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ABSTRACT
This paper focuses on two main categories of the multiconjugate adaptive optics (MCAO) parameter space for
performance optimization: the geometrical configuration of guide stars and deformable mirrors (DMs) , and the
wavefront reconstructors. From the first category it is shown how, for a fixed reconstructor and imaging wavelength,
the performance metrics with a few important exceptions improve with an increasing number of i) DMs, ii) actuators
per DM and iii) guide stars. The metrics are seen to degrade with i) an increasing field of compensation and ii) DM
conjugation altitude mismatch with the significant turbulent atmospheric layers. In the second category, this study
also compares the performance with a fixed MCAO configuration using the least-square estimator (LSE) and the
maximum a posteriori estimator (MAP) for wavefront reconstruction. The MAP is shown to perform significantly
better than the LSE at low or intermediate signal-to-noise ratios (SNRs) , and somewhat better even in the absence
of noise due to its a priori knowledge of the phase statistics.

Keywords : Multiconjugate adaptive optics, control algorithms , wavefront reconstruction

1. INTRODUCTION
First proposed in 1988,1 MCAO is today emerging as one of the most promising concepts for field-widening of
adaptive optics compensation, which up until now has been able to provide a high degree of correction only within
a small angular field about the size of the isoplanatic patch. It is also a key technology for future generations of
extremely large telescopes, which will not be feasible without MCAO.24 Previous studies have demonstrated the
potential of MCAO,59 and in this paper a number of specific configurations and control algorithms are investigated
in an effort to understand the fundamental behaviour of MCAO systems and how to optimize their performance.

An MCAO system employs an ensemble of guide stars, which allow for three-dimensional tomography of the
atmospheric turbulence, and a number of altitude-conjugated DMs to widen the compensated field of view by cor-
recting the phase distortions in situ. The commands applied to the DMs are calculated by a wavefront reconstruction
algorithm that is an optimal estimator designed to produce commands that are optimal in, for instance, a least-square
or a minimum variance sense. MCAO for 8-m class telescopes must by necessity be supported by laser guide stars
(LGS), as, were only natural guide stars (NGS) to be used for probing the atmospheric turbulence over a several
arc minute field, the sky coverage would be too poor to justify an MCAO instrument.'0'2 Due to the inability of
LGS to determine the global tip and tilt over the aperture though, a few NGS must still be used for tip/tilt sensing.
Since these global modes may be controlled at a lower bandwidth and because the whole telescope aperture is used
for a light-bucket, however, the requirements on NGS magnitudes are relaxed by a substantial factor to allow a fair
fraction of the sky to be accessible to MCAO.

2. WAVEFRONT RECONSTRUCTORS
The wavefront reconstructor E is the brain of the AO system, estimating the optimal DM commands c from wavefront
sensor (WFS) data s according to some a priori optimization criterion to give c = Es. Two reconstructors are
considered in this study: the LSE and the MAP.
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2.1. Least square estimator
In an AO system with an ideal noise-free Shack-Hartmann WFS we assume that there is a linear relationship between
the n actuator commands c and the m slope measurements s according to

s=Gc, (1)

where G is the m x n interaction matrix. To estimate the actuator commands one needs to invert the relationship (1),
either by the generalized matrix inverse (aka the Moore-Penrose pseudoinverse) or by singular value decomposition
(SVD). Depending upon the DM/WFS geometry there will be a number of highly singular modes and at the very
least two - the piston and waffle modes - that must be filtered out before inversion. Hence the SVD is the preferred
method as it explicitly delivers the singular values and subject them to filtering according to some a priori threshold.
Decomposing G with the SVD, inverting and filtering, involve these three steps:

G = UAVT (2)G' = VA1UT (3)
P218 = VFUT, (4)

where

A = diag({A}1) , the singular values (5)

F — I AT' for valid modes
(6)ii —

0 for singular modes

are diagonal matrices and U and V are orthonormal matrices. The notation E1 is introduced for the least-square
reconstruction matrix, or just reconstructor, which in this case is just the filtered inverse of G. The least-square
optimized actuator commands are thus given by the reconstructed slope measurements according to c =E18s. This
solution is a least-square estimate in the sense that the squared norm of the measurement error E3 fjs

— Gd!2 15
minimized.

