
HOW PROCESSES LEARN 

K. Mani Chandy & Jayadev Misra 
Department of Computer Sciences University of Texas Austin, 78712 

1. I n t r o d u c t i o n  

Processes in distributed systems communicate with 

one another exclusively by sending and receiving 

messages. A process has access to its state but not to 

the states of other processes. Many distributed 

algorithms require that a process determine facts 

about the overall system computation. In 

anthropomorphic terms, processes "learn" about 

states of other process in the evolution of system 

computation. This paper is concerned with how 

processes learn. We give a precise characterization of 

the minimum information flow necessary for a process 

to determine specific facts about the system. 

The central concept in our study is that  of 

isomorphism between system computations with 

respect to a process: two system computations are 

isomorphic with respect to a process if the process 

behavior is identical in both. In anthropomorphic 

terms, "system computations are isomorphic with 

respect to a process" means the process cannot 

distinguish between them. 

Many correctness arguments about distributed 

systems have the following operational flavor: "I will 

send a message to you and then you will think that I 

am busy and so you will broadcast . . .  ". Such 

operational arguments are difficult to understand and 

error prone. The basis for such operational 

arguments is usually a "process chain": a sequence of 

message transfers alon~ a chain of processes. We 
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advocate nonoperational reasoning. The basis for 

nonoperational arguments is isomorphism; we relate 

isomorphism to process chains. Algebraic properties 

of system computations under isomorphism provide a 

precise framework for correctness arguments. 

It has been proposed [3 ,6]  that  a notion of 

"knowledge" is useful in studying distributed 

computations. In earlier works, knowledge is 

introduced via a set of axioms [ 4 ]. Our definition of 

knowledge is based on isomorphism. Our model 

allows us to study how knowledge is "gained" or 

"lost". One of our key theorems states that  

knowledge gain and knowledge loss both require 

sequential transfer of information: if process q does 

not know fact b and later, p knows that q knows b, 

then q must have communicated with p, perhaps 

indirectly through other processes, between these two 

points in the computation; conversely, if p knows that 

q knows b and later, q does not know b then p must 

have communicated with q between these two points 

in "the computation. In the first case, the effect of 

communication is to inform p of q's knowledge of b. 

Analogously, in the second case, the effect of 

communication is to inform q of p's intention of 

relinquishing its knowledge (that q knows b). 

Generalizations of these results for arbitrary sequences 

of processes are stated and proved as corollaries of a 

general theorem on isomorphism. 

We use the results alluded to in the last paragraph 
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tbr proving lower bounds on the number  of messages 

reqnired to solve cer ta in  problems.  We show, for 

instance,  t ha t  there is no a lgor i thm to detect  

t e rmina t ion  of  an underlying computa t ion  using only 

a bounded  number  of overhead  messages. 

2.  M o d e l  o f  a D i s t r i b u t e d  S y s t e m  

A dis t r ibuted system consists of a f ini te  set of 

processes. A process is character ized by a set of 

process computa t ions  each of which is a finite 

sequence of events  on that  process. Process 

computa t ions  are prefix closed, i.e. all prefixes of a 

process computa t ion  are also process computa t ions  (of 

t ha t  process). An  event  on a process is ei ther a send, 

a receive or an internal event. A send event  on a 

process corresponds to sending of a message to 

another  process. A receive event  on a process 

corresponds to  recept ion of a message by the process. 

There  is no external  communica t ion  associated with 

an internal event .  Fo r  a set of  processes P, a send 

event  by P is a send event  by some component  process 

of P to a process outside P; s imilarly a receive event  

by P denotes  receipt  by some process in P of a 

message sent from outside P. Communica t ion  among 

processes in P are internal  events  of P. We  use "e is 

on P" ,  for event  ¢ and process set P, to denote tha t  e 

is an event  on some process in P. We rule out  

processes which have no event  in any computa t ion .  

We  assume tha t  all events  and all messages are 

dist inguished; for instance, mul t ip le  occurrences of the 

same message are dist inguished by affixing sequence 

numbers  to them.  

Let z be any sequence of events on component  

processes of a d is t r ibuted system. The  projection of z 

on a componen t  process p, denoted by zp, is the 

subsequence of z consisting of all events  on p. A finite 

sequence of events  z is a system computation of a 

d is t r ibuted system means  (1) for all processes p, zp is 

a process computa t ion  of p and,  (2) for every receive 

event  in z, say receipt  of  message m by process p, 

there  is a send event ,  of sendinl~ m to p, which occurs 

earl ier  than  the  receive in z: this send event  will be 

called the send event  corresponding to the receive. 

