
HOW PROCESSES LEARN

K. Mani Chandy & Jayadev Misra
Department of Computer Sciences University of Texas Austin, 78712

1. I n t r o d u c t i o n

Processes in distributed systems communicate with

one another exclusively by sending and receiving

messages. A process has access to its state but not to

the states of other processes. Many distributed

algorithms require that a process determine facts

about the overall system computation. In

anthropomorphic terms, processes "learn" about

states of other process in the evolution of system

computation. This paper is concerned with how

processes learn. We give a precise characterization of

the minimum information flow necessary for a process

to determine specific facts about the system.

The central concept in our study is that of

isomorphism between system computations with

respect to a process: two system computations are

isomorphic with respect to a process if the process

behavior is identical in both. In anthropomorphic

terms, "system computations are isomorphic with

respect to a process" means the process cannot

distinguish between them.

Many correctness arguments about distributed

systems have the following operational flavor: "I will

send a message to you and then you will think that I

am busy and so you will broadcast . . . ". Such

operational arguments are difficult to understand and

error prone. The basis for such operational

arguments is usually a "process chain": a sequence of

message transfers alon~ a chain of processes. We

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1985 ACM 0-89791-167-9/1985/0800-0204 $00.75

advocate nonoperational reasoning. The basis for

nonoperational arguments is isomorphism; we relate

isomorphism to process chains. Algebraic properties

of system computations under isomorphism provide a

precise framework for correctness arguments.

It has been proposed [3 ,6] that a notion of

"knowledge" is useful in studying distributed

computations. In earlier works, knowledge is

introduced via a set of axioms [4]. Our definition of

knowledge is based on isomorphism. Our model

allows us to study how knowledge is "gained" or

"lost". One of our key theorems states that

knowledge gain and knowledge loss both require

sequential transfer of information: if process q does

not know fact b and later, p knows that q knows b,

then q must have communicated with p, perhaps

indirectly through other processes, between these two

points in the computation; conversely, if p knows that

q knows b and later, q does not know b then p must

have communicated with q between these two points

in "the computation. In the first case, the effect of

communication is to inform p of q's knowledge of b.

Analogously, in the second case, the effect of

communication is to inform q of p's intention of

relinquishing its knowledge (that q knows b).

Generalizations of these results for arbitrary sequences

of processes are stated and proved as corollaries of a

general theorem on isomorphism.

We use the results alluded to in the last paragraph

204

tbr proving lower bounds on the number of messages

reqnired to solve cer ta in problems. We show, for

instance, t ha t there is no a lgor i thm to detect

t e rmina t ion of an underlying computa t ion using only

a bounded number of overhead messages.

2. M o d e l o f a D i s t r i b u t e d S y s t e m

A dis t r ibuted system consists of a f ini te set of

processes. A process is character ized by a set of

process computa t ions each of which is a finite

sequence of events on that process. Process

computa t ions are prefix closed, i.e. all prefixes of a

process computa t ion are also process computa t ions (of

t ha t process). An event on a process is ei ther a send,

a receive or an internal event. A send event on a

process corresponds to sending of a message to

another process. A receive event on a process

corresponds to recept ion of a message by the process.

There is no external communica t ion associated with

an internal event . Fo r a set of processes P, a send

event by P is a send event by some component process

of P to a process outside P; s imilarly a receive event

by P denotes receipt by some process in P of a

message sent from outside P. Communica t ion among

processes in P are internal events of P. We use "e is

on P" , for event ¢ and process set P, to denote tha t e

is an event on some process in P. We rule out

processes which have no event in any computa t ion .

We assume tha t all events and all messages are

dist inguished; for instance, mul t ip le occurrences of the

same message are dist inguished by affixing sequence

numbers to them.

Let z be any sequence of events on component

processes of a d is t r ibuted system. The projection of z

on a componen t process p, denoted by zp, is the

subsequence of z consisting of all events on p. A finite

sequence of events z is a system computation of a

d is t r ibuted system means (1) for all processes p, zp is

a process computa t ion of p and, (2) for every receive

event in z, say receipt of message m by process p,

there is a send event , of sendinl~ m to p, which occurs

earl ier than the receive in z: this send event will be

called the send event corresponding to the receive.