2.2. Maximum a posteriori estimator
Although the ideal LSE performs rather well under a relatively wide range of conditions, it is worthwhile to consider
a more realistic case where the WFS measurements are distorted by a purely additive random noise n such that

s=Gc+n. (7)

In the case of Gaussian statistics for the noise, a noise-weighted least-square optimal estimate (aka the Gauss-
Markov estimate, GME) of the actuator commands may be derived from a probabilistic approach using the maximum
likelihood technique. The GME solution is flawed, however, in that another singular inversion presents itself so that
G must be pre-filtered anyhow. This solution may be regularized, however, by employing a maximum a posteriori'3
technique in stead, and as this result contains features attractive to MCAO applications this study will leave the
GME and focus on the MAP. Employing the Bayes' formula for conditional probabilities, one may inquire about
the probability that a certain set of actuator commands c produced what was actually measured s, and attempt to
maximize this quantity:

P(cls) = P(c)P(slc)
(8)

Assuming Gaussian statistics for the WFS noise and for the phase distortion at any point in the field, the various
terms in (8) are readily derived as x2 expressions. The equation may then be differentiated with respect to c and
solved for the optimal MAP estimator8'4:

Emap = (9)

The terms C, (T) and C (ccT) are the closed ioop covariance matrices of the noise and the actuator
command vectors, and it may be shown that the MAP estimate is also optimal in the least-square sense. For low
SNRs, the regularization term C' will dominate the expression within parentheses and keep it invertible. What
this means, generally speaking, is that when there is a lot of noise in the system, the reconstructor will trust the
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measurements less and less and use the a priori knowledge of the atmospheric statistics instead for reconstructing
the phase. For high SNR the GME term will dominate, and the MAP solution converges to the GME in the limit of
no noise.

For MCAO, the inclusion of phase statistics has another consequence altogether. Although perhaps not the most
severe, one of the fundamental limitations to MCAO relying on tomography is still the fact that some portions of
the atmosphere (where there is no measurement redundancy) will not be mapped tomographically.'5 In the outer
regions of the field where there is no overlap between the guide star beams, the reconstructor will not be able to
position the measured phase distortions vertically, and tomography fails. With some knowledge of the phase statistics
though, be it only a generic estimate, the reconstructor may use this information to distribute the correction among
the DMs in a fashion that on the average will be more right than wrong, and long-exposure performance will improve.

3. MCAO SIMULATION
The MCAO configurations and reconstructors have been tested in a Monte Carlo simulation that closely models the
spatial characteristics such as fitting, anisoplanatism and spatial aliasing errors of a closed loop Shack-Hartmann
(SH) based MCAO system. Temporal issues such as servo lag effects and the temporally augmented WFS noise are
not modeled, hence the loop may be closed with zero frame delay. The WFS slope vectors are calculated from the
average phase gradient over the subapertures, and WFS noise is modeled only with respect to photon shot noise. This
means that no account is taken for the effects of subaperture spot deformation due to extended beacons or partially
illuminated subapertures. More detailed simulations including these effects7"2 give similar results, however, which
suggests that this simplified model gives a good first-order estimation of the performance. The algorithm is sketched
in block-diagram form below, where the phase maps q, and L' are field dependent quantities and s and c refer to
multiple WFSs and DMs respectively (cf. §3.1).

