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Abstract (150 words – currently 149) 19	

The correct targeting and insertion of tail-anchored (TA) integral membrane proteins (IMP) 20	

is critical for cellular homeostasis. The mammalian protein SGTA, and its fungal homolog Sgt2 21	

(Sgt2/A), binds hydrophobic clients and is the entry point for targeting of ER-bound TA IMPs. 22	

Here we reveal molecular details that underlie the mechanism of Sgt2/A binding to TA clients. We 23	

establish that the Sgt2/A C-terminal region is conserved but flexible, sufficient for client binding, 24	

and has functional and structural similarity to the DP domains of Sti1. A molecular model for 25	

Sgt2/A-C reveals a helical hand forming a hydrophobic groove, consistent with a higher affinity 26	

for TA clients with hydrophobic faces and a minimal length of 11 residues. Finally, we show that 27	

a hydrophobic face metric improves the predictions for TA localization in vivo. The structure and 28	

binding mechanism positions Sgt2/A into a broader class of helical-hand domains that reversibly 29	

bind hydrophobic clients. 30	

  31	
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Introduction 32	

An inherently complicated problem of cellular homeostasis is the biogenesis of hydrophobic 33	

IMPs which are synthesized in the cytoplasm and must be targeted and inserted into a lipid bilayer. 34	

Accounting for ~25% of transcribed genes [1], IMPs are primarily targeted by cellular signal 35	

binding factors that recognize a diverse set of hydrophobic alpha-helical signals as they emerge 36	

from the ribosome [2-4]. One important class of IMPs are tail-anchored (TA) proteins whose 37	

hydrophobic signals are their single helical transmembrane domain (TMD) located near the C-38	

terminus and are targeted post-translationally to either the ER or mitochondria [5-9]. In the case 39	

of the canonical pathway for ER-destined TA IMPs, each is first recognized by homologs of 40	

mammalian SGTA (small glutamine tetratricopeptide repeat protein) [4,6,10,11]. Common to all 41	

signal binding factors is the need to recognize, bind, and then hand off a hydrophobic helix. How 42	

such factors can maintain specificity to a diverse set of hydrophobic clients that must subsequently 43	

be released remains an important question. 44	

Homologs of the human SGTA and fungal Sgt2 (hereafter referred to as HsSGTA for Homo 45	

sapiens and ScSgt2 for Saccharomyces cerevisiae, collectively Sgt2/A) are involved in a variety 46	

of cellular processes regarding the homeostasis of membrane proteins including the targeting of 47	

TA IMPs [9,12-14], retrograde transport of membrane proteins for ubiquitination and subsequent 48	

proteasomal degradation [15], and regulation of mislocalized membrane proteins (MLPs) [16,17]. 49	

Among these, the role of Sgt2/A in the primary pathways responsible for targeting TA clients to 50	

the endoplasmic reticulum (ER) are best characterized, i.e. the fungal Guided Entry of Tail-51	

anchored proteins (GET) or the mammalian Transmembrane Recognition Complex (TRC) 52	

pathway. In the GET pathway, Sgt2 functions by binding a cytosolic TA client then transferring 53	

the TA to the ATPase chaperone Get3 (human TRC40) with the aid of the heteromeric Get4/Get5 54	

complex (human TRC35/Ubl4A/Bag6 complex) [13,18-20]. In this process, TA binding to Sgt2, 55	

after hand-off from Hsp70, is proposed as the first committed step to ensure that ER, but not 56	

mitochondrial, TAs are delivered to the ER membrane [3,13,21]. Subsequent transfer of the TA 57	

from Sgt2 to the ATP bound Get3 induces conformational changes in Get3 that trigger ATP 58	

hydrolysis, releasing Get3 from Get4 and favoring binding of the Get3-TA complex to the Get1/2 59	

(mammalian CAML/WRB) receptor at the ER leading to release of the TA into the membrane [22-60	

26]. Deletions of GET genes (i.e. get1Δ, get2Δ, or get3Δ) cause cytosolic aggregation of TAs 61	
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dependent on Sgt2 [26,27]. 62	

In addition to targeting TA IMPs, SGTA may also promote degradation of IMPs through the 63	

proteasome by cooperating with the Bag6 complex, a heterotrimer containing Bag6, TRC35, and 64	

Ubl4A, which acts as a central hub for a diverse physiological network related to protein targeting 65	

and quality control [19,28-30]. The Bag6 complex can associate with ER membrane-embedded 66	

ubiquitin regulatory protein UbxD8, transmembrane protein gp78, proteasomal component 67	

Rpn10c, and an E3 ubiquitin protein ligase RNF126 thereby connecting SGTA to ER associated 68	

degradation (ERAD) and proteasomal activity. Depletion of SGTA significantly inhibits turnover 69	

of ERAD IMP clients and elicits the unfolded protein response[16]. Furthermore, the cellular level 70	

of MLPs in the cytoplasm could be maintained by co-expression with SGTA, which possibly 71	

antagonize ubiquitination of MLPs to prevent proteasomal degradation [15,17]. These studies 72	

demonstrate an active role of SGTA in triaging membrane proteins in the cytoplasm and the breadth 73	

of SGTA clients including TAs, ERAD clients, and MLPs all harboring one or more TMD. SGTA 74	

roles in disease have been linked to polyomavirus infection [31], neurodegenerative disease 75	

[27,32], hormone-regulated carcinogenesis [33,34], and myogenesis [35], although the underlying 76	

molecular mechanisms are still unclear. 77	

The architecture of Sgt2/A includes three structurally independent domains that define the 78	

three different interactions of Sgt2/A (Fig 1A) [12,36-39]_ENREF_19. The N-terminal domain 79	

forms a homo-dimer composed of a four-helix bundle with 2-fold symmetry that primarily binds 80	

to the ubiquitin-like domain (UBL) of Get5/Ubl4A for TA targeting [36,40] or interacts with the 81	

UBL on the N-terminal region of BAG6 [41] where it is thought to initiate downstream degradation 82	

processes [15,28,29]. The central region comprises a co-chaperone domain with three repeated 83	

TPR motifs arranged in a right handed-superhelix forming a ‘carboxylate clamp’ for binding the 84	

C-terminus of heat-shock proteins (HSP) [12,42]. The highly conserved TPR domain was 85	

demonstrated to be critical in modulating propagation of yeast prions by recruiting HSP70 [27] 86	

and may associate with the proteasomal factor Rpn13 to regulate MLPs [43]. More recently, it was 87	

demonstrated that mutations to residues in the TPR domain which prevent Hsp70 binding impair 88	

the loading of TA IMPs onto Sgt2 in yeast [21], consistent with a direct role of Hsp70 in TA IMP 89	

targeting via the TPR domain. The C-terminal methionine-rich domain of Sgt2/A is responsible 90	

for binding to hydrophobic clients such as TA IMPs [11,37,44]. Other hydrophobic segments have 91	

been demonstrated to interact with the domain such as the membrane protein Vpu (viral protein U) 92	
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from human immunodeficiency virus type-1 (HIV1), the TMD of tetherin [44], the signal peptide 93	

of myostatin [35], and the N-domain of the yeast prion forming protein Sup35 [27]. All of these 94	

studies suggest that the C-terminus of Sgt2/A binds broadly to hydrophobic stretches, yet structural 95	

and mechanistic information for client recognition is lacking.  96	

In this study, we provide the first structural characterization of the C-domains from Sgt2/A 97	

(Sgt2/A-C) and show that, in the absence of substrate, they are relatively unstructured. We 98	

demonstrate a conserved region of the C-domain, defined here as Ccons, is sufficient for client 99	

binding. Analysis of the Ccons sequence identifies six amphipathic helices whose hydrophobic 100	

residues are crucial for client binding. Combining this with ab initio structure prediction and 101	

biochemistry in total demonstrates that Ccons has structural homology to the client-binding domain 102	

of the co-chaperone Sti1/Hop. Artificial TA clients are used to define the properties critical for 103	

binding to Sgt2/A-C. We further show that these principles extend to the TA proteome and are 104	

sufficient to properly categorize the cellular localization of TA clients. Finally, the combined 105	

results lead to a mechanistic model where Sgt2/A-C falls into the broader class of helical-hand 106	

containing proteins involved in the binding and release of hydrophobic alpha-helices. 107	