We leave it to the reader to show tha t system

computa t ions are prefix closed.

In this paper we consider a single (generic)

d is t r ibuted system. For instance, when we say "z is a

compu ta t i on" we mean tha t z is a computa t ion of the

d is t r ibuted system considered here. We use

computation to mean system computation when no

confusion can arise.

N o t a t i o n : We use x, y, z to denote

computa t ions , p, q for processes and P, Q for process

sets; these symbols m a y be used wi th subscripts or

superscripts. The concatenat ion of two sequences y

and z will be denoted by (y;z). F o r sequences y and z,

y < z denotes tha t y is a prefix of z; in this case (y,

z) denotes the suffix of z ob ta ined by removing y

from z. The e m p t y sequence will be denoted by null.
The symbol -~- is used to denote equalit ies among sets

and among predicates. The symbol -~ is used for

definitions. The set of all processes in the system will

be denoted by D and for any process set

P , P = D - - P .

3. Isomorphism
W e define the relat ion [p] on the set of system

computa t ions as follows.

D e f i n i t i o n : F o r system computa t ions x,y:

In other words, x [p] y means p's computation is the

same in system computa t ions x and y. In this case,

we say x, y are isomorphic with respect to p. For a

process set P, define relat ion [P], on the system

computat ions , as follows.

D e f i n i t i o n : x [P] y -~ for all p in P, x [p] y.

Thus x [P] y means tha t , given only the computa t ions

of processes in P we cannot dist inguish x f rom y.

F r o m definit ion, x [{ }] y, for all computa t ions x, y

where { } denotes the e m p t y set. Observe tha t [P] is

an equivalence relation.

205

• + , : 2 : " : : , - ~ , ' : ~ : , ~ , ~ - ~ " s , ~ ' ~ # : " " ~ ~

It is convenient to represent all such isomorphism

relations by an isomorphism diagram: an undirected

labelled graph whose vertices are computations and

there is an edge labelled [P] between vertices x, y if P

is the largest set of processes for which x [P] y.

Observe that every vertex has a self loop labelled [D]

where D is the set of all processes in the system.

Note that x [D] y, x ~A y, implies y is a permutation

Of X.

E x a m p l e 1: Consider a system with two

processes, p and q, for which part of the isomorphism

diagram, showing the relationships among four system

computation, is given below.

[(P'q}] Q

[{p,q}]

[(P ' q }] G

Figure 3-1:

[P] O [(P ' q }]

[q] Q [{P,q}]

An Isomorphism Diagram

From the diagram xIPlY, but not x[qly. This

means p has the same computations in both x and y,

whereas q's computations in x and y differ.

Computations x and z have the same computations

for both p and q; hence one is a permutation of the

other. There is no direct relationship between y and

w; neither y [p] w nor y [q] w holds. However, there is

an indirect relationship between y and w because

y[p] z and z iqlw. We explore such indirect

relationships next.
[]

Def in i t ion : Let n > 0 and P/ be process sets,

0 < i < n .

for some computation y.

Hence, [PQ] = [p] o [Q] where "o" is the

relational composition operator. This operator is

associative (from properties of relations). In terms of

the isomorphism diagram, X[Po. . . Phi z means there

is a path from x to z whose edges are labelled with

Qo, • • • ,Qn, respectively, where Qi ~ Pi' for all i.

E x a m p l e 1 (contd .) : We have y [p q] w and

w [q p] y. Also, trivially, y [q p] z, y [q p q] z, etc.

{3

We note some properties of isomorphism relations.

In the following, P, PI 'Pn ' Q' denote arbitrary

process sets and x, y, z denote arbitrary

computations.

