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ABSTRACT
Following a previous succesful study, we present new and more complete interferometric observations of FU Orionis.
The combination of both IOTA (Infrared and Optical Telescope Array, Mt Hopkins, AZ) and PTI (Palomar Testbed
Interferometer, Palomar Observatory, CA) interferometers allowed an increase in (u, v) coverage and H and K bands
measurements. We confirm the presence of a resolved structure around FU On that can be interpreted in terms of
accretion disk. However, we find significant differences between our results and standard accretion disks models. In
particular the temperature power law is best explained if two different radial regimes are used. Moreover, a clear
visibility oscillation trend at 110 m is well fitted with a binary (or hot spot) model. This may have important
implications on accretion disk models for such objects.

Keywords: Interferometry, infrared, young stellar objects, circumstellar matter

1. PROBING THE INNER PART OF AN ACCRETION DISK
Malbet & Bertout predicted that long-baseline interferometry would be able to detect thermal emission from
accretion disks around young stars in the near infrarec[. The increase in sensitivity of infrared interferometers
allowed Malbet et al.2 (paper I) to resolve FU Orionis at the AU scale with the PTI interferometer (PTI, Palomar
Observatory, CA), this was the first time ever such resolutions were attained on such objects. These observations
were shown to be compatible with standard accretion disk interpretations3. However, the limited precision of the
measurements and limited (ti v) coverage forbid more detailed information on the physical mechanisms operating
close to the central star to be obtained. Further observing runs have therefore been carried out since at two of
the existing infrared interferometers, the Palomar Testbed Iriterferometer (PTI, Palomar Observatory, CA) and the
Infrared and Optical Telescope Array (IOTA, Mt Hopkins, AZ), in order to further address the question of the close
environment of Young Stellar Objects (YSOs). These new results are the subject of this paper.

2. FU ORIONIS
FU Orionis is the prototype of a class of YSO called FU Orionis stars (FU ors), that have undergone photometric
outbursts on the order of4-6 mag in less than 1 yr4. Table 1 summarizes FU Orionis's main observational properties.

A FU Orionis star's luminosity typically peaks at 500L® and then decays on a 100 yr timescale. FU Orionis
stars exhibit large infrared excesses, double-peaked line profiles, apparent spectral types that vary with wavelength,
broad and blueshifted Balmer absorption line, and are often associated with strong mass outflows (see Hartmann &
Kenyon5 for a recent review on this phenomenon).
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Table 1. FU Orionis properties see Hartmann & Kenyon5 for a recent review.

Location Orion
Object type FUor
Distance 450 pc
Luminosity L 500 L®
Extinction Av 1 — 3 mag
Magnitudes V = 8.9, .R = 7.7, K = 4.6 mag
Variability 4-6 mag amplitude

outburst decay (t 100 yr)
Spectrophotometry large infrared excess
Spectral type F219

From F71 (A3860) to <K3 (A7050)
HR spectroscopy broad, blueshifted Balmer line absorption

double-peaked line profiles
Reflection nebula 60 arcsec
Scattering envelope 73 mas resolved by speckle

or unresolved ?
Outflows no CO flow, no jet

3. OBSERVATIONS
FU Orionis was observed with IOTA from December, 13, 1998 to December, 26, 1998 using two baselines: the 38
m baseline oriented North-Northeast and the 21m North-South baseline. We used H and K' filters. FU Orionis was
observed with PTI during three campaigns, 1997 (data published in paper I), 1998 (from November, 14, 1998 to
November, 27, 1998) and 1999 (from November, 23, 1999 to December 1, 1999). Data obtained during the two latter
campaigns are published in this paper. 1998 observations were made with the K filter and 1999 with both H and K
filters.

Several calibrators were used for these observations, described as follows. All calibrators were used for IOTA
observations and calibrators in bold face were also used at PTI. Following the source name, we indicate in paren-
thesis the angular diameter in milliarcseconds (mas), estimated from Hipparcos data: HD42807 (0.48), HD38529
(0.38), HD31295 (0.53), HD37147 (0.34), HD30739 (0.45), HD46241 (0.41), HDC35956 (0.35), HDC42618 (0.38),
HDC43683 (0.18), HDC43931(0.21). HD35296 (0.70) was only used at PTI.