 108	

Results 109	

The flexible Sgt2/A-C domain  110	

Based on sequence alignment (Fig. 1A), the C-domain of Sgt2/A contains a conserved core 111	

of six predicted helices flanked by unstructured loops that vary in length and sequence. Previous 112	

experimental work had suggested that this region was particularly flexible, as the domain in the 113	

Aspergillus fumigatus was sensitive to proteolysis [12]. Similarly, for ScSgt2-TPR-C, the sites 114	

sensitive to limited proteolysis primarily occur within the loops flanking the conserved helices 115	

(Fig. 1A, red arrows and S1B). This flexible nature of the C-domain likely contributes to its 116	

anomalous passage through a gel-filtration column where ScSgt2/A-C elutes much earlier than the 117	

similarly-sized, but well-folded Sgt2/A TPR-domain (Fig. 1B). The circular dichroism (CD) 118	

spectra for both homologs suggests that the C-domain largely assumes a random-coil conformation, 119	

with 40-45% not assignable to a defined secondary structure category (Fig. 1C) [45]. This lack of 120	

stable tertiary structure is further highlighted by the well-resolved, sharp, but narrowly dispersed 121	

chemical shifts of the backbone amide protons in 1H-15N HSQC spectra of Sgt2/A-C (Fig. 1D,E), 122	

indicating a significant degree of backbone mobility, similar to natively unfolded proteins [46] and 123	
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consistent with results seen by others [47]. The larger hydrodynamic radius matches previous 124	

small-angle X-ray scattering measurement of the TPR-C protein that indicated a partial unfolded 125	

characteristic in a Kratky plot analysis [12]. 126	

 127	

The conserved region of the C-domain is sufficient for substrate binding 128	

Several lines of evidence suggest the conserved region of the C-domain binds substrates. First, 129	

during purification the Sgt2-C-domain was cut at several specific sites (Fig. 1A). Proteolysis 130	

occurred primarily in the poorly-conserved N-terminal region (between Asp235-Gly258) and at 131	

Leu327. This suggests that the intervening conserved region, Gly258 and Leu327 on ScSgt2 and its 132	

corresponding region on HsSGTA, may mediate TA client binding (Fig. 2A, grey). To test this, 133	

various his-tagged Sgt2/A constructs were co-expressed with MBP-tagged TA client (Sbh1) and 134	

binding was detected by the presence of captured TA by various Sgt2/A constructs bound to the 135	

affinity resin (Fig 2B). As previously seen [13], we confirm that the Sgt2/A-TPR-C alone is 136	

sufficient for capturing a TA client (Sbh1) (Fig. 2B). As one might expect, the C-domain was also 137	

sufficient for binding the TA client. The central region of Sgt2/A-C contains six conserved helixes, 138	

hereafter referred to as Sgt2/A-Ccons, and is sufficient for binding to the TMD of Sbh1 with an N-139	

terminal MBP-tag. For Sgt2, the minimal conserved region H1-H5 (ΔH0) poorly captures a TA 140	

client, while in SGTA this minimal region is sufficient for capturing the client at a similar level as 141	

the longer Ccons domain (Fig. 2D). 142	

The six predicted helices in Sgt2/A-Ccons are amphipathic (Fig. 1A and Fig. 2C) suggesting 143	

that they use the hydrophobic faces of the helices for binding to client. To probe this, each of these 144	

helices was mutated to replace the larger hydrophobic residues with alanines dramatically reducing 145	

the overall hydrophobicity. For all of the helices, alanine replacement of the hydrophobic residues 146	

significantly reduces binding of Sbh1 to Sgt2/A (Fig. 2E). While these mutants expressed at similar 147	

levels to the wild-type sequence, one cannot rule out that these changes do not broadly affect the 148	

tertiary structure of this domain. In general, these results imply that these amphipathic helices are 149	

directly involved in the interaction with client. The overall effect on binding by each helix is 150	

different with mutations in the helices 1-3 having the most dramatic reduction in binding 151	

suggesting that these are more crucial for TA complex formation. It is also worth noting, as this is 152	

a general trend, that SGTA is more resistant to mutations that affect binding than Sgt2 which likely 153	

represents different threshold requirements. 154	
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 155	

Molecular modeling of Sgt2/A-C domain 156	

Despite the need for a molecular model, the C-domains have resisted structural studies, likely 157	

due to the demonstrated inherent flexibility. With six conserved α-helical amphipathic segments 158	

(Fig. 1A) containing hydrophobic residues critical for TA-client binding (Fig. 2C,E), we expect 159	

some folded structure to exist. Therefore, we performed ab initio molecular modeling of Sgt2-C 160	

using a variety of prediction methods [48-51] resulting in a diversity of putative structures. Of the 161	

various models, only the highest scored structures from Quark [48] consistently result in a similar 162	

tertiary fold (Fig. 3A). The general architecture contained a clear potential TA client binding site, 163	

a hydrophobic groove formed by the amphipathic helices. The groove is approximately 15 Å long, 164	

12 Å wide, and 10 Å deep, which is sufficient to accommodate three helical turns of an alpha-helix, 165	

~11 amino acids (Fig. 3B). For the prediction, while the entire C-domain was used, the N- and C- 166	

termini of Sgt2 do not adopt similar structures across the various models consistent with their 167	

expected higher flexibility (Fig. 3C).  168	

To validate the model, we interrogated the accuracy of the predicted spatial location of the 169	

helices by experimentally determining distance constraints from crosslinking experiments. Based 170	

on the model, four pairs of residues in close spatial proximity and one pair far-apart were selected 171	

and mutated to cysteines (Fig. 3D). In the experiment, an artificial TA client containing a cMyc-172	

tagged BRIL (small, 4-helix bundle protein [52]) with a C-terminal TMD consisting of eight 173	

leucines and three alanines is co-expressed with Sgt2-TPR-C cysteine variants, purified, and then 174	

oxidized to form disulfide crosslinks if the residues are near each other [53]. Crosslink formation 175	

is identified by comparing the products after protease digestion where bond formation results in a 176	

reducing-agent sensitive ~7.7 kDa fragment (Fig. 3D). For the wild-type (cysteine-free) sequence, 177	

no higher molecular weight bands are observed at ~7.7kDa. For the N285/G329 pair which is too 178	

distant for disulfide bond formation, no higher band is observed. For the remaining pairs that are 179	

predicted to be close enough for bond formation, the 7.7kDa fragment is observed in each case 180	

and is labile in reducing conditions. These results support the structures obtained in the Quark 181	

derived Ccons model. 182	

 183	

Structural similarity of Sgt2/A-C domain to STI1 domains 184	

Attempts to glean functional insight for Sgt2/A-C from BLAST searches did not reliably 185	

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/517573doi: bioRxiv preprint first posted online Jan. 10, 2019; 

http://dx.doi.org/10.1101/517573
http://creativecommons.org/licenses/by/4.0/


	

KFL Page 8 of 51 

return other families or non Sgt2/A homologs making functional comparisons difficult. A more 186	

extensive domain-based search using definitions from the similar modular architecture database 187	

(SMART) [54] identified a similarity to domains in the yeast co-chaperone Sti1. First called DP1 188	

and DP2 due to their prevalence of aspartates (D) and prolines (P), these domains have been shown 189	

to be required for client-binding [55,56] and are termed ‘STI1’-domains in bioinformatics 190	

databases [54]. In yeast Sti1, and its human homolog Hop, each of the two STI1 domains (DP1 191	

and DP2) are preceded by Hsp70/90-binding TPR domains, similar to the domain architecture of 192	

Sgt2/A. Deletion of the second, C-terminal STI1-domain (DP2) from Sti1 in vivo is detrimental, 193	

impairing native activity of the glucocorticoid receptor [55]. In vitro, removal of the DP2 domain 194	

from Sti1 results in the loss of recruitment of the progesterone receptor to Hsp90 without 195	

interfering in Sti1-Hsp90 binding [57]. These results implicate DP2 in binding of Sti1 clients. In 196	

addition, others have noted that, broadly, STI1-domains may present a hydrophobic groove for 197	

binding hydrophobic segments of a client [55,56]. Furthermore, the similar domain organizations 198	