1. I P] is an equivalence relation.

2. (Substitution) ([iS] = [6]) implies
([a ~ ~] = [a 6 '7]) for arbitrary
sequences of process sets a, 8, ~, £

3. (Idempotence) [P P] .~_ [p]

4. (Reflexivity) x [P1 • " " Pn] x

5. (inversion) X [P l . . . P n] y =

Y [P n . . . P l l x

6. (Concatenation) For 0 < m < n,

3y: X [P l . . . P m l y , y[pm+ 1 . . .
Phi z~- X [P l ' ' . P m Pm+l . - . P n] z

7. [P U Q } = ([P] O [Q])

s. (Q D P) = ([Q] c_ [P])

9. (p = Q) = ([P] = [Q])

10. Q _~ P implies ([Q P] = [p] = [p Q])

These properties follow from properties of

relations and our model. We only sketch a proof of

one part of property 8:

([Q] C [P]) implies (Q D_ P).

If Q ~ P then there is a process p in P - Q. From our

model, p has an event e in some computation (x;e).

Then x [Q] (x;e) and ~ x [P] (x;e). Hence [Q] ~[P] .

206

3.1. Process Chains

As noted in the introduct ion, the basis for many

opera t ional a rguments are process chains: process p

informing q which in turn, informs r etc. One of our

goals is to replace such concepts by algebraic

propert ies of system computat ions. In this section, we

show how process chains are related to isomorphism.

We first define process chains; this definition is along

the lines suggested by Lampor t [5].

Definition: For events e ,d in a computa t ion

z, e ~ means:

1. e t is a receive and e is the corresponding
send, or

2. events e ,e ~ are in the same process
computa t ion and (e = g or e occurs earlier
than et), or

3. there exists an event c" such tha t c ~ e "
and gt -~ d.

For brevi ty we write e ~ d when the

computa t ion z is unders tood from context. We will

wri te e 0 ~ e I --~ . . . en_ 1 ~ en, as shor thand for

e 0 ~ e I and . . . and e 1 -'~ e . Observe tha t

e ~ e for every event e in z. A computa t ion z has a

proce$8 chain <Po P1 " ' " P n > means there exist

events e0, el, . . . en, not necessarily distinct, in z such

tha t event e i is on P/, for all 0 < i < n, and

e O - - * e l - - + . . . ~ e n .

Observat ion 1: Any occurrence of " P " in a

process chain m a y be replaced by " P P " , or vice

versa, since for any event c on P, e --~ e.

Observation 2: Let x be a sequence consisting of

a subset of events f rom a computa t ion y. Suppose

tha t for every event c in x, every g, where g Y--~e, is

also in x and g ~ e . Then z is a computa t ion .

Theorem 1: (Fundamental Theorem of Process
Chains)

Let z be a computa t ion and x a prefix of z. Let PI"

P2 " ' " Pn ' n > 1, be sets of processes. Then

x [P1 R e ' ' " P h i z or there is a process chain

< P I P 2 " ' " / ~ > in (x,z).

Proof: Omi t t ed
[]

3.3. An Application of Isomorphism: How To

Construct A Computat ion By Fusing

Separate Ones

In this section, we show an application of

isomorphism: we give a construct ion to "fuse" two

computa t ions to obta in a new computa t ion , provided

certain types of paths exist in the isomorphism

diagram. We mot iva te the discussion by the following

observations. Suppose (x;E) and (x;E) are

computa t ions where all events in E are on a process

set P and all events in E are on P . Then, from

definition, (x ;E ;E) and (x ;E;E) are also computat ions ,

because events in E , ~ are independent and hence may

be fused in arbi t rary order. A similar result appears

in Fischer, Lynch and Pa te rson [2]. The following

l emma is a general izat ion of this observat ion.

L e m m a 1: Let x, y, z be computa t ions where

x < y and x < z. Let P, Q be such tha t Pt.) Q = D,

x [P] y and x [Q] z . Then there exists a

computa t ion w where x < w, y I Q] w and z [P] w.
[]

The relationships among x, y, z and w are

represented by the following commuta t ive

isomorphism diagram.

3;2. Relationship Between Isomorphism and

Proeesa Chain

207

X

P Q

2
y

~0

Figure 3-2: Isomorphism Diagram Depicting
Fusion

P r o o f of t h e L e m m a :
Let w = x; (x,y); (x,z).

From the condition of the lemma, (x, y) has events

only on ~ and (x, z) has events only on Q. Since

P U Q = D , P A Q = { } and hence no process has

events in both (x,y) and (x,z). It follows, from

definition of computations, that w is a computation.