The simulation computes the pupil plane residual phase distortion upon adaptive correction for atmospheric tur-
bulence, adopting the near-field approximation and neglecting scintillation effects. Taking r as the pupil plane
coordinate and 9 as the all-sky field angle, the residual phase may be written:

(r,9) = i(r — h10) — : k(7r — hk9), (10)

where cDi is the turbulent phase of layer 1 at altitude h1 , and çb is the mirror deformation of DM k conjugated to an
altitude hk. The scale factor y accounts for the LGS cone effect when (10) is calculated in the WFS measurement
algorithm, and it assumes the value

h 1 1 9=c1gs= 1 —
—S(cE198), 5(ct) = 0 otherwise ,

(11)

where h is the altitude, h198 is the LGS altitude and ci98 is the vector of LGS directions. The SH-WFS measurement
vector is proportional to the subaperture spot centroid, which is calculated from the average gradient of the phase,

s(9) o fdrV(r9) s o fdrV(rai) (12)
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Figure 1 . Left panel: layered 50% Cerro Pachon turbulence profile for an 8-rn telescope in K
band at a 2.7 km elevation, expressed in D/ro. Right panel: structure functions of a theoretical
Kolmogorov spectrum (solid) and the phase screens used in the simulation.

where the directions for measurements have been restricted to the i guide star directions c. In b the piston, and
for LGS also the tip/tilt components, have been projected out according to

= — m(r) fdr'mi(r')(r'i) (13)

where m3 (r) are the modes to be removed and P the pupil area. The interaction matrix G is the Jacobian of WFS
measurements to DM commands, G =as/Dc, which is obtained during the initialization of the system by poking one
actuator at a time and measuring the response. The mode matrix H is likewise the Jacobian of mirror deformations
to actuator commands, H = açb/ac, with the DM influence functions or any other desirable modes for its columns.
Ignoring temporal complications, the process of measurement, reconstruction and building the k mirror deformations
can be written

k (14)

where N9 is the number of guide stars. The DMs are modeled with the characteristic influence functions of a
piezostack DM, where the pupil plane DM is configured in a Fried geometry with respect to the WFS subapertures.
The LGS have been fixed to an X-like configuration consisting of five sodium LGS at 90 km, and the four tip/tilt
NGS are distributed in-between (ci. top left panel of figure 2) in a fashion that fills the field adequately. For global
tip/tilt sensing only three NGS are required, but we have used four here merely for the benefit of symmetry. This
allows for a faster evaluation, and there is only a marginal increase in performance when going from three to four
NGS as long as noise sensitivity is not concerned. The photon shot noise on the beacons was modeled by adding a
random vector of Gaussian statistics with standard deviation am to the SH-WFS slope vector, expressed in radians
of average phase difference between the subaperture edges. The subaperture variance cri was given by1'

2 ( s 2 2
15am _ ) Npder ' ( )

where Npde S the number of photo detection events (PDEs) in the subaperture detector, A and Aim the sensing and
imaging wavelengths respectively and r the integrated Fried parameter at the sensing wavelength. This is not the
best formula for LGS since it neglects effects of LGS spot size. As only LGS are considered for high-order beacons
in this study, however, this approximation will result in a systematic error affecting all simulations equally.
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Figure 2. Configuration and data for the generic 3-DM (12 x 12 WFS subapertures) system
described in section 4. Upper left: configuration of natural (N) and laser (L) guide stars, and
field evaluation points (dots). Upper right: normalized singular values of the conventional (plus)
and multiconjugate (star) AO system. Lower left: Strehi ratio versus field angle for AO/MCAO
systems. Lower right: surface plot of the MCAO Strehi ratio.

3.2. Modeling of the atmosphere
The atmospheric turbulence is modeled by a C, profile obtained from generalized-SCIDAR and balloon data at
Cerro Pachon'6 (CP), where the Gemini-South 8-m telescope is being constructed. Adopting the Taylor hypothesis
of frozen turbulence, the 50% CP data was compiled and discretized into a 7-layer profile by fitting Gaussians to
the real data and assigning a delta function containing the total energy of the Gaussian to their respective offsets.
Figure 1 (left) shows the turbulence profile thus obtained, expressed in D/ro for an 8-m telescope in K band. The
integrated Fried parameter in V band (0.55 m) is r0 = 16.6 cm, which is equivalent to an overall seeing of E1 0.7".