The observation period on both interferometers was long enough to allow the projected baseline on sky to rotate
with a significant hour angle range ([—2.8, +0.6] for the PTI observations and [—0.6, +4.4] for the IOTA observations).

4. DATA PROCESSING
PTI data processing is described in Colavita'2. The visibility estimation is based upon the ABCD algorithm. Out
of the four estimators available we have choosen the incoherent spectral estimator. The spectrometer has an higher
instrumental transfer function because of the spatial filtering effect of the single mode fiber. The incoherent estimator
allows to average visibilities over the entire H and K band without introducing biases due to atmospheric piston (cf.
paper I).

The IOTA interferometer temporally encodes fringes. We have choosen to use a quadratic estimator similar to the
one described in Foresto et al. 13 with no photometric calibration signals available. The two output interferograms
recorded simultaneously are substracted to construct a single interferogram with reduced photometric contamina-
tion*. For each batch of 500 scans an average visibility is computed. The standard deviation of this batch provides
the error estimation on this measurement. Visibility is computed by estimating the energy contained at the fringe
position in the spectral power density.

*As the fringes are r shifted this leads to maximizing the energy in the spectral density distribution at the fringe position
and reducing the photometric energy at lower frequencies.
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Figure 2. FU Orionis (u, v) coverage corresponding to the observations of this paper.

Once the raw visibilities are derived for the data from each interferometer separately, data reduction enters the
calibration part, which is common to both data sets. The key point is to estimate the instrumental visibility by
observing calibrators located near the source in angle. For each FU On visibility we compute an instrumental
visibility. Division of both quantities leads to the determination of the unbiased visibility and its associated error.
Calibrators are corrected for the intrinsic visibility loss due to their angular diameter. All calibrators measurements
made within half an hour, before and after a target measurement are included in the instrumental visibility estimation.
We then compute a weighted average of all calibrators visibilities in that interval with a weight equal to the inverse
of the time delay between the calibrator measurement and the target measurement.

5. THE RESULTS
These new observations extend the (u, v) coverage of paper I (see Fig. 2) to smaller baselines and to the H band.
Calibrated visibilities are presented in Fig. 3. The calibrated squared visibilities of FU On at hOrn in K band
display a clear oscillation trend. Note that IOTA K' squared visibilities at 21m are smaller than at 38 m. IOTA data
are derived by a first version of data reduction, and error bars are certainly overestimated. An improved statistical
processing should allow the refinement of our fits. Globally we distinguish three trends in the whole set of data:

. a global average decrease of visibility with increasing projected baseline (except when comparing 21m and 38
m IOTA baselines K' data, see discussion below).

. superimposed oscillations at the 110 m PTI baseline.

. 21m K' band visibility is smaller than 38m visibility.

6. INTERPRETATION
FUors have been convincingly modeled as low-mass pre-main sequence stars (T Tauri stars) which are surrounded
by luminous and active accretion disks. The inferred peak accretion rates are on the order of iO M® yr1. The
energy released by the accretion process is radiated at the disk surface, overwhelming the stellar emission. The disk
paradigm allows to explain many exotic features of FUors5.

In this global context we try to interpret both observed trends as the consequence of an accretion disk surrounding
a primary star with the presence of a secondary companion.
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Figure 3. Calibrated square visibilities of FU On as a function of hour angle. First row : PTI data K band; left
figure displays all the visibilities obtained during a three year campaign 1997 (circles), 1998 (crosses), 1999 (squares)
typical average errors for each point are quoted (in parenthesis); right figure displays binned data with corresponding
error bars. Dashed dotted lines represent results from paper I (average and standard deviation limits). Second
row : PTI data H band; left figure displays the 1999 visibilitities, right figure the corresponding binned visibilities.
Third row : IOTA data K' and H bands at 38 m; binned visibilities. Fourth row : IOTA data K' and H bands
at 21 m; binned visibilities.
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coverage provided by Earth rotation and the precision were significant enough to detect oscillations in the squared
visibility variation. We found that these observations can be explained if FU Orionis is a binary star with one
component at least containing an accretion disk. The main properties we derived for the accretion disk component
points to a deviation from the standard model in the inner part of the disk, and clearly motivates further detailed
modeling. In particular, a significant change in the temperature radial distribution has been discovered. One
explanation could be the influence of an ejection process. A full fit of all the observables with an improved data
reduction and several astrophysical scenari is under progress and will be presented in a forthcoming paper.
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