Also y [Q] w, z [p] w and x ~ w, as required for

proof of the lemraa.

[]

Note that, in the construction of lemma 2, all

events from E and E were present in the fused

computation. We prove a far more general result

below. We show that for any two arbitrary

computations y and z, the projected computations, yp

and z~, may be fused to form a new computation

provided there is a computation x which is a prefix of

both y and z, and no message sent by P in (x,y) is

received by P in (x,y) and no message sent by P in

(x,z) is received by P in (x,z). This makes intuitive

sense: processes in P can execute all events in y given

only that processes in ~ execute all events up to x

and similarly for executions of events on P up to z.

However, the statement and proof of this result are

difficult without the notion of isomorphism. We note

that the result may be easily generalized to fusions of

arbitrary numbers of computations under similar

constraints.

T h e o r e m 2: (Fus ion o f Computat ions) :

Consider system computations x, y, z where x < y

and x <_ z. Let P be a set of processes such that

there is no process chain, (1) < P ~ > in (x, y) and (2)

< P P > in (x, z). Then there is a computation w

where, x < w, y [P] w and z [P l w . That is, w

consists of all events on P from y and all events on P

from z.
[]

P r o o f of the Theorem: According to theorem

1, absence of process chains as given in this theorem

means that, x [P ~] y and x [~ P] z.

Consider the isomorphism diagram in Fig. 3-3.

Label the intermediate point between x, y as u and

between x, z as v in this figure. Now we apply lemma

1 to x, u, v to obtain w. Note that, u [~] y and

u [P] w; hence y [P] w. Similarly z [P] w . This
proves the theorem.

[]

/
\ /

\ i
~\\ ' P

' . '

\

Y w p

F i g u r e 3-3: Isomorphism Diagram Depicting Proof
of Fusion Theorem

3.4. S e m a n t i c s O f E v e n t Types In T e r m s Of

I s o m o r p h i s m

We now use isomorphism to state and derive some

important facts about various types of events. First,

208

note tha t a process carries out an internal event or

sends a message depending on its own computation

alone. Therefore, if a process takes such a step in a

computat ion x, i t will also do so in y, if x, y are

isomorphic with respect to this process. An analogous

result holds for internal and receive events. The

following principle, which states these facts formally,

may be proven from the definition of system

computation.

P r i n c i p l e of C o m p u t a t i o n E x t e n s i o n : :

Let e be an event on P.
1. e is an internal or send event:

(x [P] y and (x;e) is a computation) implies
(y;e) is a computat ion

2. e is an internal or receive event:
(x;e) [P] y impl ies (y - e) is a computation,
where (y - e) is the sequence obtained by
deleting e from y.

D

Note: In (1), (x ;e) [P] (y;e) and in (2),
x [P] (y - e).

C o r o l l a r y : Let e be a receive event on P and let the

corresponding send event be on Q.

(x [P U Q] y and (x;e) is a computation) implies
(y;e) is a computation.

Proof: e is an internal event of Pt.J Q.

[]

[]

Following theorem follows from the principle of

computat ion extension.

T h e o r e m 3:

is an event on P.

Case 1: e is a receive:

for every z: (x;e) [P ~] z impl ies x [P ~] z

C a s e 2: e is a send:

for e v e r y z : x [P ~] z implies (x ; e) [P ~] z

C a s e 3: e is an internal event:

for e v e r y z : (x ; e) [P ~] z = x { P ~] z

Let (x;e) be a computation where e

[]

Proof: We wil l prove only Case 2; other cases are

similarly proven.

x [P P] z impl ies there exists V, x [P] y and V [P } z.

From principle of computation extension, (y;e) is a

computat ion and (x;e) [P] (y;e).

Also, (y;e) [~ l Y.

Hence, (x;e) [P ~ ~] z and therfore, (x;e) [P ~] z.
[]

This theorem captures the intuitive notion that

the set of possible computations, isomorphic with

respect to P, can only shrink in size as a result of a

reception as computations which do not include the

corresponding send are ruled out. Similarly, the set

of possible computations, isomorphic with respect to P

cannot shrink as a result of a send: after the send,

additional computations which accept the message

sent are isomorphic while all prior isomorphic

computations remain isomorphic. An internal event

can neither expand nor shrink the set of isomorphic

computations.