The phase screens used for simulating the turbulent layers were generated from the theoretical Kolmogorov power
spectral density (PSD) by the FFT method. The phase map is obtained by adding a uniformly distributed random
phase to the square-root of the Kolmogorov PSD 4ko1 before applying the Fourier transform: ço = .'F [V"e'].
Figure 1 (right) compares the structure functions
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Figure 3. Left: on-axis ratio of AO and MCAO Strehi ratio for LSE (solid) and the MAP
(dot-dash) estimator. Right: (symbols) and as (symbols+line) for the generic 3-DM system
(diamonds) and the 2-DM system used in §4.1.2 conjugated to [0,8] km (stars), as a function of the
number of modes discarded after filtering.

of the theoretical Kolmogorov and the computer generated phase screens. At small separations p, the discrepancy is
negligible to none, and while the difference grows at larger separations this is not a big concern, as it actually bends
off in the right direction. A more realistic PSD (e.g. the von Karman spectrum) would show a similar behavior due
to the finite outer scale of the turbulence. Due to the periodicity of the Fourier transform, however, the FFT method
imposes an outer scale to phase screens generated even from Kolmogorov statistics, but it is typically a much larger
scale than would be assumed for a von Karman spectrum. Since the screens were generated in a 2048 x 2048 format,
this outer scale would for an 8-rn pupil D be L0 = 16384/D2 rn, where is the number of pixels across D. For
the values of that concern the simulations in this paper we find that L0 250 — 500 rn.

4. NUMERICAL RESULTS
The MCAO system compensation quality has been evaluated in a triangular area covering one eighth of the full field,
cf. figure 2 (top left panel), with the square area within the LGS chosen as the field relevant to optimization. The
main metrics chosen for evaluating the performance are the average S and the standard deviation as (or sometimes
the relative standard deviation ös as/S, aka uniformity) of the long exposure Strehl ratio (S(9)) within this field.
S(O) was estimated from the residual phase variance by the approximation 8(6) =exp[—cr,(O)], where

a(O) =
[fdr2(r,9)

_
(fdr(r9))2]

, (17)

bearing in mind that the exponential approximation is an underestimation below S ' 0.2. Figure 2 shows an
example of a typical data output from one simulation, here for a 3-DM system with a 12 x 12 subaperture SH-WFS
and [13, 11, 9] actuators across the diameter of the three DMs conjugated to {O, 4, 12] km. The performance metrics
for this system (henceforth referred to as the "generic" system) in K band with no noise are S = 0.67 and 6s = 2.6%.
When citing number of actuators across the pupil, the relevant measure in reality is the actuator pitch d, which
defines the spatial cut-off frequency f = 1/2d of the DM. The pitch is given by d = W/(N — 1), where W is the
meta-pupil diameter and N the number of actuators across W. W also depends on the conjugation altitude h, the
LGS altitude h198 and the angle c to the LGS according to

W = D (i — +2h d = N—i [D (i —
+ 2h]. (18)

This parameter (d) goes into the estimation of the fitting error, and it is seen that d mainly depends upon N, as c
and h will be correlated to N.
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4.1. Modal filtering
One major hassle that complicates the analysis of least-square type reconstructors is the subjectivity in the choice of
conditioning number. Strictly, to obtain the optimal performance for a given configuration, one should test it for all
choices of conditioning numbers and choose the optimal. Figure 3 (right panel) shows S and as for the generic 3-DM
system (solid curve) and a 2-DM system of the same order (dot-dashed curve) . There is clearly some dependence
upon conditioning number, and moreover, this dependence varies between configurations. It seems thus very difficult
to know beforehand what a good conditioning number will be for a specific system, and only checking them all would
reveal. Unfortunately such an optimization was not possible for the simulations in this paper, and an empirically
"sound" conditioning number was chosen for each configuration. This may be expected to produce some spurious
effects occasionally, though we believe this to be a second order effect in most (but not all) cases considered here.
The fundamental reason for the inadequacy of this naive absolute filtering criterion is that the WFS sensitivity to
a specific mode need not necessarily correlate with the atmospheric content in that mode. That is, some modes
which are poorly sensed by the WFS - and thus likely to be filtered - may still contain a non-negligible amount of
atmospheric turbulence statistics, and vice versa. A more careful filtering might alleviate this effect by projecting
the SVD modes on Zernikes to get a measure of the atmospheric content in the mode, but this was not done in the
simulations presented here. Another effect, particular to MCAO, is that locally well sensed modes on the individual
DMs may combine to form globally singular modes as seen from the WFSs (the DM "null modes", cf. reference [15J).
This will result in a disproportional number of modes being filtered out as the number and order of the DMs grow,
but it is unclear whether this is liable to cause trouble for high-order multiple-DM configurations to the extent that
performance is affected.