(i.e. Sgt2/A TPR-C, Sti1 TPR-STI1) and molecular roles could imply an evolutionary relationship 199	

between these co-chaperones. Indeed, a multiple sequence alignment of the Sgt2-Ccons with several 200	

yeast STI1 domains (Fig. 4A) reveals strong conservation of structural features. H1-H5 of the 201	

predicted helical regions in the Ccons align directly with the structurally determined helices in the 202	

DP2 domain of Sti1; this includes complete conservation of helix breaking prolines and close 203	

alignment of hydrophobic residues defining amphipathic helices [55]. 204	

Based on the domain architecture and homology, we believe it is reasonable to make a direct 205	

comparison between the STI1 domain and Sgt2/A-Ccons. A structure of DP2 solved by solution 206	

NMR reveals that the five amphipathic helices assemble to form a flexible helical-hand with a 207	

hydrophobic groove [55]. The lengths of the alpha helices in this structure concur with those 208	

inferred from the alignment in Fig. 4A. Our molecular model of Sgt2-Ccons is strikingly similar to 209	

this DP2 structure. An overlay of the DP2 structure and our molecular model in Fig. 4C 210	

demonstrates both Sgt2-Ccons and DP2 have similar lengths and arrangements of their amphipathic 211	

helices (Fig. 4B,C and Fig. S3). Consistent with our observations of flexibility in Sgt2/A-Ccons, 212	

Sti1-DP2 generates few long-range NOEs between its helices indicating that Sti1-DP2 also a 213	

flexible architecture [55]. We consider this flexibility a feature of these helical-hands for reversible 214	

and specific binding of a variety of clients.  215	

 216	
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Binding mode of TA clients to Sgt2/A 217	

We examined the Ccons surface that putatively interacts with TA clients by constructing 218	

hydrophobic-to-charge residue mutations that are expected to disrupt capture of TA clients by 219	

Sgt2/A. Similar to the helix mutations in Figure 2, the capture assay was employed to establish the 220	

relative effects of individual mutations. A baseline was established based on the amount of TA-221	

client Sbh1 captured by wild-type Sgt2/A-C. In each experiment, Sbh1 expresses at the same level; 222	

therefore, differences in binding should directly reflect the affinity of Sgt2/A mutants for clients. 223	

In all cases, groove mutations from hydrophobic to aspartate led to a reduction in TA client binding 224	

(Fig. 5A and B). The effects are most dramatic in Sgt2 where each mutant significantly reduced 225	

binding by 60% or more (Fig. 5A). While all SGTA individual mutants saw a significant loss in 226	

binding, the results were subtler with the strongest being only ~36% (Fig. 5B). Double mutants 227	

were stronger with a significant decrease in binding relative to the individual mutants, more 228	

reflective of the individual mutants in Sgt2. As seen before (Fig. 2), we observe that mutations 229	

toward the N-terminus of Sgt2/A-C have a stronger effect on binding than those later in the 230	

sequence.  231	

 232	

Sgt2/A-C domain binds clients with a hydrophobic segment ≥ 11 residues 233	

With a molecular model for Sgt2/A-Ccons and multiple lines of evidence for a hydrophobic 234	

groove, we sought to better understand the specific requirements for TMD binding. To probe this, 235	

Sgt2/A-TPR-C complex binding with designed TA clients where a number of variables are tested 236	

including the overall (sum) and average (mean) TMD hydrophobicity, length of the TMD, and the 237	

distribution of hydrophobic character within a TMD. These artificial TMDs were constructed as 238	

C-terminal fusions with the architecture cMyc-tag, cytoplasmic BRIL, a hydrophilic linker (Gly-239	

Ser-Ser), and the TMD (Leu/Ala helical stretch followed by a Trp) (Fig. 6A). The total and mean 240	

hydrophobicity are controlled by varying the helix-length and Leu/Ala ratio (1.82/0.38 TM 241	

tendency hydrophobicity values). For clarity, we define a syntax for the various artificial TA clients 242	

to highlight the various properties under consideration: hydrophobicity, length, and distribution. 243	

The generic notation is TMD-length[number of leucines] which is represented for example as 244	

18[L6] for a TMD of 18 amino acids containing six leucines. 245	

Our first goal with the artificial constructs was to define the minimal length for a TMD to 246	

bind to the C-domain. As described earlier, capture of His-tagged Sgt2/A-TPR-C with the various 247	
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TA clients were performed. We define a relative binding efficiency as the ratio of captured TA 248	

client by a Sgt2/A variant normalized to the ratio of a captured WT TA client by the same Sgt2/A 249	

variant, in this case the model ER-bound Bos1. The client 18[L13] shows a comparable binding 250	

efficiency to Sgt2/A-TPR-C as that of Bos1 (Fig. 6B). From the helical wheel diagram of the TMD 251	

for Bos1, we noted that the hydrophobic residues align on one side of the helix. Therefore, we 252	

optimized our various model clients to contain a ‘hydrophobic face’ while shortening the length 253	

and maintaining the average hydrophobicity of 18[L13] (Fig. 6B). Shorter helices of 14 or 11 254	

residues, 14[L10] and 11[L8], also bound with similar affinity to Bos1. Helices shorter than 11 255	

residues, 9[L6] and 7[L5], were not able to bind Sgt2/A (Fig. 6B) establishing a minimal length of 256	

11 residues for the helix consistent with the dimensions of the groove predicted for the structural 257	

model (Fig. 3). 258	

Since a detected binding event occurs with TMDs of at least 11 amino acids, we decided to 259	

probe this limitation further. The dependency of client hydrophobicity was tested by measuring 260	

complex formation of Sgt2/A and artificial TA clients containing an 11 amino acid TMD with 261	

increasing number of leucines (11[Lx]). As shown in Fig. 6C, increasing the number of leucines 262	

monotonically enhances complex formation, echoing previous results [58]. HsSGTA binds to a 263	

wider spectrum of hydrophobic clients than ScSgt2, which could mean it has a more permissive 264	

hydrophobic binding groove as reflected by the milder impact of alanine replacement and Asp 265	

mutations in SGTA-C to TA binding (Fig. 2C and Fig. 5A). 266	

 267	

Sgt2/A-C preferentially binds to TMDs with a hydrophobic face 268	

Next, we address the properties within the TMD of TA clients responsible for Sgt2/A binding. 269	

In the case of Sgt2/A, it has been suggested that the co-chaperone binds to TMDs based on 270	

hydrophobicity and helical propensity [58]. For the most part, varying the hydrophobicity of an 271	

artificial TA client acts as expected, the more hydrophobic TMDs bind more efficiently to Sgt2/A 272	

TPR-C domains (Fig. 6C). Our Ccons model suggest the hydrophobic groove of Sgt2/A-C protects 273	

a TMD with highly hydrophobic residues clustered to one side (see Fig. 3B). Helical wheel 274	

diagrams demonstrate the distribution of hydrophobic residues along the helix (e.g. bottom Fig. 275	

6D). Testing various TMD pairs with the same hydrophobicity, but different distributions of 276	

hydrophobic residues demonstrates TA clients with clustered leucines have a higher relative 277	

binding efficiency than those with a more uniform distribution (Fig. 6D). The clustered leucines 278	
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on the TMDs create a hydrophobic face which potentially interacts with the hydrophobic groove 279	

formed by the Sgt2/A-Ccons region, corresponding to the model in Fig. 3B.  280	

 281	

Organization of hydrophobic residues in probable client TMDs 282	

So far, the interpretation from the structure that Sgt2/A-C binding to clients via a hydrophobic 283	

groove is supported by the binding preferences of Sgt2/A-TPR-C. As Sgt2/A is the entry point into 284	

TA IMP targeting to the ER, we were interested in whether TMD hydrophobic faces were relevant 285	

to sorting of TA clients in the cell. Previous results demonstrate that hydrophobicity is a dominant 286	

factor in selection between the ER and mitochondria [59]; therefore, the reference yeast and human 287	

genomes from UniProt [60] were screened for putative TA IMPs and filtered for unique genes 288	

longer than 50 residues. Uniprot and TOPCONS2 [61] were used to identify genes that encoded 289	

an IMP containing a single TMD within 30 amino acids of the C-terminus [62] and lacked a 290	

predicted signal sequence (as determined by SignalP4.1 [63]) (Fig. 7A and Table S1). Based on 291	

their UniProt-annotated localizations [60], TA IMPs are subcategorized as ER, mitochondrial, 292	

peroxisomal, and unknown. While our set encompasses proteins previously predicted as TA IMPs 293	