We  leave it  to  the  reader  to show tha t  system 

computa t ions  are prefix closed. 

In  this  paper  we consider a single (generic) 

d is t r ibuted system. For  instance,  when we say "z  is a 

compu ta t i on"  we mean  tha t  z is a computa t ion  of the 

d is t r ibuted system considered here. We use 

computation to mean system computation when no 

confusion can arise. 

N o t a t i o n :  We  use x, y, z to denote 

computa t ions ,  p, q for processes and P, Q for process 

sets; these symbols m a y  be used wi th  subscripts  or  

superscripts.  The  concatenat ion  of two sequences y 

and z will be denoted  by (y;z). F o r  sequences y and z, 

y < z denotes  tha t  y is a prefix of  z; in this case (y, 

z) denotes  the  suffix of  z ob ta ined  by removing y 

from z. The  e m p t y  sequence will be denoted by null. 
The symbol  -~- is used to  denote equalit ies among sets 

and among predicates.  The symbol -~ is used for 

definitions. The  set of all processes in the  system will 

be denoted by D and for any process set 

P , P = D - - P .  

3.  Isomorphism 
W e  define the relat ion [p] on the set of system 

computa t ions  as follows. 

D e f i n i t i o n :  F o r  system computa t ions  x,y: 

In other words, x [p] y means p's computation is the 

same in system computa t ions  x and y. In this case, 

we say x, y are isomorphic with respect to p. For  a 

process set P,  define relat ion [P], on the system 

computat ions ,  as follows. 

D e f i n i t i o n :  x [P] y -~ for all p in P, x [p] y. 

Thus  x [P] y means  tha t ,  given only the computa t ions  

of processes in P we cannot  dist inguish x f rom y. 

F r o m  definit ion,  x [{ }] y, for all computa t ions  x, y 

where { } denotes the e m p t y  set. Observe tha t  [ P ]  is 

an equivalence relation. 
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It is convenient to represent all such isomorphism 

relations by an isomorphism diagram: an undirected 

labelled graph whose vertices are computations and 

there is an edge labelled [P]  between vertices x, y if P 

is the largest set of processes for which x [P]  y. 

Observe that every vertex has a self loop labelled [ D ] 

where D is the set of all processes in the system. 

Note that x [D]  y, x ~A y, implies y is a permutation 

Of X. 

E x a m p l e  1: Consider a system with two 

processes, p and q, for which part of the isomorphism 

diagram, showing the relationships among four system 

computation, is given below. 

[(P'q}] Q 

[{p,q}] 

[ ( P ' q } ] G  

Figure  3-1: 

[P] O [ ( P ' q } ]  

[q] Q [{P,q}] 

An Isomorphism Diagram 

From the diagram xIPlY, but not x[qly. This 

means p has the same computations in both x and y, 

whereas q's computations in x and y differ. 

Computations x and z have the same computations 

for both p and q; hence one is a permutation of the 

other. There is no direct relationship between y and 

w; neither y [p] w nor y [q] w holds. However, there is 

an indirect relationship between y and w because 

y[p] z and z iqlw. We explore such indirect 

relationships next. 
[] 

Def in i t ion :  Let n > 0 and P/ be process sets, 

0 < i < n .  

for some computation y. 

Hence, [PQ] = [p ]  o [Q]  where "o" is the 

relational composition operator. This operator is 

associative (from properties of relations). In terms of 

the isomorphism diagram, X[Po. . .  Phi z means there 

is a path from x to z whose edges are labelled with 

Qo, • • • ,Qn, respectively, where Qi ~ Pi' for all i. 

E x a m p l e  1 (contd . ) :  We have y [p q] w and 

w [q p] y. Also, trivially, y [q p] z, y [q p q] z, etc. 

{3 

We note some properties of isomorphism relations. 

In the following, P, PI . . . .  'Pn '  Q' denote arbitrary 

process sets and x, y, z denote arbitrary 

computations. 