4.2. Geometrical configurations
For the purpose of probing some of the geometrical MCAO configuration space, the wavefront reconstructor, the
imaging wavelength and the number of PDEs have been kept fixed as the geometrical parameters are varied. Thus
all simulations in this subsection were done with the LSE reconstructor in K band (2.2 ,um) and without any WFS
noise.

4.2.1. Field of compensation
The configuration parameter that seems to be the most crucial to the anisoplanatism error budget is the density
of high-order reference beacons, e.g. the LGS. For a fixed number of LGS (which is the case we are considering)
this translates directly into the size of the field one wishes to correct. Invariably, one finds that the quality of
compensation decreases with an increasing field (e.g. decreasing LGS density). Hence, the size of the science field
will ultimately be governed by what kind of penalties MCAO observers are ready to take in performance. The science
field was defined as the square marked by the four LGS in the corners of the "X" , and the distance cited as "LGS
distance" is half the side of this square. Using the generic intermediate-order 3-DM system described above, the LGS
distance was varied between 17" —44" in steps of 4.5", and the results are plotted in the upper half of figure 4. There
are two ways of comparing the performance for a given system configuration as the field size varies: either one keeps
everything else fixed, or one allows the size of the altitude-conjugated DMs to vary to accommodate the changing
size of the meta-pupil at different altitudes. These two alternatives may be expected to give slightly different results
as the former experiences a loss of number of effective actuators when the field increases (solid line) , and the latter
changes the spatial frequency content of the DMs (dot-dashed line) . Which case is the more correct or representative
may be debated, but whichever one chooses for a norm, the other one will then be contaminated by a spurious effect.
But as the plots show, these effects are not very prominent anyhow, making the distinction a non-issue.

4.2.2. DM conjugation altitudes
A key issue in the design of an MCAO system is the conjugation altitude of a particular DM. In most cases there will
be a unique location that is optimal in, for instance, average Strehl ratio or uniformity over the field. These metrics
need not necessarily be optimal at the same altitude, however, which again introduces a subjectivity in the definition
of what should be thought of as optimal performance. To first order, this optimal altitude is purely a property of the
atmospheric turbulence distribution, but it is plausible that it is also a function of the size of the science field and
the order of the system. As with varying the field size previously, it is again possible to optimize keeping the size of
the DMs fixed or allowing them to adapt to the meta-pupils as the conjugation altitude is varied. Given the results
from §4.2.1 though, the dynamic version was chosen here. For simplicity, a 2-DM system with one DM fixed at zero

448

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 4. Upper panels: average and relative RMS deviation ös of the Strehl ratio for the
generic 3-DM system as a function of the separation of the LGS (cf. §4.2.1). Lower panels: S and
cs for the 2-DM system described in §4.2.2, as a function of conjugation altitude for DM2.

kilometers and one varying between 4-14 km was used for correcting a 1' field in this simulation. As the plots in the
lower half of figure 4 show, the average Strehl ratio peaks at approximately 10 km, whereas the uniformity hits a
local extremum around 6 km. The somewhat wobbly shape of the 8s curve could be a conditioning number related
effect, as discussed above. Notable is the observation that there is a wide range spanning more than 6 km (DM2
6-12 km) where S has an absolute variation of 2.6%. This suggests that the precise value of the conjugation altitude
does not need to be particularly fine tuned. Equally noteworthy is the fact that within the same range, ös actually
doubles. Some attempts have been made to derive analytical expressions for the optimal conjugation altitudes as
functions of turbulence models, but as of yet, an accurate algorithm for this optimal estimation problem has still to
be provided (see [15]). For our generic 3-DM case, however, a provisional optimum seems to be close to [0, 4, 12] km,
which is in remarkable concordance with the numerical simulations in reference [17].