[64,65], it is larger and we believe a more accurate representation of the repertoire of TA IMPs 294	

found in each organism. For both yeast and humans, the majority of proteins have no annotated 295	

cellular localization. Several previously suggested TA IMPs are excluded from this new set 296	

including, for example, OTOA (otoancorin) that contains a likely signal sequence, FDFT1 297	

(squalene synthase or SQS) with two predicted hydrophobic helices by this method, and YDL012c 298	

which has a TMD with very low hydrophobicity (full list in Table S1) [59,66]. 299	

Broadly, hydrophobicity is considered a dominant feature for discriminating TA IMP 300	

localization with those that contain more hydrophobic TMDs localizing to the ER [67]. We explore 301	

this in Fig. 7B, where the hydrophobicity of the entire TMD for each yeast TA IMP was calculated 302	

using the TM tendency scale [68] and is plotted along the y-axis. If we only consider proteins 303	

known to localize to the ER or mitochondria, this analysis classifies the majority of the proteins 304	

correctly at a best threshold of 16.8 (red dashed line, Fig. 7B). While all five mitochondrial TA 305	

IMPs are correctly classified, a significant number of ER-bound TAs contain a TMD with a 306	

hydrophobicity lower than the threshold (Fig. 7B). A notable misclassified example is Sss1 307	

(Sec61γ in chordates) of the ER residing Sec translocon.  308	

We next considered whether the hydrophobic face preference of Sgt2/A might be reflected in 309	
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the ability to classify TA IMPs. For yeast, we calculated the maximum hydrophobicity of a helical 310	

face of six amino acids and plotted this value (x-axis, Fig. 7B). ER targeted TA IMPs are best 311	

classified by a helical face threshold of 7.7 (Fig. 7B, cyan dotted line). While both metrics correctly 312	

categorize mitochondria-bound TA IMPs (all in lower left quadrant), the helical-face metric better 313	

categorizes low hydrophobicity ER bound TA IMPs, e.g. Sbh1 is now correctly classified as ER-314	

localized (Fig 7A). More quantitatively (Fig. 7C), as a predictor the AUROC value for 315	

classification based on the hydrophobicity of a single face (AUROC = 0.99) is higher than that 316	

based on hydrophobicity of the entire TMD (AUROC = 0.87), supporting the relevance of a 317	

hydrophobic face in TA IMP targeting by Sgt2/A.  318	

We then applied this analysis to the 587 putative human TA IMPs. Again, proteins were 319	

plotted based on the hydrophobicity of the entire TMD (y-axis) and the most hydrophobic face (x-320	

axis) and colored based on UniProt-annotated cellular localization (Fig. 7D). The best thresholds 321	

determined by our analysis (overall 19.8 and face 9.3) again show that Sec61γ continues to only 322	

be correctly categorized by the hydrophobicity of its helical face. As with yeast proteins, an 323	

increase in AUROC value was observed when clients were classified based on the hydrophobicity 324	

of single face (AUROC = 0.82) instead of the entire TMDs (AUROC = 0.79). With human TA 325	

IMPs, a metric focusing on a sufficiently hydrophobic face does just as well if not better than a 326	

metric focusing on the hydrophobicity of the TMD. The moderate improvement in predictive 327	

capacity likely reveals the higher complexity of the human system and the milder effect of mutants 328	

to HsSGTA-C on binding to TA clients. 329	

Interestingly, by considering the hydrophobic face, more information can be gleaned about 330	

complex clients that localize to both the mitochondria and ER. Notable examples are members of 331	

the Bcl-2 family, which play critical roles in the apoptosis pathway [69,70]. Although many have 332	

been reported to localize to several organelles in the cell, some have a preferred localization [69,70]. 333	

For example, Bcl-xL has been reported to localize predominantly to the mitochondria, though a 334	

fraction of its cellular concentration has been observed to be present in the ER. The case is similar 335	

for McL1 [71] and Bcl-B [70,72]. Classified by their hydrophobic face, these proteins are predicted 336	

to be mitochondria-bound clients (blue, Fig. 7D). Unlike Bcl-xL, the majority of cellular Bok, 337	

another Bcl-2 family member, is found in the ER or Golgi [73]. The hydrophobic face metric 338	

classifies Bok as an ER bound protein whereas a metric based on the hydrophobicity of the entire 339	

TMD misclassifies it as a mitochondrial protein (Fig. 7D). This suggests our metric can correctly 340	
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determine the primary localization of members of the Bcl-2 family TA IMPs, important insight for 341	

these medically relevant proteins.  342	

Another interesting case for the identification and localization of TA IMPs is the apparent 343	

lack of the protein squalene synthase (SQS) in our list, previously used as a model TA [66]. Since 344	

SQS is predicted to have two TMDs, it is excluded by the criteria above. However, structural 345	

studies of SQS have clearly identified the predicted first TMD to instead be a helical component 346	

of the folded soluble domain [74]; therefore, the protein only contains a single TMD at the C-347	

terminus which would fit the standard definition of a TA IMP. Once again, if we consider the 348	

human protein SQS and where its TMD falls on the localization metrics (Fig. 8C, red x), the TM 349	

tendency of its entire TMD (12.5) predicts it to be mitochondrial while considering the most 350	

hydrophobic face (9.9) accurately captures its ER localization. How this protein fits into our 351	

understanding of ER localized TA IMPs is discussed below. Future refinement of our 352	

bioinformatics screen to include details such as known or predicted structure may further hone the 353	

list of putative TA IMPs (Table S1).  354	

 355	

Discussion 356	

Sgt2/A, the most upstream component of the GET/TRC pathway, plays a critical role in the 357	

correct insertion of TA IMPs into their designated membranes. Its importance as the first selection 358	

step of ER versus mitochondrial bound TA clients necessitates a molecular model for TA client 359	

binding. Previous work demonstrated a role for the C-domain of Sgt2/A to bind to hydrophobic 360	

clients, yet the exact binding domain remained to be determined. Through the combined use of 361	

biochemistry, bioinformatics, and computational modeling, we conclusively identify the minimal 362	

client-binding domain of Sgt2/A. This allowed us to present a validated structural model of Sgt2/A 363	

C-domain as a methionine-rich helical hand for grasping a hydrophobic helix providing a 364	

mechanistic explanation for binding a minimum TMD of 11 hydrophobic residues with the most 365	

hydrophobic residues organized onto one face of the helix.  366	

Based on these results, we can confidently identify that the C-domain of Sgt2/A contains a 367	

STI1 domain for client binding. This places the protein into a larger context of both conserved co-368	

chaperones and adaptors of the ubiquitin-proteasome system (AUPS) (Fig. 8A). For the co-369	

chaperone family, the STI1 domains predominantly follow HSP-binding TPR domains connected 370	

by a flexible linker. As noted above, it was demonstrated that Sti1/Hop domains are critical for 371	
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client-processing and coordinated hand-off between Hsp70 and Hsp90 homologs [75]. 372	

Additionally, multiple TPR domains of Sti1/Hop are used to coordinate simultaneous binding of 373	

two heat shock proteins. Both Sgt2/A and the co-chaperone Hip share the coordination of two TPR 374	

and STI1 domains by forming stable dimers via N-terminal dimerization domains [76]. With 375	

evidence for a direct role of the carboxylate-clamp in the TPR domain of Sgt2/A for client-binding 376	

now clear [21], one can speculate that the two TPR domains may facilitate TA client entry into 377	

other pathways using multiple heat shock proteins. The more distant chloroplast Tic40 contains 378	

two putative STI1 domains [77,78] (Fig. 8A), with the C-terminal one having a structure clearly 379	

similar to that of other co-chaperones (Fig. S2D). The rest of the protein has a different domain 380	

architecture as it lacks a clear TPR domain [78] and has an N-terminal TMD. Found in the inner 381	

chloroplast membrane with the STI1 domain(s) in the stroma, the C-terminal domain can be 382	

replaced with the STI1 domain from Hip without loss-of-function [79]. How Tic40 fits 383	

mechanistically into this group is less clear. 384	

As annotated, STI1 domains broadly share several features including four to five amphipathic 385	

helices (Fig. 8A and Fig. S2A,B). For structurally characterized domains, these organize into helical 386	

hands with a hydrophobic groove (Fig. 8B and Fig. S2). In the co-chaperones, all of the domains 387	

have the same architecture and are characterized by structural flexibility in the absence of client. 388	