1. I P]  is an equivalence relation. 

2. (Substitution) ( [ iS] = [ 6] ) implies 
([  a ~ ~] = [a  6 '7]) for arbitrary 
sequences of process sets a, 8, ~, £ 

3. (Idempotence) [ P P ]  .~_ [p ]  

4. (Reflexivity) x [P1 • " " Pn] x 

5. (inversion) X [ P l . . . P n ]  y =  

Y [ P n . . . P l l x  

6. (Concatenation) For 0 < m < n, 

3y: X [ P l . . . P m l y ,  y[pm+ 1 . . .  
Phi z~-  X [ P l ' ' . P m  Pm+l . - . P n ]  z 

7. [ P U Q }  = ( [ P ] O [ Q ] )  

s. (Q D P) = ([Q] c_ [P]) 

9. ( p =  Q) = ([ P] = [ Q ]) 

10. Q _~ P implies ([ Q P ]  = [ p] = [ p  Q ]) 

These properties follow from properties of 

relations and our model. We only sketch a proof of 

one part of property 8: 

( [ Q ]  C [ P ] )  implies ( Q D_ P). 

If Q ~ P  then there is a process p in P -  Q. From our 

model, p has an event e in some computation (x;e). 

Then x [ Q ] (x;e) and ~ x  [P]  (x;e). Hence [ Q ] ~[  P] .  
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3.1. Process  Chains 

As noted in the introduct ion,  the basis for many  

opera t ional  a rguments  are process chains: process p 

informing q which in turn,  informs r etc. One of our 

goals is to replace such concepts by algebraic 

propert ies  of system computat ions.  In this section, we 

show how process chains are related to isomorphism. 

We first define process chains; this definition is along 

the  lines suggested by Lampor t  [ 5 ]. 

Definition: For  events  e ,d  in a computa t ion  

z, e ~ means: 

1. e t is a receive and e is the corresponding 
send, or 

2. events  e ,e  ~ are in the same process 
computa t ion  and (e = g or e occurs earlier 
than et), or  

3. there exists an event  c" such tha t  c ~ e "  
and gt -~ d. 

For  brevi ty  we write e ~ d when the 

computa t ion  z is unders tood from context.  We will 

wri te  e 0 ~ e I --~ . . .  en_ 1 ~ en, as shor thand  for 

e 0 ~ e I and . . .  and e 1 -'~ e .  Observe tha t  

e ~ e for every event  e in z. A computa t ion  z has a 

proce$8 chain <Po P1 " ' "  P n >  means there exist 

events  e0, el, . . . en, not  necessarily distinct,  in z such 

tha t  event  e i is on P/,  for all 0 < i < n, and 

e O - - * e l - - +  . . . ~ e n .  

Observat ion 1: Any  occurrence of  " P  " in a 

process chain m a y  be replaced by " P  P " ,  or vice 

versa,  since for any event  c on P, e --~ e. 

Observation 2: Let  x be a sequence consisting of 

a subset  of  events  f rom a computa t ion  y. Suppose 

tha t  for every event  c in x, every g, where g Y--~e, is 

also in x and g ~ e .  Then  z is a computa t ion .  

Theorem 1: (Fundamental  Theorem of Process 
Chains) 

Let  z be a computa t ion  and x a prefix of z. Let PI" 

P2 " ' "  Pn '  n > 1, be sets of processes. Then  

x [P1 R e ' ' "  P h i  z or  there is a process chain 

< P I  P 2 " ' " / ~ >  in (x,z). 

Proof: Omi t t ed  
[] 

3.3. An Application of  Isomorphism: How To 

Construct  A Computat ion  By Fusing 

Separate Ones 

In this section, we show an application of 

isomorphism: we give a construct ion to "fuse" two 

computa t ions  to obta in  a new computa t ion ,  provided 

certain types of  paths exist in the isomorphism 

diagram.  We mot iva te  the discussion by the following 

observations.  Suppose (x;E) and (x;E) are 

computa t ions  where all events  in E are on a process 

set P and all events  in E are on P .  Then,  from 

definition, (x ;E ;E)  and (x ;E;E)  are also computat ions ,  

because events in E , ~  are independent  and hence may  

be fused in arbi t rary  order.  A similar result appears  

in Fischer,  Lynch and Pa te rson  [ 2  ]. The  following 

l emma is a general izat ion of this observat ion.  