4. K n o w l e d g e

As we have remarked earlier, predicates of the

type P knows b at x may be defined using

isomorphism. We explore properties of such

predicates in our model. We show that they satisfy

the "knowledge axioms" as given in [3,6]. We prove

a general result which shows that certain forms of

knowledge can only be gained or lost in a sequential

fashion along a chain of processes. That is, if b is

false for a computat ion and later, PI knows P2 knows

" ' " Pn knows b (this represents knowledge gain),

then there is a process chain (P n P n - I " ' " P1 >

between these two points of the computation.

Conversely, if PI knows P2 knows • " • Pn knows b

and later, b is false (this represents knowledge loss),

then there is a process chain <Pl P2 "'" Pn :>

between these two points of the computation.

209

Crucial to our work is the notion of local

predicates: a predicate local to p can change in value

only as a result of events on p. We show that local

predicates play a key role in understanding knowledge

predicates.

4.1. K n o w l e d g e P r e d i c a t e s

Let b denote a predicate on system computations

and "b at x" its value for computation x. Our

predicates are total, i.e. for each x, b at x is either

true or false. We furthermore assume that

x [D] y implies (b at x = b at y) for every predicate

b. Thus predicate values depend only upon

computations of component processes and not on the

way independent events are ordered in a linear

representation of the computation. A predicate e is a

constant means e at x ~- e at y, for all computations

x, y. We now define (P knows b) at x.

D e f i n i t i o n : (P knows b) at x = for all y:

x [P] y : b a t y

Note that b may itself be a predicate of the form

Q knows Y in the above definition. We next note

some facts about knowledge predicates. In the

following, x, y are arbitrary computations, b, b t are

arbitrary predicates and P, Q are arbitrary sets of

processes. All facts are universally quantified over all

computations. We use the convention that P knows

Q knows b at x is to be interpreted as (P knows (Q

knows b)) at x.

1. P k n o w s b a t x ~ - for all y: x [P] y : P
knows b at y

2. x [P] y implies [P knows b at x ~ P
knows b at y]

3. (P knows b) i m p l i ~ (PO Q knows b)

4. (P knows b) implies (b)

5. (P know, b) or (~ P k.ows b)

6. (P knows b) and (P knows b') ~- P knows
(b and b I)

7. ((P knows b) or (P knows b')) implies (P
knows (b or b'))

8. (P knows ,--~b) implies (~ P knows b)

9. ((P knows b) and (b implies b')) implies
(P knows b')

10. P knows P knows b = P knows b

11. P knows , ~ P knows b = ~ P knows b

12. P knows c, for any constant c.

These facts are easily derivable from the definition

of knows. We give a proof of (11), whose validity in

other domains have been questioned on philosophical

grounds [3].

L e m m a 2: P knows u p knows b -~ u p knows b

Proof : P knows ~ P knows b at x
-~ for all y: x [P] y : ~ P knows b at y,

from definition
-~ for all y: x [P] y: there exists z:

y [P] z: ~ b at z, from definition
-~- there exists z: x [P] z: ~ b at z,

since [P] is an equivalence relation
u p knows b at x

[]

[]

There are situations where multiple levels of

knowledge such as, P knows Q knows b, are useful.

For instance, consider a token bus which is a linear

sequence of processes among which a token is passed

back and forth; processes at the left or right boundary

have only a right or left neighbor to whom they may

pass the token; other processes may send it to either

neighbor. There is only one token in the system and

initially it is at the leftmost process. Consider a

token bus with five processes labelled p, q, r, s, t from

left to right. When r holds the token,

r knows ((q knows (p does not hold the token)) and
(s knows (t does not hold the token)))

Relations of the form [P Q], with multiple process

sets arise from predicates with multiple occurrence of

knows;

210

For instance:
p knows q knows b at z
-~ for a l l y : x [p] y : q k n o w s b a t y
= for all y: ~ [p] y: (for all ~: y [q] ~: b at ~)
-~ for a l l z : x [p q] z : b a t z

4.2. Local Predicates

Let b be a predicate on system computat ions , and

P a set of processes. We define a predicate P sure b

as follows.

