
 
www.sciencemag.org/cgi/content/full/science.aau7230/DC1 

 
 

 
 

Supplementary Material for 
 

A degenerate Fermi gas of polar molecules 
 

Luigi De Marco, Giacomo Valtolina, Kyle Matsuda, William G. Tobias, Jacob P. Covey, 
Jun Ye* 

 
*Corresponding author. Email: ye@jila.colorado.edu 

 
Published 17 January 2019 as Science First Release 

DOI: 10.1126/science.aau7230 
 

This PDF file includes: 
 

Materials and Methods 
Figs. S1 to S3 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216298413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 
 

Supplementary Materials 

Materials and Methods 

 

Preparation of degenerate atomic species. In an atomic vapor cell (P ~ 10-7 torr), a dual species magneto-

optical trap (MOT) cools and traps Rb and K atoms. Once the MOT is fully loaded, a compressed MOT 

stage further cools the atoms, which is followed by sub-Doppler cooling. Both bright and Λ–enhanced gray 

molasses are sequentially performed on the D2 transition of Rb for 2 and 8 ms, respectively, and the atoms 

reach a final temperature of 10 µK. Simultaneously, Λ–enhanced gray molasses is performed for 10 ms on 

the D1 transition of K, which reaches a final temperature of 20 µK. After reloading the atoms into the 

quadrupole field, adiabatic compression raises their temperature to 100 µK, and 1 × 109 Rb and 7 × 107 K 

are captured in the |F, mF⟩ = |2, 2⟩ and |9/2, 9/2⟩ states, respectively. 

 Atoms are spatially transported ~1 m to a high-vacuum science cell (P ~ 10-11 torr) by physically 

translating the anti-Helmholtz coils producing the quadrupole field. The quadrupole trap is plugged with a 

blue-detuned beam (20 µm waist, 760 nm), and magnetic evaporation is performed with a chirped driving  

of the |2, 2⟩ ⟶ |1, 1⟩ transition of Rb using a microwave horn at 6.8 GHz. Potassium is sympathetically 

cooled, and at the end of magnetic evaporation, 6 × 106 of each species remain at 4 µK. 

 Once magnetic evaporation is complete, a crossed optical dipole trap (xODT) is turned on to capture 

the cold atoms, and the quadrupole field and plug beam are ramped off while a bias field of 30 G is turned 

on. The xODT is formed by two elliptical beams at 1064 nm with waists of 45 × 170 µm crossing at 45°. 

Optical evaporation is performed by exponentially ramping the beams to variable cuts (~1/10 of their initial 

value) and then recompressing the trap such that the K trap frequencies are (ωx, ωy, ωz) = 2π × (45, 250, 

80) Hz. Depending on the final trap depth, the atom number and temperature can be varied significantly. 

Typically, 106 Rb and 1.4 × 106 K atoms at 300 nK, or 7 × 104 Rb and 5 × 105 K atoms at 50 nK can be 

produced. 

 During optical evaporation the atoms are transferred to the Feshbach states using adiabatic rapid 

passage (ARP). Rubidium is transferred from |2, 2⟩ ⟶ |1, 1⟩ and K from |9/2, 9/ 2⟩ ⟶ |9/2, -9/2⟩; each is 

transferred with about 98% efficiency and untransferred atoms are blasted out of the trap with resonant 

light. Once optical evaporation and state transfer are complete, the bias field is ramped to 550 G in 

preparation for molecule production. The progression of atom numbers and temperature throughout the 

experimental cycle is shown in Fig. S1. 

 

Production and imaging of ground state KRb. In order to prevent gravitational sag from inducing 

oscillations in the ground-state molecules, a vertical lattice formed by two counter-propagating beams 

(170 µm waist, 1064 nm) is adiabatically ramped on. It is found that a lattice depth of 30 Er
Krb is sufficient 

to suppress the effects of gravitational sag. Once molecules are produced, the lattice is ramped off in 5 ms. 

 In the corrugated trap, weakly bound Feshbach molecules are produced by sweeping the magnetic 

field through the Fano–Feshbach resonance at 546.6 G. The field is swept from 556 G to 545.6 G in 3 ms. 

Conversion from unbound atoms to Feshbach molecules varies significantly depending on the initial 

temperature of the atoms, and it can be as high as 50% at low temperature and as low as 15% at high 

temperature. 

 Molecules are transferred to the rovibronic ground state using stimulated Raman adiabatic passage 

(STIRAP). The two STIRAP lasers, which operate at 968 nm and 689 nm, are each locked to a common 

high-finesse optical cavity using the Pound–Drever–Hall method. The STIRAP sequence is 4 µs long, and 

has a transfer efficiency of ~90%; the reported molecule numbers are corrected for this efficiency. 