L e m m a  1: Let  x, y, z be computa t ions  where 

x < y and x < z. Let  P, Q be such tha t  Pt.) Q = D, 

x [ P ] y  and x [ Q ] z .  Then  there exists a 

computa t ion  w where x < w, y I Q ]  w and z [ P ]  w. 
[] 

The  relationships among x, y, z and w are 

represented by the  following commuta t ive  

isomorphism diagram. 

3;2. Relationship Between Isomorphism and 

Proeesa Chain 
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X 

P Q 

2 
y 

~0 

Figure  3-2: Isomorphism Diagram Depicting 
Fusion 

P r o o f  of  t h e  L e m m a :  
Let w = x; (x,y); (x,z). 

From the condition of the lemma, (x, y) has events 

only on ~ and (x, z) has events only on Q. Since 

P U Q = D ,  P A Q = {  } and hence no process has 

events in both (x,y) and (x,z). It follows, from 

definition of computations, that w is a computation. 

Also y [ Q ]  w, z [ p ] w  and x ~ w, as required for 

proof of the lemraa. 

[] 

Note that,  in the construction of lemma 2, all 

events from E and E were present in the fused 

computation. We prove a far more general result 

below. We show that for any two arbitrary 

computations y and z, the projected computations, yp  

and z~, may be fused to form a new computation 

provided there is a computation x which is a prefix of 

both y and z, and no message sent by P in (x,y) is 

received by P in (x,y) and no message sent by P in 

(x,z) is received by P in (x,z). This makes intuitive 

sense: processes in P can execute all events in y given 

only that processes in ~ execute all events up to x 

and similarly for executions of events on P up to z. 

However, the statement and proof of this result are 

difficult without the notion of isomorphism. We note 

that the result may be easily generalized to fusions of 

arbitrary numbers of computations under similar 

constraints. 

T h e o r e m  2: (Fus ion  o f  Computat ions ) :  

Consider system computations x, y, z where x < y 

and x <_ z. Let P be a set of processes such that 

there is no process chain, (1) < P ~ >  in (x, y) and (2) 

< P  P >  in (x, z). Then there is a computation w 

where, x < w, y [ P ] w  and z [ P l w .  That  is, w 

consists of all events on P from y and all events on P 

from z. 
[] 

P r o o f  of  the  Theorem:  According to theorem 

1, absence of process chains as given in this theorem 

means that,  x [ P ~ ]  y and x [ ~ P ]  z. 

Consider the isomorphism diagram in Fig. 3-3. 

Label the intermediate point between x, y as u and 

between x, z as v in this figure. Now we apply lemma 

1 to x, u, v to obtain w. Note that, u [ ~ ] y  and 

u [ P ]  w; hence y [ P ]  w. Similarly z [ P ] w .  This 
proves the theorem. 

[] 

/ 
\ / 

\ i 
~\\ ' P 

' . ' 

\ 

Y w p 

F i g u r e  3-3: Isomorphism Diagram Depicting Proof 
of Fusion Theorem 

3.4. S e m a n t i c s  O f  E v e n t  Types  In T e r m s  Of  

I s o m o r p h i s m  

We now use isomorphism to state and derive some 

important  facts about various types of events. First, 
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note tha t  a process carries out an internal event or 

sends a message depending on its own computation 

alone. Therefore, if a process takes such a step in a 

computat ion x, i t  will also do so in y, if x, y are 

isomorphic with respect to this process. An analogous 

result holds for internal and receive events. The 

following principle, which states these facts formally, 

may be proven from the definition of system 

computation.  

P r i n c i p l e  of  C o m p u t a t i o n  E x t e n s i o n : :  

Let e be an event on P. 
1. e is an internal or send event: 

(x [P ]  y and (x;e) is a computation) implies 
(y;e) is a computat ion 

2. e is an internal or receive event: 
(x;e) [ P] y impl ies  (y - e) is a computation, 
where (y - e) is the sequence obtained by 
deleting e from y. 

D 

Note:  In (1), (x ;e ) [P]  (y;e) and in (2), 
x [P]  (y - e). 

C o r o l l a r y :  Let e be a receive event on P and let the 

corresponding send event be on Q. 

(x [ P U  Q ] y and (x;e) is a computation) implies  
(y;e) is a computation.  

Proof:  e is an internal event of Pt.J Q. 

[] 

[] 

Following theorem follows from the principle of 

computat ion extension. 

T h e o r e m  3: 

is an event on P. 