D e f i n i t i o n : (P sure b) at x --~ [(P knows b) at x or
(P knows ~--~b) at x]

In o ther words (P sure b) at x means tha t P knows

the value of b at x.

We define unsure as negat ion of sure.

D e f i n i t i o n : P unsure b _= ~.~P sure b

Hence, (P unsure b) at x = [(,--~P knows b) at x and
(~ P knows ~ b) at x]

D e f i n i t i o n : b is local to P ~ for all x: (P sure b)

at x.

T h a t is, the value of b is always known to P.

Local predicates capture our intui t ive notion of a

predicate whose value is controlled by the actions of

processes to which it is local.

We note the following facts about local predicates;

in the following, b is an arb i t ra ry predicate and P, Q

are a rb i t ra ry sets of processes.

1. (b is local to P and x[P] y) impl ies
(ba t x . ~ b a t y)

2. b is local to P impl ies (b ~- P knows b)

3. b is local to P = (~ b) is local to P.

4. b is local to P impl ies
[Q knows b .~ Q knows P knows b]

5. (P knows b) is local to P.

6. b is local to P and b is local to Q and P ,Q
are disjoint impl ies b is a constant .

7. b is a constant impl ies b is local to P.

8. (P sure b) is local to P.

Proof of (1) follows f rom defini t ion of knowledge

and local predicates. (2) and (3) follow trivially. (4)

follows f rom Q knows b at x-~- for all y: x [Q l y :

b a t y -~- for all y : x [Q] y : P knows b at y (since b

is local to P) ~ Q knows P knows b at x. (5) follows

from, (P knows P knows b or P knows ~ P knows b)

-~ (P knows b or ~ P knows b) = true. Proof of (6)

is impor t an t and hence is given below as a lemma.

(7) and (8) are tr ivial ly proven from definition.

L e m m a 3: b is local to disjoint sets P, Q impl ies

b is a constant

[]

Proof: We show tha t b at x = b at null, for all x.

P roof is by induct ion on length of x.

b at null -~- b at null .
b at (x;e) ~ b at x, because event e is not on P or

e is not on Q, and hence
(x;e) I F] x o r (x ; e) [Q] x;

then the result follows f rom proper ty (1).

[]

Fo r a system of processes, b is c o m m o n knowledge

is defined as the greatest fix point of the following

equation.

b is c o m m o n knowledge _~ b and (p knows b) is

c o m m o n knowledge, for all processes p. Intui t ively, b

is c o m m o n knowledge means b is true, every process

knows b, every process knows tha t every process

knows b, etc.

Halpern and Moses [3] have shown tha t common

knowledge cannot be gained, if it was not present

initially, in a system which does not admi t of

s imul taneous events. The following corollary to

l emma 3 shows tha t common knowledge can be

nei ther gained nor lost in d is t r ibuted systems.

Corollary: In a system with more than one

process, for any predicate b, b is c o m m o n knowledge

is a constant .

[]

211

..... ~ ; ~ : ~ ; ~ A = 5.1 ~ ~ ~ ~ : ~ = ;~ :~

Proof: For any process p, b is common knowledge

= p knows (b is common knowledge). Hence, b is

common knowledge is local to every p. Applying

lemma 3, b is common knowledge is a constant.
[]

It is possible to show tha t even weaker forms of

knowledge cannot be gained or lost in our model of

distributed systems. Process sets P, Q have identical

knowledge of b means,
P knows b -~ Q knows b

Corollary: If P, Q are disjoint and have

identical knowledge of b then P knows b (and also

Q knows b) is a constant.
[]

Proof: P k n o w s b is local to P a n d Q knowsb is

local to Q. From P k n o w s b = Q k n o w s b , they are

also local to Q and P respectively. The result follows

directly from lemma 3.
[]

Corollary: If P,Q are disjoint and P sure b = Q

sure b, then P sure b (and also Q sure b) is a

constant.
[]

4.3. How Knowledge Is Transferred

We show in this section that chains of knowledge

are gained or lost in a sequential manner.