4.2.3. Number of DMs
Using an intermediate-order 12 x 12 subaperture WFS, the number of altitude-conjugated DMs was varied from 1-4.
Due to the dominant nature of the ground layer turbulence in this atmospheric model, no appreciable field-widening
was achieved by conjugating a single DM to some finite altitude. In stead, a decent trade-off between average Strehl
and uniformity was found by conjugating the DM to the telescope pupil, leaving the field-widening to tomography
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Figure 5. Average and RMS deviation of Strehis as a function of the WFS order for a 3-DM
system conjugated to [0,4,12] km (upper panels; cf. §4.2.4) and as a function of the number of DMs
with a 12 x 12 subaperture WFS (lower panels; cf. §4.2.3).

alone. In the 2-4 DM cases, estimated optimal conjugation altitudes were employed, and the four cases run were:
1 DM with 13 actuators across the pupil conjugated to 0 km; 2 DM [13,10] [0,10] km; 3 DM [13,11,9] [0,4,12]
km; 4 DM [13,11,10,9] [0,4,8,12] km. The results are plotted in the lower half of figure 5, and the one notable
feature worth elaborating on is the fact that the 4-DM case is actually worse that the 3-DM case. This can only be
a consequence of the worsened conditioning of the system as the number of modes increases, resulting in a poorer
filtering of the singular values. Although this may not be the best possible result with four DMs (it is not), other
studies have shown that the gain in going from three to four or five DMs is very small, and that three DMs is very
close to optimal performance.8

4.2.4. Order of system
The "order" of the system would strictly imply the total number of active actuators in the system (or something
proportional thereto) . This is a rather degenerate measure, however, as the same order may be attained by distribut-
ing the same total number of actuators between the DMs in different proportions, thus producing very different
performance characteristics. In analogy with a conventional AO system, we have chosen here the number of WFS
subapertures across the pupil as the parameter defining the order - bearing in mind that this number is not linear
with respect to the total number of actuators. Using a 3-DM system conjugated to [0,4, 12] km correcting a 1' x 1'
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Figure 6. Average Strehi ratio S and relative Strehi RMS ös as functions of wavelength (upper
panels) and K band subaperture variance a, (lower panels) for the generic 3-DM system, comparing
the LSE (solid) and the MAP (dot-dashed) reconstructors.

field, the order was varied from 6-16 in steps of two. The linear number of actuators per DM were adjusted according
to: [7,8,9], [9,9,9], [11,10,9], {13,11,9], [15,13,11], [17,13,11], and the plots of S and Ss are shown in the upper half of
figure 5.

The "saturation" observed at the highest order considered here is likely a combination of two different effects:
a fitting error level-off, and a filtering problem with the SVD. As the overall fitting error in an MCAO system
may be somewhat hard to define, it is instructive to consider a conventional 1-DM/1-GS AO system as a first-order
approximation. In this case the fitting error depends upon the linear number of actuators N like ait N5/3, which
shows that the gain in performance per unit increment of N decreases as N increases. Secondly, as already noted, the
higher the order of the system the more problematic the selection of the conditioning number, and the more likely
that the one chosen is not the optimal. The gradual increase in 6s may be understood from a modal perspective,
regarding the correction per LGS as a superposition of the corrections per mode for that LGS. It is known that for
Zernike modes, the isoplanatic angle per mode 8o (j) decreases rapidly with increasing radial degree.14 As increasing
the order of the system is equivalent to adding a few high-order modes, this means that the additional correction
achieved will contribute increasingly to a smaller and smaller region around the line of sight to the LGS.
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4.3. Wavefront reconstructors
For the purpose of comparing the performance of the reconstructors, a fixed geometrical configuration was chosen and
the imaging wavelength and the number of PDEs were varied along with the type of reconstructor. The configuration
is the generic 3-DM system at conjugation altitudes [0, 4, 12] km with [13, 11, 9] actuators across the diameter and
the LGS spanning a 1' field. The imaging wavelength was varied from I-K band (e.g. 1.0, 1.25, 1.65 and 2.2 tim),
and the photon noise was varied by setting the number of PDEs to [200, 100, 50, 25, 12, 6, 4].