Case 1: e is a receive: 

for every z: (x;e) [ P ~ ]  z impl ies  x [ P ~ ]  z 

C a s e  2: e is a send: 

for e v e r y z : x [ P ~ ]  z implies  ( x ; e ) [ P ~ ]  z 

C a s e  3: e is an internal event: 

for e v e r y z : ( x ; e ) [ P ~ ]  z =  x { P ~ ] z  

Let (x;e) be a computation where e 

[] 

Proof:  We wil l  prove only Case 2; other cases are 

similarly proven. 

x [ P P ] z impl ies  there exists V, x [ P ] y and V [ P } z. 

From principle of computation extension, (y;e) is a 

computat ion and (x;e) [P]  (y;e). 

Also, (y;e) [ ~ l  Y. 

Hence, (x;e) [ P ~ ~ ] z and therfore, (x;e) [ P ~ ] z. 
[] 

This theorem captures the intuitive notion that  

the set of possible computations, isomorphic with 

respect to P, can only shrink in size as a result of a 

reception as computations which do not include the 

corresponding send are ruled out. Similarly, the set 

of possible computations,  isomorphic with respect to P 

cannot shrink as a result of a send: after the send, 

additional computations which accept the message 

sent are isomorphic while all prior isomorphic 

computations remain isomorphic. An internal event 

can neither expand nor shrink the set of isomorphic 

computations. 

4.  K n o w l e d g e  

As we have remarked earlier, predicates of the 

type P knows b at x may be defined using 

isomorphism. We explore properties of such 

predicates in our model. We show that  they satisfy 

the "knowledge axioms" as given in [ 3,6 ]. We prove 

a general result which shows that  certain forms of 

knowledge can only be gained or lost in a sequential 

fashion along a chain of processes. That  is, if b is 

false for a computat ion and later, PI  knows P2 knows 

" ' "  Pn knows b (this represents knowledge gain), 

then there is a process chain ( P n  P n - I  " ' "  P1 > 

between these two points of the computation. 

Conversely, if PI  knows P2 knows • " • Pn knows b 

and later, b is false (this represents knowledge loss), 

then there is a process chain <Pl P2 "'" Pn :> 

between these two points of the computation. 
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Crucial to our work is the notion of local 

predicates: a predicate local to p can change in value 

only as a result of events on p. We show that local 

predicates play a key role in understanding knowledge 

predicates. 

4.1. K n o w l e d g e  P r e d i c a t e s  

Let b denote a predicate on system computations 

and "b at x" its value for computation x. Our 

predicates are total, i.e. for each x, b at x is either 

true or false. We furthermore assume that  

x [D ] y implies  ( b at x = b at y ) for every predicate 

b. Thus predicate values depend only upon 

computations of component processes and not on the 

way independent events are ordered in a linear 

representation of the computation. A predicate e is a 

constant means e at x ~- e at y, for all computations 

x, y. We now define (P knows b) at x. 

D e f i n i t i o n :  (P knows b) at x = for all y: 

x [ P ] y : b a t  y 

Note that b may itself be a predicate of the form 

Q knows Y in the above definition. We next note 

some facts about knowledge predicates. In the 

following, x, y are arbitrary computations, b, b t are 

arbitrary predicates and P, Q are arbitrary sets of 

processes. All facts are universally quantified over all 

computations. We use the convention that  P knows 

Q knows b at x is to be interpreted as (P knows (Q 

knows b)) at x. 

1. P k n o w s b a t x ~ -  for all y: x [ P ]  y : P 
knows b at y 

2. x [ P ] y  implies [P knows b at x ~ P 
knows b at y] 

3. (P knows b) i m p l i ~  (PO Q knows b) 

4. (P knows b) implies (b) 

5. (P know, b) or ( ~ P  k.ows b) 

6. (P  knows b) and (P knows b') ~- P knows 
(b and b I) 

7. ((P knows b) or (P knows b')) implies (P 
knows (b or b')) 

8. (P knows ,--~b) implies ( ~ P  knows b) 

9. ((P knows b) and (b implies b')) implies 
(P knows b') 

10. P knows P knows b = P knows b 

11. P knows , ~ P  knows b = ~ P  knows b 

12. P knows c, for any constant c. 

These facts are easily derivable from the definition 

of knows. We give a proof of (11), whose validity in 

other domains have been questioned on philosophical 

grounds [ 3 ]. 