Theorem 4: For arbitrary process sets

P1 " " • , Pn' n ~_ 1, predicate b and computations x,

Y,

(P l k n ° w s . . . P n k n o w s b a t x a n d x [P l . . . PnlY)

implies (Pn knows b at y)

[]

Proof: Proof is by induction on n. For n = 1,

P~ k n o w s b a t x , x [P ~] y i m p l i e s P~ k n o w s b a t y ,

trivially.

Assume the induction hypothesis for some n - 1,
n > 1, and assume

PI k n o w s . . . Pn knows b at x and x[Pl... Pn] y"

We shall prove Pn knows b at y.

From x [PI • " • Pn] Y' we conclude that there is a z
such that,

x [PI " " " Pn - 1] z and z [Pal Y"

From X [P l . . . P n _ l] Z and P1 knows . . .

P n - 1 kn°ws (Pn know, b) at x, we conclude, using

induction, P n - 1 knows Pn knows b at z. Hence, Pn

knows b at z.

Since z [e] V, Pa know8 b at V.
[]

Corollary: For arbitrary process sets

P I ' ' " Pn ' n > 1, predicate b and computations x,

Y,

(PI k n o w s . . . P n - 1 knows "~Pn knows b at x and

x [PI " " "Pn] Y) implies "~Pn knows b at y
[]

Note: For n-~-1 antecedant is, ~ P n knows b at

x.

Corollary: Theorem 4 holds with knows replaced

by sure.

Theorem 4 can be applied to (1) x < y

(knowledge is lost) and (2) y _~ x (knowledge is

gained). Using theorem 1, we can deduce that there is

a process chain < P l ' ' " Pn > in the former case

And < Pn " " " PI > in the latter case. We first prove

a simple lemma about the effect of receive or send on

knowledge: we show that certain forms of knowledge

cannot be lost by receiving nor gained by sending.

L e m m a 4: (How events at a process change its

knowledge)

Let b be a predicate which is local to ~ and (x;e) a

computation where e is an event on P.

1. e is a receive: {knowledge is not lost}
(P knows b at x) implies (P knows b at (x;e))

212

2. e is a send: {knowledge is not gained}
(P knows b at (x;e)) implies (P knows b at x)

3. e is an internal event: {knowledge is neither
lost nor gained}
(P knows b at x) = (P knows b at (x;e))

U

Proof: We prove only (1). Consider any z such

that (x;e) [P] z. We will show b at z and hence it

follows that P knows b at (x;e).

Since z [~] z, we have (x;e) [P ~] z.

From theorem 3, since e is a receive, x [P P] z.

Since b is local to ~ ,

P knows b = P knows P knows b.

From theorem 4,

(P knows ~ knows b at x, x [P ~] z) implies

(~ knows b at z)

(~ knows b at z) implies (b at z)

This completes the proof.

[]

Corollary: (b is local to ~, ~ P knows b at x, P

knows b at y, x < y) implies (P receives a message in

(~, y)).
[]

Corollary: (b is local to ~, P knows b at x,

~-~P knows b at y, x < y) implies (P sends a message

in (x, ~)).
[]

Theorem 5: (How Knowledge Is Gained:)

Let x, y be computations where x _< y,

- - (P knows b) at x and (Pl knows . . . ~ knows b)

at y, for arbi t rary process sets P I " ' " Pn' n > 1.

Then there is a process chain < P n " " " PI > in (z, y).

Furthermore, if b is local to Pn then Pn has a receive

event in (x, y) such that b at z holds for every prefix z

of y which includes the corresponding send event.
[]

Theorem 6: (How Knowledge Is Lost:)

Let x, y be computations where x _< y,

Pl knows . . . P , knows b at x and ~ P n knows b at

y, for arbi t rary process sets PI " • " Pn' n > 1. Then

there is a process chain < P I ' ' " Pn > in (x, y).

Furthermore, if b is local to ~n then Pn has a send

event in (x, y).

[]

Observe that the statements of the two theorems

are not entirely symmetric for receive and send

events. The reason is that every computation

including a receive must also include the

corresponding send, but not conversely.