While there are no structures of client-bound STI1 domains for this group, the H0 helix in the 389	

structure of the DP1 domain from Sti1 likely mimics client binding (grey helix in Fig. 8B and Fig. 390	

S2A). This N-terminal amphipathic helix is conserved among co-chaperone STI1 domains (Fig. 391	

S2A,C) and the additional helix may be a general feature. Structurally, the co-chaperone STI1 392	

domains contain five core amphipathic helices. Bioinformatics databases, like SMART, use this 393	

definition, which can lead to erroneous annotations of putative STI1 domains. The clearest case 394	

for this is the two pairs of abutting STI1 motifs predicted for UBQLN -1, -2, & -4. Careful analysis 395	

reveals a N-terminal sixth amphipathic helix. When this is considered, it is clear that the abutting 396	

STI1 domains are instead a single domain (Fig. S2B). While the roles of the additional helices are 397	

not clear, they are well conserved within each family. A possible speculation is that they perhaps 398	

acts as a lid for protecting the empty groove and/or set the hydrophobic threshold for client-binding, 399	

as predicted for other TMD binders [4]. For the AUPS proteins, the only known structure of a STI1 400	

domain comes from the DNA damage response protein Rad23. For this domain, the architecture 401	

is different with only four helices that form a different hydrophobic groove for recognition of 402	
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clients (Fig. 8B). In fact, this difference is underscored by the poor alignment between Rad23 with 403	

STI1 domains (Fig. S2B,D). Nonetheless, several structures of complexes of Rad23-STI1 bound 404	

to amphipathic clients show in each that the client-helix binds via a hydrophobic face (Fig. 8B and 405	

Fig. S2D). Perhaps this represents a second class of STI1-like domains that could include proteins 406	

such as Ddi1 [80,81]. 407	

The concept of TMD binding by a helical hand is reminiscent of other proteins involved in 408	

membrane protein targeting. Like Sgt2/A, the signal recognition particle (SRP) contains a 409	

methionine-rich domain that binds signal sequences and TMDs. While the helical order is inverted, 410	

again five amphipathic helices form a hydrophobic groove that cradles the client signal [82]. Here 411	

once more, the domain has been observed to be flexible in the absence of client [83,84] and, in the 412	

resting state, occupied by a region that includes a helix that must be displaced [82]. Another 413	

helical-hand example recently shown to be involved in TA-protein targeting is calmodulin where 414	

two helical hands coordinate to clasp a TMD from either side (Fig. 9B). Considering an average 415	

TMD of 18-20 amino acids (to span a ~40Å bilayer), each half of calmodulin interacts with about 416	

10 amino acids. The close correspondence of this value with the minimal binding length for Sgt2/A 417	

C-domain leads one to speculate that the two copies of the Sgt2/A C-domain in the dimer may 418	

work together to bind to a full TMD. Cooperation of the two Sgt2/A C-domains in client-binding 419	

could elicit conformational changes in the complex that would be recognized by downstream 420	

factors, such as increasing the affinity for Get5/Ubl4A. Paired STI1 domains in UBQLN-1, -2, & 421	

-4 may cooperate as well. Recently, others noted the ability of the SGTA C-domain to 422	

independently dimerize in certain conditions, also hinting at a model of cooperation between 423	

across the dimers for client binding [47]. While we see no evidence for dimerization of the C-424	

domain in our constructs, it is clear that interactions between C-domains are likely important. 425	

What is the benefit of the flexible helical-hand structure for hydrophobic helix binding? While 426	

it remains an open question, it is notable that evolution has settled on similar simple solutions to 427	

the complex problem of specific but temporary binding of hydrophobic helices. For all of the 428	

domains mentioned, the flexible helical-hands provide an extensive hydrophobic surface to capture 429	

the client-helix—driven by the hydrophobic effect. Typically, such extensive interfaces are 430	

between pairs of pre-ordered surfaces resulting in very stable binding. Required to only engage 431	

temporarily, the flexibility of the helical hand offsets the favorable free energy of binding by 432	

charging an additional entropic cost from the need to transition from a flexible unbound form to 433	
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that in the client-bound complex. This would account for the favorable transfer seen from Sgt2 [21] 434	

and SGTA [85] to downstream components. 435	

While SGTA and Sgt2 share many properties, there are a number of differences between the 436	

two proteins that may explain the different biochemical behavior. For the Ccons-domains, SGTA 437	

appears to be more ordered in the absence of client as the peaks in its NMR spectra are broader 438	

(Fig. 1E). Comparing the domains at the sequence level, while the high glutamine content in the 439	

C-domain is conserved it is higher in SGTA (8.8% versus 15.2%). The additional glutamines are 440	

concentrated in the predicted longer H4 helix (Fig. 1A). The linker to the TPR domain is shorter 441	

compared to Sgt2 while the loop between H3 and H4 is longer. Do these differences reflect 442	

different roles? As noted, in every case the threshold for hydrophobicity of client-binding is lower 443	

for SGTA than Sgt2 (Fig. 1E, 5, and 6) implying that SGTA is more permissive in client binding. 444	

The two C-domains have similar hydrophobicity, so this difference in binding might be due to a 445	

lower entropic cost paid by having the SGTA C-domain more ordered in the absence of client.  446	

An interesting exception is SQS, which is a client of the EMC, rather than the TRC pathway 447	

[66]. The EMC pathway is characterized as targeting ER TA clients of lower hydrophobicity due 448	

to a higher affinity of its chaperone calmodulin for these clients over SGTA. Based on experimental 449	

results, a threshold for EMC dependence lies approximately at 21.6 [66], slightly higher than the 450	

overall hydrophobicity cut-off noted here for ER prediction (Fig. 7C). By this metric, 451	

mitochondrial and EMC dependent TA clients are indistinguishable. Putative EMC client 452	

localization is more accurately predicted by the hydrophobic face metric (ER proteins in the lower 453	

right quadrant of Fig. 7D). The increased hydrophobicity of TRC/GET pathway clients results in 454	

more hydrophobic residues in their TMDs leading to consistently higher values in the hydrophobic 455	

face metric. Yet, our analysis reveals the importance of a hydrophobic face for discriminating ER 456	

versus mitochondria targeted TAs with low hydrophobicity. As current evidence favors a 457	

dependence on the EMC pathway for the ER proteins, one might speculate either a continued role 458	

for SGTA for these clients or that the helical-hands of calmodulin also favor hydrophobic face 459	

binding. The latter seems unlikely as a discriminatory step as calmodulin is a generalist in client 460	

binding [86]. In the absence of calmodulin, SGTA is sufficient for delivering TA clients to the 461	

EMC [66] and perhaps acts upstream of calmodulin to discriminate between ER and mitochondrial 462	

targets.  463	

The targeting of TA clients presents an intriguing and enigmatic problem for understanding 464	
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the biogenesis of IMPs. How subtle differences in each client modulates the interplay of hand-offs 465	

that direct these proteins to the correct membrane remains to be understood. In this study, we focus 466	

on a central player, Sgt2/A and its client-binding domain. Through biochemistry and computational 467	

analysis, we provide more clarity to client discrimination. A major outcome of this is the clear 468	

preference for a hydrophobic face on ER TA IMPs of low hydrophobicity. In yeast, this alone is 469	

sufficient to predict the destination of a TA IMP. In mammals, and likely more broadly in 470	

metazoans, while clearly an important component, alone the hydrophobic face cannot fully 471	

discriminate targets. For a full understanding, we expect other factors to contribute reflective of 472	

the increased complexity of higher eukaryotes, perhaps involving more players [87]. Suffice to say, 473	

this study highlights the important role of Sgt2/A in TA IMP biogenesis.  474	
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Material and Methods 475	