L e m m a  2: P knows u p  knows b -~ u p  knows b 

Proof :  P knows ~ P  knows b at x 
-~ for all y: x [ P ] y  : ~ P  knows b at y, 

from definition 
-~ for all y: x [ P]  y: there exists z: 

y [ P] z: ~ b  at z, from definition 
-~- there exists z: x [ P ]  z: ~ b  at z, 

since [P] is an equivalence relation 
u p  knows b at x 

[] 

[] 

There are situations where multiple levels of 

knowledge such as, P knows Q knows b, are useful. 

For  instance, consider a token bus which is a linear 

sequence of processes among which a token is passed 

back and forth; processes at the left or right boundary 

have only a right or left neighbor to whom they may 

pass the token; other processes may send it to either 

neighbor. There is only one token in the system and 

initially it is at the leftmost process. Consider a 

token bus with five processes labelled p, q, r, s, t from 

left to right. When r holds the token, 

r knows ( (q knows (p does not hold the token)) and 
(s knows (t does not hold the token)) ) 

Relations of the form [ P  Q ], with multiple process 

sets arise from predicates with multiple occurrence of 

knows; 
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For  instance: 
p knows  q knows  b at z 
-~ for a l l y : x [ p ] y :  q k n o w s b a t  y 
= for all  y: ~ [p  ] y: (for all ~: y [ q] ~: b at ~) 
-~ for a l l z : x [ p q ] z :  b a t  z 

4.2. Local Predicates 

Let b be a predicate  on system computat ions ,  and 

P a set of processes. We define a predicate P sure b 

as follows. 

D e f i n i t i o n :  (P  sure b) at x --~ [ (P  knows  b) at x or 
(P  knows  ~--~b) at x] 

In o ther  words (P  sure b) at x means tha t  P knows 

the value of b at x. 

We define unsure  as negat ion of sure. 

D e f i n i t i o n :  P unsure  b _= ~.~P sure b 

Hence, (P  unsure  b) at x = [(,--~P knows b) at x and 
( ~ P  knows ~ b )  at x] 

D e f i n i t i o n :  b is local to P ~ for all x: (P  sure b) 

at x. 

T h a t  is, the  value of b is always known to P. 

Local predicates capture  our intui t ive notion of a 

predicate  whose value is controlled by the actions of 

processes to which it is local. 

We note the following facts about  local predicates; 

in the following, b is an arb i t ra ry  predicate and P, Q 

are a rb i t ra ry  sets of processes. 

1. (b is  local to P and x[P]  y) impl ies  
(ba t  x . ~  b a t  y) 

2. b is local to P impl ies  ( b ~- P knows  b) 

3. b is local to P = ( ~ b )  is local to P. 

4. b is  local to P impl ies  
[ Q knows  b .~ Q knows P knows b ] 

5. (P  knows  b) is local to P. 

6. b is  local to P and b is  local to Q and P ,Q 
are disjoint  impl ies  b is a constant .  

7. b is a constant  impl ies  b is  local to P. 

8. (P  sure b) is  local to P. 

Proof  of  (1) follows f rom defini t ion of  knowledge 

and local predicates.  (2) and (3) follow trivially.  (4) 

follows f rom Q knows  b at x-~-  for all y: x [ Q l y : 

b a t  y -~- for all y :  x [ Q ]  y : P knows  b at y (since b 

is local to P) ~ Q knows  P knows b at x. (5) follows 

from, (P  knows P knows  b or P knows ~ P  knows b) 

-~ (P knows  b or ~ P  knows b) = true. Proof  of (6) 

is impor t an t  and hence is given below as a lemma. 

(7) and (8) are tr ivial ly proven from definition. 

L e m m a  3: b is local to disjoint sets P, Q impl ies  

b is a constant  

[] 

Proof: We show tha t  b at x = b at null,  for all x. 

P roof  is by induct ion on length of  x. 

b at null  -~- b at null .  
b at (x;e) ~ b at x, because event  e is not  on P or 

e is not  on Q, and hence 
(x;e) I F ]  x o r  ( x ; e ) [ Q ]  x; 

then  the result follows f rom proper ty  (1). 

[] 

Fo r  a system of processes, b is c o m m o n  knowledge 

is defined as the greatest  fix point  of the following 

equation.  

b is  c o m m o n  knowledge _~ b and (p knows  b) is 

c o m m o n  knowledge, for all processes p. Intui t ively,  b 

is  c o m m o n  knowledge means b is true, every process 

knows  b, every process knows tha t  every process 

knows  b, etc. 