4.3.1. MAP
The main results are plotted in figure 6, and it is seen that the MAP estimator performs consistently better than the
LSE when the system is affected by photon noise (lower panels), and the differential also grows with the amplitude
of the noise. Even in the absence of noise the MAP shows a somewhat lower 6s, which may be attributed to its a
priori knowledge on the residual phase statistics. This knowledge is encoded in the command covariance matrix C,
and the weight it will have in the reconstruction process is in turn governed by the noise covariance matrix C . In
this zonal reconstruction scheme we may consider the WFS subapertures as statistically independent with respect to
photon noise, so the noise covariance is simply a diagonal matrix with the subaperture noise variance on the diagonal:
cl-i = axI, where I is the identity and the vector x is a weighting factor to account for the partial illumination in
the edge subapertures. C, on the other hand, must be generated in a noise-free closed loop simulation using the
LSE. What is interesting though is that, when calculating the C matrix, one has the option to intentionally enter a
too large or too small value for the variance, in the purpose of forcing the reconstructor to rely on phase statistics to
a greater or lesser extent . The net effect of this manipulation is seen mainly in the uniformity 6s , which is actually
promoted by entering a higher noise variance that is expected from the system

Interesting to note is also how the MCAO system is degraded by noise in relation to a conventional AO system.
Thus for comparison, the same simulations as in the lower half of figure 6 were done for one 13 x 13 DM conjugated
to zero km with one on-axis LGS. Figure 3 (left panel) shows the ratio of the AO on-axis Strehl ratio to the MCAO
ditto, for the MAP (dot-dashed) and the LSE (solid). We see that the AO system degrades faster than does the
MCAO system, regardless of the reconstructor. This is a purely geometrical effect, independent of any phase statistics
embedded in the reconstructor: due to the redundancy in WFS measurements over a large portion of the sky, the
MCAO system attains better noise rejection by WFS tomography alone.

5. CONCLUSIONS
It has become clear, through simulations in this paper and other, that MCAO for 8-m class telescopes is an entirely
feasible concept. This study has gone some way towards understanding the spatial characteristics and limitations of
MCAO systems for the 50% Cerro Pachon turbulence model at a V band seeing of 0.7". Anisoplanatism remains
as one of the major limitations to the size of the compensated field of view (as shown in the upper half of figure 4),
until it is demonstrated that more than five LGS are feasible on a telescope. It is seen, for instance, that a 3-DM
system of the order 12 x 12 WFS subapertures with a fixed configuration of five high-order LGS, can only sustain a
science field of approximately 80" with > 60% average Strehl ratio and < 5% uniformity in K band. These numbers
improve to S 68% and s 2.4% for a 1' field. The DM conjugation altitude is seen to be the least sensitive
parameter for systems with more than one DM, allowing some 2-3 km mismatch with the optimal position without
degrading the performance more than a few percent in both average and uniformity. Using the LSE in a high- or
intermediate-order system, there is essentially no gain in going beyond three DMs. The order of the system is an
important parameter up to a certain level, around 16 x 16 WFS subapertures in K band in this study, where the
diminishing gain in performance is eaten up by decreasing precision in the SVD filtering. This is a rather severe
drawback for the LSE and the MAP, but more elaborate filtering methods may be employed, or one may choose to
work with a different set of DM modes, which might improve performance. Future extensions of this work include a
minimum variance estimator (MVE) for wavefront reconstruction,2'7 intended for this paper but not yet successfully
implemented in the Monte Carlo code. A real MCAO system would also benefit in flexibility from a decomposition
of the reconstructor into the parts pertaining to LGS and NGS, driven by separate control loops (currently under
study). Hence, a decoupled LSE will also be implemented in the near future.
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