Plasmid constructs 476	

MBP-Sbh1, ScSgt295-346 (ScSgt2-TPR-C), ScSgt2222-346 (ScSgt2-C), ScSgt2260-327 (ScSgt2-477	

Ccons), ScSgt2266-327 (ScSgt2-ΔH0), HsSGTA87-313 (HsSGTA-TPR-C), HsSGTA213-313 (HsSGTA-C), 478	

HsSGTA219-300 (HsSGTA-Ccons), and HsSGTA228-300 (HsSGTA-ΔH0) were prepared as previously 479	

described [12,88]. Genes of ScSgt2 or HsSGTA variants were amplified from constructed plasmids 480	

and then ligated into an pET33b-derived vector with a 17 residue N-terminal hexa-histidine tag 481	

and a tobacco etch virus (TEV) protease site. Single or multiple mutations on Sgt2/A were 482	

constructed by site-direct mutagenesis. Artificial TAs were constructed in a pACYC-Duet plasmid 483	

with a N-terminal cMyc tag, BRIL protein [89], GSS linker, and a hydrophobic C-terminal tail.  484	

Protein expression and purification 485	

All proteins were expressed in Escherichia coli NiCo21 (DE3) (New England BioLabs). To 486	

co-express multiple proteins, constructed plasmids were co-transformed as described [88]. Protein 487	

expression was induced by 0.3 mM IPTG at OD600 ~ 0.7 and harvested after 3 hours at 37°C. For 488	

structural analysis, cells were lysed through an M-110L Microfludizer Processor (Microfluidics) 489	

in lysis buffer (50 mM Tris, 300 mM NaCl, 25 mM imidazole supplemented with benzamidine, 490	

PMSF, and 10 mM β-ME, pH 7.5). For capture assays, cells were lysed by freeze-thawing 3 times 491	

with 0.1 mg/mL lysozyme. To generate endogenous proteolytic products of ScSgt2-TPR-C for MS 492	

analysis, PMSF and benzamidine were excluded from the lysis buffer. His-Sgt2/A and their 493	

complexes were separated from the lysate by batch incubation with Ni-NTA resin at 4°C for 1hr. 494	

The resin was washed with 20 mM Tris, 150 mM NaCl, 25 mM imidazole, 10 mM β-ME, pH 7.5. 495	

The complexes of interest were eluted in 20 mM Tris, 150 mM NaCl, 300 mM imidazole, 10 mM 496	

β-ME, pH 7.5.  497	

For structural analysis, the affinity tag was removed from complexes collected after the nickel 498	

elution by an overnight TEV digestion against lysis buffer followed by size-exclusion 499	

chromatography using a HiLoad 16/60 Superdex 75 prep grade column (GE Healthcare). 500	

Measurement of Sgt2/A protein concentration was carried out using the bicinchoninic acid 501	

(BCA) assay with bovine serum albumin as standard (Pierce Chemical Co.). Samples for NMR 502	

and CD analyses were concentrated to 10-15 mg/mL for storage at −80°C before experiments.  503	

NMR Spectroscopy 504	
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15N-labeled proteins were generated from cells grown in auto-induction minimal media as 505	

described [90] and purified in 20 mM phosphate buffer, pH 6.0 (for ScSgt2-C, 10mM Tris, 100mM 506	

NaCl, pH 7.5). The NMR measurements of 15N-labeled Sgt2/A-C proteins (~0.3-0.5 mM) were 507	

collected using a Varian INOVA 600 MHz spectrometer at either 25°C (ScSgt2-C) or 35°C 508	

(HsSGTA-C) with a triple resonance probe and processed with TopSpin™ 3.2 (Bruker Co.).  509	

CD Spectroscopy 510	

The CD spectrum was recorded at 24°C with an Aviv 202 spectropolarimeter using a 1 mm 511	

path length cuvette with 10 µM protein in 20 mM phosphate buffer, pH 7.0. The CD spectrum of 512	

each sample was recorded as the average over three scans from 190 to 250 nm in 1 nm steps. Each 513	

spectrum was then decomposed into its most probable secondary structure elements using BeStSel 514	

[91]. 515	

Glu-C digestion of the double Cys mutants on ScSgt2-C 516	

Complexes of the co-expressed wild type or double Cys mutated His-ScSgt2-TPR-C and the 517	

artificial TA, 11[L8], were purified as the other His-Sgt2/A complexes described above. The 518	

protein solutions were mixed with 0.2 mM CuSO4 and 0.4 mM 1,10-phenanthroline at 24°C for 519	

20 min followed by 50 mM N-ethyl maleimide for 15 min. Sequencing-grade Glu-C protease 520	

(Sigma) was mixed with the protein samples at an approximate ratio of 1:30 and the digestion was 521	

conducted at 37°C for 22 hours. Digested samples were mixed with either non-reducing or 522	

reducing SDS-sample buffer, resolved via SDS-PAGE using Mini-Protean® Tris-Tricine Precast 523	

Gels (10-20%, Bio-Rad), and visualized using Coomassie Blue staining.  524	

Protein immunoblotting and detection 525	

For western blots, protein samples were resolved via SDS-PAGE and then transferred onto 526	

nitrocellulose membranes by the Trans-Blot® Turbo™ Transfer System (Bio-Rad). Membranes 527	

were blocked in 5% non-fat dry milk and hybridized with antibodies in TBST buffer (50 mM Tris-528	

HCl pH 7.4, 150 mM NaCl, 0.1% Tween 20) for 1 hour of each step at 24°C. The primary 529	

antibodies were used at the following dilutions: 1:1000 anti-penta-His mouse monoclonal (Qiagen) 530	

and 1:5000 anti-cMyc mouse monoclonal (Sigma). A secondary antibody conjugated to alkaline 531	

phosphatase (Rockland, 1:8000) was employed, and the blotting signals were chemically 532	

visualized with NBT/BCIP (Sigma). All blots were photographed and quantified by image 533	

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/517573doi: bioRxiv preprint first posted online Jan. 10, 2019; 

http://dx.doi.org/10.1101/517573
http://creativecommons.org/licenses/by/4.0/


	

KFL Page 20 of 51 

densitometry using ImageJ [92] or ImageStudioLite (LI-COR Biosciences). 534	

Quantification of Sgt2/A—TA complex formation  535	

The densitometric analysis of MBP-Sbh1 capture by His-Sgt2/A quantified the intensity of 536	

the corresponding protein bands on a Coomassie Blue G-250 stained gel. The quantified signal 537	

ratios of MBP-Sbh1/His-Sgt2 are normalized to the ratio obtained from the wild-type (WT). 538	

Expression level of MBP-Sbh1 was confirmed by immunoblotting the MBP signal in cell lysate. 539	

Average ratios and standard deviations were obtained from 3-4 independent experiments. 540	

In artificial TA experiments, both his-tagged Sgt2/A and cMyc-tagged artificial TAs were 541	

quantified via immunoblotting signals. The complex efficiency of Sgt2/A with various TAs was 542	

obtained by 543	

 Ecomplex = ETA
TTA
× 1

Ecapture
 (1) 544	

where ETA is the signal intensity of an eluted TA representing the amount of TA co-purified with 545	

Sgt2/A. TTA is the signal intensity of a TA in total lysate that corresponds to the expression yield 546	

of that TA. Identical volumes of elution and total lysate from different TAs experiments were 547	

analyzed and quantified. In order to correct for possible variation in Ni-NTA capture efficiencies, 548	

Ecapture is applied and were obtained by 549	

 550	

 Ecapture	=	 ESgt2
Epurified,	Sgt2

, (2) 551	

 552	

where ESgt2 is the signal intensity of eluted Sgt2/A, and Epurified, Sgt2 is purified His-tagged Sgt2-553	

TPR-C as an external control. Each ETA and TTA was obtained by blotting both simultaneously, i.e. 554	

adjacently on the same blotting paper. To facilitate comparison between TAs, the TA complex 555	

efficiency Ecomplex, TA is normalized by Bos1 complex efficiency Ecomplex, Bos1. 556	