Halpern and Moses [ 3 ] have shown tha t  common 

knowledge cannot  be gained, if it was not present 

initially, in a system which does not  admi t  of 

s imul taneous  events.  The  following corollary to 

l emma 3 shows tha t  common knowledge can be 

nei ther  gained nor lost in d is t r ibuted systems. 

Corollary: In a system with more than one 

process, for any predicate b, b is c o m m o n  knowledge 

is a constant .  

[] 
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Proof: For any process p, b is common knowledge 

= p knows (b is common knowledge). Hence, b is 

common knowledge is local to every p. Applying 

lemma 3, b is common knowledge is a constant. 
[] 

It is possible to show tha t  even weaker forms of 

knowledge cannot be gained or lost in our model of 

distributed systems. Process sets P, Q have identical 

knowledge of b means, 
P knows b -~ Q knows b 

Corollary: If P, Q are disjoint and have 

identical knowledge of b then P knows b (and also 

Q knows b) is a constant. 
[] 

Proof: P k n o w s b  is local to P a n d  Q knowsb is 

local to Q. From P k n o w s  b = Q k n o w s b ,  they are 

also local to Q and P respectively. The result follows 

directly from lemma 3. 
[] 

Corollary: If P,Q are disjoint and P sure b = Q 

sure b, then P sure b (and also Q sure b) is a 

constant. 
[] 

4.3. How Knowledge Is Transferred 

We show in this section that chains of knowledge 

are gained or lost in a sequential manner. 

Theorem 4: For arbitrary process sets 

P1 " " • , Pn'  n ~_ 1, predicate b and computations x, 

Y, 

( P l k n ° w s  . . . P n k n o w s b a t x a n d x [ P l . . .  PnlY) 

implies (Pn knows b at y) 

[] 

Proof: Proof is by induction on n. For n =  1, 

P~ k n o w s b a t x ,  x [ P ~ ] y i m p l i e s  P~ k n o w s b a t y ,  

trivially. 

Assume the induction hypothesis for some n - 1, 
n > 1, and assume 

PI k n o w s . . .  Pn knows b at x and x[Pl... Pn] y" 

We shall prove Pn knows b at y. 

From x [PI • " • Pn] Y' we conclude that  there is a z 
such that, 

x [PI " " " Pn - 1] z and z [Pal Y" 

From X [ P l . . . P n _ l ] Z  and P1 knows . . .  

P n -  1 kn°ws (Pn know,  b) at x, we conclude, using 

induction, P n - 1  knows Pn knows b at z. Hence, Pn 

knows b at z. 

Since z [ e ]  V, Pa know8 b at V. 
[] 

Corollary: For arbitrary process sets 

P I ' ' "  Pn '  n > 1, predicate b and computations x, 

Y, 

(PI k n o w s . . .  P n -  1 knows "~Pn knows b at x and 

x [PI " " "Pn] Y) implies "~Pn knows b at y 
[] 

Note:  For n-~-1 antecedant is, ~ P n  knows b at 

x. 

Corollary: Theorem 4 holds with knows replaced 

by sure. 

Theorem 4 can be applied to (1) x < y 

(knowledge is lost) and (2) y _~ x (knowledge is 

gained). Using theorem 1, we can deduce that  there is 

a process chain < P l ' ' "  Pn > in the former case 

And < Pn " " " PI > in the latter case. We first prove 

a simple lemma about the effect of receive or send on 

knowledge: we show that  certain forms of knowledge 

cannot be lost by receiving nor gained by sending. 

L e m m a  4: (How events at a process change its 

knowledge) 

Let b be a predicate which is local to ~ and (x;e) a 

computation where e is an event on P. 

1. e is a receive: {knowledge is not lost} 
(P knows b at x) implies (P knows b at (x;e)) 
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2. e is a send: {knowledge is not gained} 
(P knows b at (x;e)) implies (P knows b at x) 

3. e is an internal event: {knowledge is neither 
lost nor gained} 
(P knows b at x) = (P knows b at (x;e)) 

U 

Proof: We prove only (1). Consider any z such 

that  (x;e) [P]  z. We will show b at z and hence it 

follows that  P knows b at (x;e). 