 Immediately after molecule production, unpaired atoms are removed from the trap to mitigate 

molecule loss. To remove K, a 30 µs pulse of resonant light is applied to blast K out of the trap while 

leaving the molecules unaffected. To remove leftover Rb, which is in the |1, 1⟩ state, four ARP + blast 

sequences are applied to ensure the total removal of Rb. The molecule number and temperature are found 

to be unaffected by the atom removal, which corroborates our expectation that KRb + KRb reaction 

products are ejected from the trap without affecting the remaining molecules. 
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 To image molecules, the xODT is diabatically turned off and the STIRAP sequence is reversed to 

produced Feshbach molecules once again. The magnetic field is then jumped across the resonance to 

dissociate the weakly bound molecules into free atoms and the K atoms are imaged on the |9/2, 9/ 2⟩ ⟶ 

|11/2, -11/2⟩’ cycling transition after a variable amount of time of flight. We may also image Feshbach 

molecules directly without dissociation by using resonant light to separate the molecules into free atoms. 

In this case, we must account for the reduced absorption cross section compared to free atoms, which we 

find to be about 0.7 times smaller. 

 

Image Fitting. The molecular cloud is imaged from the side at an angle of θ = 22.5° with respect to the 

principal axes of the trap. The imaging axes are 

                                              𝑥1   =
𝑥sin𝜃 + 𝑧̂cos𝜃

√2
                                          (S1a) 

 

                                                               𝑥2 =  𝑦.̂                                                     (S1b) 

 

The 2D column density distributions are fit to either a Maxwell–Boltzmann distribution for T/TF ~ 1 or a 

Fermi–Dirac distribution for T/TF ≪ 1. 

 For the Maxwell–Boltzmann distribution, we fit to 

                                         𝑛Cl = 𝑛0𝑒
−

1
2(

𝑥1
2

𝜎1
2 + 

𝑥2
2

𝜎2
2)

+ 𝑐,                                       (S2) 

 

with n0, {σi}, and c as fitting parameters. Respectively, these are the peak density, the size of the cloud 

along each imaging axis, and the imaging offset. The cloud sizes are related to the classical temperature of 

the gas via 

                                     𝜎𝑖 =
√1 + (𝜔𝑖𝜏)2

𝜔𝑖

√
𝑘B𝑇

𝑚
,                                               (S3) 

 

where kB is Boltzmann’s constant, m = 127 amu is the molecular mass, ωi is the trap frequency along the ith 

direction, and τ is the time of flight. 

 For the Fermi–Dirac distribution, we make the Thomas–Fermi approximation and fit to 

 

                               𝑛FD =  −𝑛0Li2 (−𝑧𝑒
−

1
2(

𝑥1
2

𝜎1
2 + 

𝑥2
2

𝜎2
2)

) + 𝑐.                          (S4) 

 

Here, z is the fugacity, which is a fitting parameter in addition to those described above, and Lis(z) is the 

polylogarithm function. The quantity T/TF is determined solely by the fugacity according to  

                                                 (
𝑇

𝑇𝐹
)

3

= −
1

6Li3(−𝑧)
                                      (S5) 

 

 Azimuthal averaging for Fig. 2 is carried out by converting the image from Cartesian coordinates 

(𝑥1and 𝑥2) to polar coordinates (r and ϕ) and averaging over the ϕ variable. Fitting of the momentum 

distributions is done before azimuthal averaging, and the data and fits are averaged separately.  

 

Density loss fitting. In a classical, harmonically trapped gas, the in situ average density is given by 

                                       𝑛(𝑇) =
𝑁

𝑉
=

𝑁

8𝜋3/2
𝜔̅3 (

𝑘𝐵𝑇

𝑚
)

−3/2

,                        (S6) 
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where 𝜔̅ = (𝜔1𝜔2𝜔3)1/3 is the geometric mean trap frequency. Differentiation of the above equation with 

respect to time yields Eq. 1, with 𝑁̇ =  −𝛽𝑛2𝑉 being the rate at which particles are lost. 

 Since, according to the Bethe–Wigner threshold law, the two-body rate constant is proportional to 

temperature, it is convenient to write β = bT, with b independent of temperature. Then, the rate equation 

reads 

                                               
d𝑛

d𝑡
= −𝑏𝑇𝑛2 −

3

2

𝑛

𝑇

d𝑇

d𝑡
.                                     (S7) 

  

While, in principle, anti-evaporation is the main source of heating, we observe a linear increase in 

temperature over the course of the hold time of the molecules; an example of which is shown in Fig. S2a. 