 % Complex = Ecomplex, TA

Ecomplex, Bos1
 × 100 (3) 557	

Molecular modeling 558	

Putative models for ScSgt2-C were generated with I-TASSER, PCONS, Quark, and Rosetta 559	

via their respective web servers [48-51]. Residue proximity probed by disulfide bond formation 560	

suggests that the models put forth by Quark are most plausible. These structures were the only 561	

ones with a potential binding groove. The highest scoring model was then chosen to identify 562	
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putative TA binding sites. To generate complexes, various transmembrane domains were modelled 563	

as alpha helices (using 3D-HM [93]) and rigid-body docked into the Sgt2-Ccons through the Zdock 564	

web server [94]. Images were rendered using PyMOL 2.2 (www.pymol.org). 565	

Using the same set of structure prediction servers, we were unable to produce a clear structural 566	

model for SGTA-C. We were also unable to get a convincing model by threading the SGTA-C 567	

sequence onto the Sgt2-C model [95]. 568	

Structure Relaxation 569	

The highest scoring model of Sgt2-C from Quark was relaxed by all-atom molecular 570	

dynamics to better account for molecular details not explicitly accounted for by structure 571	

prediction methods, i.e. to understand an energetic local minimum near the prediction. The protein 572	

and solvent system (TIP3P, ~12k atoms, CHARMM36 [96]) once built was minimized (500 steps) 573	

and slowly heated to 298K (0.01K/fs) twice: first with a 10 kJ/mol/Å2 harmonic restraint on each 574	

protein atom and then without restraints. The resulting system was equilibrated for 2 ns at constant 575	

volume and then for 100 ns at constant pressure (1 atm). All manipulation and calculations were 576	

performed using VMD 1.9.2 [97] and NAMD 2.11 [98]. Further details about the simulation 577	

protocols and results can be found within the configuration or output files (details below). 578	

Assembling a database of putative tail-anchored proteins and their TMDs  579	

Proteins identified from UniProt [60] containing a single transmembrane domain within 30 580	

residues of the C-terminus were separated into groups based on their localization reported in 581	

UniProt. The topology of all proteins with 3 TMs or fewer was further analyzed using TOPCONS 582	

[61] to avoid missed single-pass TM proteins. Proteins with a predicted signal peptide [63], an 583	

annotated transit peptide, problematic cautions, or with a length less than 50 or greater than 1000 584	

residues were excluded. Proteins localized to the ER, golgi apparatus, nucleus, endosome, 585	

lysosome, and cell membrane were classified as ER-bound, those localized to the outer 586	

mitochondrial membrane were classified as mitochondria-bound, those localized to the 587	

peroxisome were classified as peroxisomal proteins, and those with unknown localization were 588	

classified as unknown. Proteins with a compositional bias overlapping with the predicted TMD 589	

were also excluded. A handful of proteins and their inferred localizations were manually corrected 590	

or removed (see notebook and Table S1). 591	

 592	
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Assessing the predictive power of various hydrophobicity metrics 593	

We thoroughly examined the metrics relating hydrophobicity, both published and by our own 594	

exploration, to better understand their relationship to protein localization. Notably, we recognized 595	

that a TMD’s hydrophobic moment�µH�[99] was a poor predictor of localization, e.g. although 596	

a Leu18 helix is extremely hydrophobic, it has�µH�= 0 since opposing hydrophobic residues are 597	

penalized in this metric. To address this, we define a metric that capture the presence of a 598	

hydrophobic face of the TMD: the maximally hydrophobic cluster on the face. For this metric we 599	

sum the hydrophobicity of residues that orient sequentially on one side of a helix when visualized 600	

in helical wheel diagram. While a range of hydrophobicity scales were predictive using this metric, 601	

we selected the TM Tendency scale [68] to characterize the TMDs of putative TA IMPs and 602	

determined the most predictive window by assessing a range of lengths from 4 to 12 (this would 603	

vary from three turns of a helix to six). 604	

By considering sequences with inferred ER or mitochondrial localizations, we calculated the 605	

Area Under the Curve of a Receiver Operating Characteristic (AUROC) to assess predictive power. 606	

As we are comparing a real-valued metric (hydrophobicity) to a 2-class prediction, the AUROC is 607	

better suited for this analysis over others like accuracy or precision (a primer [100]). Due to many 608	

fewer mitochondrial proteins (i.e. a class imbalance), we also confirmed that the AUROC values 609	

were consistent with the more robust, but less common, Average Precision (see notebook). 610	

Sequence analyses 611	

An alignment of Sgt2-C domains was carried out as follows: all sequences with an annotated 612	

N-terminal Sgt2/A dimerization domain (PF16546 [101]), at least one TPR hit (PF00515.27, 613	

PF13176.5, PF07719.16, PF13176.5, PF13181.5), and at least 50 residues following the TPR 614	

domain were considered family members. Putative C-domains were inferred as all residues 615	

following the TPR domain, filtered at 90% sequence identity using CD-HIT [102], and then 616	

aligned using MAFFT G-INS-i [103]. Other attempts with a smaller set (therefore more divergent) 617	

of sequences results in an ambiguity in the relative register of H0, H1, H2, and H3 when comparing 618	

Sgt2 with SGTA. 619	

Alignments of Sti1 (DP1/DP2) and STI1 domains were created by pulling all unique domain 620	

structures with annotated STI1 domains from Uniprot. Where present, the human homolog was 621	

selected and then aligned with PROMALS3D [104]. PROMALS3D provides a way of integrating 622	
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a variety of costs into the alignment procedure, including 3D structure, secondary structure 623	

predictions, and known homologous positions. 624	

All alignments were visualized using Jalview [105]. See code repository for additional details. 625	

Data and Code Availability 626	

All configuration, analysis, and figure generation code employed is available openly at 627	

github.com/clemlab/sgt2a-modeling with analysis done in Jupyter Lab/Notebooks using Python 628	

3.6 enabled by Numpy, Pandas, Scikit-Learn, BioPython, and Bokeh [106-111]. The system 629	

topology and output files (including trajectory sampled at 0.5 ns intervals) can be permanently 630	

found here: 10.22002/D1.1100 631	
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Figure Legends 953	

Fig. 1. Structural characteristics of free Sgt2/A C-domain. (A) Top, Schematic of the domain 954	

organization of Sgt2/A. Below, representative sequences from a large-scale multiple sequence 955	

alignment of the C domain: fungal Sgt2 from S. cerevisiae, S. pombe, and C. thermophilum and 956	

metazoan SGTA from C. savignyi, X. laevis, and H. sapiens. Protease susceptible sites on ScSgt2-957	

C identified by mass spectrometry are indicated by red arrowheads. Predicted helices of ScSgt2 958	

(blue) and HsSGTA (orange) by Jpred [112] and/or structure prediction are shown. Blue/orange 959	

color scheme for ScSgt2/HsSGTA is used throughout the text. Residues noted in the text are 960	

highlighted by an asterisk. (B) Overlay of size-exclusion chromatography traces of ScSgt2-C (blue 961	

line), HsSGTA-C (orange line), ScSgt2-TPR (blue dash) and HsSGTA-TPR (orange dash). Traces 962	

are measured at 214 nm, baseline-corrected and normalized to the same peak height. (C) Far UV 963	

CD spectrum of 10 µM of purified ScSgt2-C (blue) and HsSGTA-C (orange) at RT with secondary 964	

structure decomposition from BestSel [91]. (D) 1H-15N HSQC spectrum of ScSgt2-C at 25°C. The 965	

displayed chemical shift window encompasses all N-H resonances from both backbone and side 966	

chains. The range of backbone amide protons, excluding possible side-chain NH2 of Asn/Gln, is 967	

indicated by pairs of red dashed lines. (E) As in D for HsSGTA-C at 25°C. 968	
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Fig. 2. The minimal binding region of Sgt2/A for TA client binding. (A) Diagram of the protein 971	

truncations tested for TA binding that include the TPR-C domain, C-domain (C), Ccons, and Ccons 972	

ΔH0 (ΔH0) from ScSgt2 and HsSGTA. The residues corresponding to each domain are indicated, 973	

and grey blocks highlight the Ccons region. (B) Schematic of capture experiments of MBP-Sbh1 by 974	

Sgt2/A TPR-C variants. After co-expression, cell pellets are lysed and NTA-Ni2+ is used to capture 975	