Since z [ ~ ]  z, we have (x;e) [ P ~ ]  z. 

From theorem 3, since e is a receive, x [ P P ]  z. 

Since b is local to ~ ,  

P knows b = P knows P knows b. 

From theorem 4, 

(P knows ~ knows b at x, x [ P ~ ] z) implies 

(~  knows b at z) 

(~  knows b at z) implies (b at z) 

This completes the proof. 

[] 

Corollary: (b is local to ~,  ~ P  knows b at x, P 

knows b at y, x < y) implies (P receives a message in 

(~, y)). 
[] 

Corollary: (b is local to ~, P knows b at x, 

~-~P knows b at y, x < y) implies (P sends a message 

in (x, ~)). 
[] 

Theorem 5: (How Knowledge Is Gained:) 

Let x, y be computations where x _< y, 

- - ( P  knows b) at x and (Pl knows . . .  ~ knows b) 

at y, for arbi t rary  process sets P I " ' "  Pn' n > 1. 

Then there is a process chain < P n  " " " PI > in (z, y). 

Furthermore,  if b is local to Pn  then Pn has a receive 

event in (x, y) such that  b at z holds for every prefix z 

of y which includes the corresponding send event. 
[] 

Theorem 6: (How Knowledge Is Lost:) 

Let x, y be computations where x _< y, 

Pl knows . . .  P ,  knows b at x and ~ P n  knows b at 

y, for arbi t rary  process sets PI " • " Pn'  n > 1. Then 

there is a process chain < P I ' ' "  Pn > in (x, y). 

Furthermore,  if b is local to ~n  then Pn has a send 

event in (x, y). 

[] 

Observe that  the statements of the two theorems 

are not entirely symmetric for receive and send 

events. The reason is that  every computation 

including a receive must also include the 

corresponding send, but  not conversely. 

Theorems 4, 5, 6 and their corollaries hold with 

knows replaced by sure. 

5. Applications Of  The  Results 

We sketch a few applications of the theory 

developed so far. A full t reatment  of these results 

may be found in [ 8 ]. 

We show that  it is impossible for process P to 

t rack the change in value of a local predicate of ~ ,  

exactly at all times; P must be unsure about the value 

of this predicate while it is undergoing change. We 

also show that  necessary condition for changing a 

local predicate b of ~ ,  is that  ~ knows P unsure b, at 

the point of change. 

Tradit ional  techniques for process failure detection 

based on time-outs assume certain execution speeds 

for processes and maximum delays for message 

transfer. I t  is generally accepted that  detection of 

failure is impossible without using time-outs, a fact 

that  we prove formally. We use the fact that  failure 

of a process is local to the process and the process 

does not send messages after its failure; hence other 

processes remain unsure at  all points about a process 

failure. 
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We show that any algorithm, which detects 

termination of an underlying computation, requires at 

least as many overhead messages, in general, for 

detection as there are menages in the underlying 

computation. We first show that in order for 

termination to be detected, an overhead message is 

sent by some process, without its first receiving a 

message, after the underlying computation terminates; 

this fact is proven directly from the theorem of 

knowledge gain, because detecting termination 

amounts to gaining knowledge. 

Next we show that a process is sometimes required 

to send an overhead message even when the 

underlying computation has not terminated, because 

the computation may be isomorphic (with respect to 

this process) to a computation in which the 

underlying computation has terminated. Using these 

two results, we construct a computation, in which the 

number of overhead messages is at least as many as 

the number of underlying messages. 

6.  D i s c u s s i o n  

We have shown that isomorphisms between system 

computations with respect to a process is a useful 

concept in reasoning about distributed systems. 

Isomorphism forms the basis for defining and deriving 

properties about knowledge. "Scenarios" have been 

used [ 7 ]  to show impossibility of solving certain 

problems; in our context, a scenario is a computation, 

and isomorphism is the formal treatment of 

equivalence between scenarios. Theorems on 

knowledge transfer provide lower bounds on numbers 

of messages required to solve certain problems. We 

have used isomorphism as the basis of fusion theorem 

and related isomorphism to semantics of send, receive 

and internal events. 

A number of generalizations of this work are 

possible: we can define isomorphism based on states 

of processes, rather than computations; we can 

introduce the notion of time into computations; we 

can define belief in terms of isomorphism. Most of 

the results in this paper are applicable in the first case 

but not in the other two cases. 
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