Theorems 4, 5, 6 and their corollaries hold with

knows replaced by sure.

5. Applications Of The Results

We sketch a few applications of the theory

developed so far. A full t reatment of these results

may be found in [8].

We show that it is impossible for process P to

t rack the change in value of a local predicate of ~ ,

exactly at all times; P must be unsure about the value

of this predicate while it is undergoing change. We

also show that necessary condition for changing a

local predicate b of ~ , is that ~ knows P unsure b, at

the point of change.

Tradit ional techniques for process failure detection

based on time-outs assume certain execution speeds

for processes and maximum delays for message

transfer. I t is generally accepted that detection of

failure is impossible without using time-outs, a fact

that we prove formally. We use the fact that failure

of a process is local to the process and the process

does not send messages after its failure; hence other

processes remain unsure at all points about a process

failure.

213

We show that any algorithm, which detects

termination of an underlying computation, requires at

least as many overhead messages, in general, for

detection as there are menages in the underlying

computation. We first show that in order for

termination to be detected, an overhead message is

sent by some process, without its first receiving a

message, after the underlying computation terminates;

this fact is proven directly from the theorem of

knowledge gain, because detecting termination

amounts to gaining knowledge.

Next we show that a process is sometimes required

to send an overhead message even when the

underlying computation has not terminated, because

the computation may be isomorphic (with respect to

this process) to a computation in which the

underlying computation has terminated. Using these

two results, we construct a computation, in which the

number of overhead messages is at least as many as

the number of underlying messages.

6. D i s c u s s i o n

We have shown that isomorphisms between system

computations with respect to a process is a useful

concept in reasoning about distributed systems.

Isomorphism forms the basis for defining and deriving

properties about knowledge. "Scenarios" have been

used [7] to show impossibility of solving certain

problems; in our context, a scenario is a computation,

and isomorphism is the formal treatment of

equivalence between scenarios. Theorems on

knowledge transfer provide lower bounds on numbers

of messages required to solve certain problems. We

have used isomorphism as the basis of fusion theorem

and related isomorphism to semantics of send, receive

and internal events.

A number of generalizations of this work are

possible: we can define isomorphism based on states

of processes, rather than computations; we can

introduce the notion of time into computations; we

can define belief in terms of isomorphism. Most of

the results in this paper are applicable in the first case

but not in the other two cases.

Acknowledgement: We are indebted to Shmuel

Katz, Joe Halpern, E.W. Dijkstra and Bengt Jonsson

for their comments. Particular thanks go to Ernie

Cohen for a careful reading of the manuscript and

insightful comments.

This work was supported in part by a grant from the

Office of Naval Research under N00014-85-K-0057.

1.

2.

3.

4.

5.

8.

7.

8.

R E F E R E N C E S

K. M. Chandy & J. Misra: "Drinking
Philosophers Problem", TOPLAS, October
1984.

M. J. Fischer, N. Lynch & M. Paterson,
"Impossibility of Distributed Consensus
with one Faul ty Process", Journal of the
ACM, April 1985.

J. Y. Halpern & Y. Moses: "(Knowledge
And Common Knowledge In A Distributed
Environment" , ACM SIGACT-SIGOPS
Symposium on Principles of Distributed
Computing, Vancouver, Canada, August
1984.

J. Hintikka: "Knowledge and Belief",
Cornell University Press, 1962.

L. Lamport:, "Time, Clocks and the
Orderings of Events in a Distributed
System", Communications of the ACM,
Vol. 21, No. 7, pp. 558.-564, July 1978.

D. Lehmann, "Knowledge, Common
Knowledge, and Related Puzzles", ACM
SIGACT-SIGOPS Symposium of
Principles of Distributed Computing,
Vancouver, Canada, August 1984.

N. Lynch & M. Fischer, "A Lower Bound
for the Time to Assure Interactive
Consistency", Information Processing
Letters, Vol. 14, No. 4, June 1982.

K. M. Chandy & Jayadev Misra, "How
Processes Learn ", DistriButed Computing,
Vol. 1, No. 1, January 1986, (Published by
Springer Verlag).

214

