of euchromatic genes repressed by Su(var)2-10 have discrete H3K9me3 peaks consistent between 

different strains of Drosophila. Heatmap of the normalized coverage of H3K9me3 mark in control ovaries over 

the gene bodies and 2-kb flanking regions of Su(var)2-10-repressed euchromatic genes. Side bars indicate, 

for each gene, whether H3K9me3 peaks are present in ovaries of different D. melanogaster strains (see 

Methods), whether non-reference TE insertions are present within gene bodies and 1-kb flanking regions, the 

percentage of RepeatMasker annotated regions within gene introns, and the percentage of RepeatMasker 

annotated regions within 10-kb flanking regions. (B) Boxplot of the number of 23-29-nt RNAs that can be 

aligned to Su(var)2-10/H3K9me3 repressed genes and 1-kb flanking regions localized near TEs or in TE-free 

regions. (C) Heatmap of z-scaled expression levels of euchromatic genes localized in TE-free regions that 

are de-repressed upon Su(var)2-10 GLKD and that harbor H3K9me3 peaks. Tissue expression data was 

retrieved from the modEncode Anatomy database. The sidebar indicates whether genes have orthologues 

with conserved H3K9me3 peaks in D. virilis. (D-F) UCSC browser tracks show the normalized read coverage 

of RNA-seq and H3K9me3 ChIP-seq signal for the mtsh locus, E) the endo-siRNA locus CG18854, and F) 

the small RNA-seq and H3K9me3 ChIP-seq signal for the mir-991/992/2498 locus in indicated knockdown 

and corresponding control ovaries. Numbers on the right in panels D and E are the RPKM-normalized mRNA 

expression levels. Numbers on the right in panel F are RPM-normalized microRNA read counts for each 
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hairpin (small RNA-seq). Normalized ChIP/Input signals (ChIP-seq) in manually selected genomic intervals 

are indicated by black bars.  

 

Figure 5. The H3K9me3 mark regulates factors involved in heterochromatin formation. (A) UCSC 

browser tracks of the normalized signal from RNA-seq and ChIP-seq in GLKD and control ovaries for four 

factors involved in heterochromatin regulation. Bottom panel shows conservation of the H3K9me3 peaks at 

orthologous loci in D. virilis. Numbers on the right are RPKM-normalized mRNA expression levels (eXpress) 

or the normalized ChIP/Input signal (ChIP-seq) in manually selected genomic intervals indicated by black 

bars. Data are representative of two biological replicates. (B) Barplot of the relative expression of wde and 

sov nascent transcripts (RT-qPCR) in ovaries of controls (shW) and flies depleted of Wde or Sov proteins. 

Fold changes in the nascent transcripts were measured using intronic primers. Error bars show standard 

deviations from three biological replicates. The asterisks indicate significant differences compared to shW, 

p<0.05 (Student’s two tailed t-test). (C) Barplot of the relative gene expression of indicated genes (RT-qPCR) 

in control (shW) ovaries and upon indicated GLKD by shRNA. Error bars show standard deviations from three 

biological replicates. Asterisks indicate significant difference compared to the shW samples, *p<0.05 , 

**p<0.01, ***p<0.001; “n.s.” indicates not significant (Student’s two tailed t-test). (D) Heatmaps of all-versus-

all summaries of heterochromatin factor fold changes upon GLKD compared to corresponding shW controls. 

Values are fold changes in knockdown vs. corresponding shW controls determined by DESeq2 for RNA-seq 

derived data (from experiments shown in panel A) or average relative expression levels (experiments shown 

in panels B and C).  “n.s.” denotes values that were not statistically significant according to DESeq2 analysis 

(RNA-seq data) or 2-tailed Student’s t-test (RT-qPCR data). §For regulation of sov and wde upon their 

corresponding mRNA knockdown, shown are fold changes in the nascent transcripts measured by intronic 

primers (see main text and panel B).  

 

Figure 6. Model of how euchromatic sensor genes regulate cellular H3K9me3 levels. Sensor genes 

such as wde encode essential components of the heterochromatin maintenance machinery. These genes 

reside in canonical euchromatin but are themselves repressed by H3K9me3 located over their gene bodies. 

Loss of H3K9me3 over these sensors leads to up-regulation, and production of these proteins, such as Wde, 

facilitating re-establishment of normal levels of H3K9me3 throughout the genone and at sensor genes 

themselves, thereby limiting expression and further silencing activity of the sensors.  

 

Supplementary Materials 

 

Figure S1. Loss of H3K9me3 islands at euchromatic genes leads to ectopic gene expression. 

Regulation of testis-biased endo-siRNA locus CG44774/CG4068/esi-2 through a Su(var)2-10-dependent 

H3K9me3 mark. UCSC browser tracks show the RNA-seq and H3K9me3 ChIP-seq signals in the indicated 

conditions. The CG44774 gene is marked by a Su(var)2-10- and SUMO-dependent, but Piwi-independent, 
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H3K9me3 peak and is expressed at low levels in the ovary. Su(var)2-10 GLKD leads to H3K9me3 loss and 

transcript up-regulation. Areas shaded in grey represent repetitive regions where reads did not align uniquely.  

 

Figure S2. Sov regulates genome-wide H3K9me3 profiles. (A) Circle plot of the H3K9me3 genome-wide 

distribution and fold changes upon Sov GLKD. Outer circle shows the enrichment of H3K9me3 (IP/Input) for 

5-kb genomic windows in control ovaries. Black tiles indicate 5-kb windows enriched in H3K9me3 (>2 IP/Input 

signal ratio). Inner circle shows the fold change of H3K9me3 signal between Sov KD and control ovaries for 

H3K9me3-enriched regions. (B) Boxplot of the log2-transformed fold change of H3K9me3 signal upon Sov 

GLKD relative to control ovaries for 5-kb genomic windows enriched or depleted of H3K9me3 signal (>2 fold 

enrichment cutoff). (C) CG30403 interacts with HP1. Flag-CG30403 and GFP-HP1a were co-expressed in 

S2 cells. Western blot shows results from co-immunoprecipitation using GFP-HP1 as a bait.  

 

Table S1. List of primers used in RT-qPCR experiments. 
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