We therefore do not fit T, but measure it to be T = T0 + ht, where h is the heating rate and t is the hold time. 

With this, Eq. S7 becomes 

                                     
d𝑛

d𝑡
= −𝑏(𝑇0 + ℎ𝑡)𝑛2 −

3

2
𝑛

ℎ

𝑇0 + ℎ𝑡
.                         (S8) 

 

The closed form solution for Eq. S8 is  

                     𝑛(𝑡) =
𝑛0ℎ𝑇0

3/2

(ℎ𝑡 + 𝑇0) (2𝑛0𝑇0
2(√𝑇0 − √ℎ𝑡 + 𝑇0)𝑏 + ℎ(√ℎ𝑡 + 𝑇0 + 2𝑛0𝑇0

3/2
𝑏))

,                  (S9) 

 

and density loss curves are fit to this equation. Example density loss curves and their corresponding fits are 

shown in Fig. 3b. 

 In our analysis, b and n0 are fitting parameters, while T0 and h are measured. T0 is measured at time 

t = 0 by averaging 3–5 images and fitting to the Fermi–Dirac distribution, while h is measured by 

considering the increase in σi
2 ∝ T as a function of time. Despite the heating, molecular degeneracy is 

preserved over the course of the molecules’ lifetime, as shown in Fig. S2b. 

 In Figs. 4a and 4b, the quantities plotted are β = bT0 and b = β/T, respectively. 

 

 

 

 

Density Fluctuations in an Ideal Fermi Gas 

 

 Within the Thomas–Fermi approximation, the density distribution of the ideal Fermi gas is given 

by 

                              𝑛(𝒓) = −
1

Λ3
Li3/2(−𝑧𝑒−𝛽𝑉(𝒓)).                        (S10) 

 

In the grand canonical ensemble, fluctuations in density are described in the thermodynamic limit by 

𝛿𝑛(𝒓)2 = ⟨𝑛2(𝒓)⟩ − ⟨𝑛(𝒓)⟩2 =
1

𝛽

𝜕𝑛(𝒓)

𝜕𝜇
= −

1

Λ3
Li1/2(−𝑧𝑒−𝛽𝑉(𝒓)).                   (S11) 

Local relative number fluctuations are therefore described by  

 

                                                         
𝛿𝑛(𝒓)2

𝑛(𝒓)
=

Li1/2(−𝑧𝑒−𝛽𝑉(𝒓))

Li3/2(−𝑧𝑒−𝛽𝑉(𝒓))
.                               (S12) 

 However, in our experiment, we do not consider reactions locally, but rather globally. Therefore, 

it is necessary to average over all fluctuations in the trap. The normalized spatial probability distribution is 

given by 
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                       𝑓(𝒓) =
𝑛(𝒓)

𝑁
= Λ3 (

𝑚𝜔̅

ℎ
)

3 1

Li3(−𝑧)
Li3/2(−𝑧𝑒−𝛽𝑉(𝒓)),                    (S13) 

 

so that the size of fluctuations averaged over the trap is  

 

                                                 
⟨𝛿𝑛(𝒓)2⟩

⟨𝑛(𝒓)⟩
=

∫ 𝑑𝒓𝑓(𝑟)𝛿𝑛(𝒓)2

∫ 𝑑𝒓𝑓(𝑟)𝑛(𝒓)
 .                                   (S14) 

 

The average suppression of fluctuations is compared to the suppression of fluctuations in the center 

of the trap in Fig. S3. It is also clear from Fig. S3 that fluctuations are only suppressed at the edge of the 

trap (3σ) for T/TF < 0.2, which is consistent with our expectation that chemical reactions are only strongly 

suppressed at the center. 

  



5 
 

 
Figure S1: Experimental sequence. The upper panel shows the number of Rb, K, and KRb, while the lower panel 

shows the temperature of the mixture over the course of the experimental cycle. A single curve is shown for 

temperature since the atomic species remain thermalized. The time axis is not to scale. 

 

 

Figure S2:  a. Heating Rate. The typical temperature of a molecular gas as a function of time. b. Degeneracy Loss. 

Despite the heating, T/TF remains small so long as ht ≪ T0. 
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Figure S3: Density Fluctuations in an ideal Fermi gas. Relative density fluctuations in a harmonically trapped 

Fermi gas at various positions. The bold line corresponds to the average over the trap. 