His-Sgt2/A TPR-C. (C) Helical wheel diagrams of predicted helices (see Fig. 1A) in the Ccons 976	

domain of ScSgt2 and HsSGTA. Residues are colored by the Kyte and Doolittle hydrophobicity 977	

scale [113]. (D) Tris-Tricine-SDS-PAGE gel [114] of co-expressed and purified MBP-tagged Sbh1 978	

and His-tagged Sgt2/A truncations visualized with Coomassie Blue staining. (E) Alanine 979	

replacement of hydrophobic residues in the Ccons. All of the hydrophobic residues (L, I, F, and M) 980	

in a predicted helix (H0, H1, etc.) are replaced by Ala and tested for the ability to capture MBP-981	

Sbh1. Protein levels were quantified by Coomassie staining. Relative binding efficiency of MBP-982	

Sbh1 by Sgt2 C-domain variants was calculated relative to total amount of Sgt2 C-domain captured 983	

(MBP-Sbh1/Sgt2 C-domain) then normalized to the wild-type Sgt2-C domain. Experiments were 984	

performed 3-4 times and the standard deviations are presented. Total expression levels of the MBP-985	

Sbh1 were similar across experiments as visualized by immunoblotting (IB) of the cell lysate. (F) 986	

As in E but for HsSGTA. 987	
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Fig 3. A structural model for Sgt2/A-Ccons validated by intramolecular-disulfide bond 990	

formation. (A) The top 10 models of the Sgt2-Ccons generated by the template-free algorithm 991	

Quark [48] are overlaid with the highest scoring model in solid. Models are color-ramped from N- 992	

(blue) to C-terminus (red). (B) A model of Sgt2-Ccons (surface colored by Kyte-Doolittle 993	

hydrophobicity) bound to a TMD (purple helix) generated by rigid-body docking through Zdock 994	

[94]. The darker purple corresponds to an 11 residue stretch. (C) The entire Sgt2-C domain from 995	

the highest scoring model from Quark (Ccons in rainbow with the rest in grey) highlighting H0 and 996	

the rest of the flexible termini that vary considerably across models. (D and E) Variants of His-997	

ScSgt2-TPR-C (WT or cysteine double mutants) were co-expressed with the artificial TA client, 998	

cMyc-BRIL-11[L8]. After lysis, His-ScSgt2 proteins were purified, oxidized, then digested by 999	

Glu-C protease and analyzed by gel either in non-reducing or reducing buffer. (E) Cα ribbon of 1000	

ScSgt2-Ccons color-ramped with various pairs of Cysteines highlighted. Scissors indicate protease 1001	

cleavage sites resulting in fragments less than 3 kDa in size. (F) Tris-Glycine-SDS-PAGE gel 1002	

visualized by imidazole-SDS-zinc stain [115,116]. For the WT (cys-free) no significant difference 1003	

was found between samples in non-reducing vs. reducing conditions. All close residue pairs 1004	

(A272/L327, I286/M323, M289/A319, and M289/N322) show peptide fragments (higher MW) 1005	

sensitive to the reducing agent and indicate disulfide bond formation (indicated by arrow). A 1006	

cystine pair (N285/G329) predicted to be far apart by the model does not result in the higher MW 1007	

species. 1008	

  1009	

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/517573doi: bioRxiv preprint first posted online Jan. 10, 2019; 

http://dx.doi.org/10.1101/517573
http://creativecommons.org/licenses/by/4.0/


BA C

L327
M323

A319N322
G329

I286
A272 M289

N285

Crosslinked
peptides

β

No bond formed Intramolecular disulfide bond

1.1
3.5

6.5

14.2
(kDa)

-ME

A272C
L327C

I286C
M323C

M289C
A319C

M289C
N322C

 −           +  −           +  −             +  −            +  −            +  −           +

N285C
G329CWT

D

TA TMD

H1

H0

H2

H3

H4

H5

'JHVSF��

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/517573doi: bioRxiv preprint first posted online Jan. 10, 2019; 

http://dx.doi.org/10.1101/517573
http://creativecommons.org/licenses/by/4.0/


	

KFL Page 37 of 51 

Fig. 4. Comparison of STI1 domains and the Sgt2-Ccons model. (A) Multiple sequence alignment 1011	

of Sgt2-C with STI1 domains (DP1, DP2) from STI1/Hop homologs. Helices are shown based on 1012	

the Sgt2-Ccons model and the ScSti1-DP1/2 structures. Species for representative sequences are 1013	

from S. cerevisiae (Scer), S. pombe (Spom), C. thermophilum (Cthe), C. savignyi (Csav), and H. 1014	

sapiens (Hsap). (B) Cα ribbon of ScSgt2-Ccons color-ramped with large hydrophobic sidechains 1015	

shown as grey sticks (sulfurs in yellow). (C) Similar to B for the solution NMR structure of Sti1-1016	

DP2526-582 (PDBID: 2LLW) [55]. (D) Superposition of the Sgt2-Ccons (blue) and Sti1-DP2526-582 1017	

(red) drawn as cartoons. 1018	
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Fig. 5. Effects on TA client binding of charge mutations to the putative hydrophobic groove 1021	

of Sgt2/A-Ccons. For these experiments, individual point mutations are introduced into Sgt2/A-C 1022	

and tested for their ability to capture Sbh1 quantified as in Figure 2D. (A) For ScSgt2-C, a 1023	

schematic and cartoon model are provided highlighting the helices and sites of individual point 1024	

mutants both color-ramped for direct comparison. For the cartoon, the docked TMD is shown in 1025	

purple. Binding of MBP-tagged Sbh1 to His-tagged ScSgt2-C and mutants were examined as in 1026	

Figure 2D. Lanes for mutated residues are labeled in the same color as the schematic (B) Same 1027	

analysis as in A for HsSGTA-C. In addition, double point mutants are included.  1028	
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Fig. 6. Minimal requirements for client recognition by Sgt2/A. (A) Schematic of model TA 1031	

clients. Quantification of complex formation is calculated and normalized to that of complexes 1032	

containing a WT natural TA, here defined as relative binding efficiency. For this figure the WT 1033	

protein is Bos1. (B) Complex formation of ScSgt2 (blue) and HsSGTA (orange) with the TA Bos1 1034	

and several artificial TAs noted x[Ly], where x denotes the length of the TMD and y denotes the 1035	

number of leucines in the TMD. The helical wheel diagrams of TAs here and for subsequent panels 1036	

with leucines colored in dark orange, alanines colored in pale orange, and tryptophans colored in 1037	

grey. (C) Complex formation of ScSgt2 TPR-C and HsSGTA TPR-C with artificial TA IMPs with 1038	

TMDs of length 11 and increasing numbers of leucine. (D) Comparison of complex formation of 1039	

ScSgt2 TPR-C and HsSGTA TPR-C with artificial TA IMPs of the same lengths and 1040	

hydrophobicities but differences in the distribution of leucines, i.e. clustered (solid line) vs 1041	

distributed (dotted line). 1042	
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Fig. 7. Hydrophobic properties and localization of natural TA IMPs. (A) A summary of 1045	

putative yeast and human TA IMPs by their experimentally validated localization [60]. Using the 1046	

definition of a single TMD within 30 residues of their C-terminus gives the final numbers of 90 1047	

for yeast and 587 for humans. (B) A plot of all predicted yeast TA IMPs comparing two separate 1048	

metrics for measuring the hydrophobicity of their TMD, either the entire TMD or the most 1049	

hydrophobic helical face. Each protein is represented by an open circle colored based on 1050	

localization including those with both mitochondrial and ER localization. Additionally, proteins 1051	

with ER or mitochondrial localizations are highlighted on each axis. Proteins noted in the text are 1052	

highlighted. The best cut-offs for predicting mitochondrial versus ER for either metric are 1053	

represented by dotted lines (dark red, TMD hydrophobicity of entire TMD; light blue: TMD 1054	

hydrophobicity of the most hydrophobic face). (C) As in B for putative human TA IMPs. (D) 1055	

Quantitative comparison of the effectiveness of each metric by either the number of correctly 1056	

predicted ER and mitochondria TA IMPs and the area under a ROC curve (AUROC). 1057	
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Fig. 8. Various domain structures of STI1 and other helical-hand containing proteins. (A) 1060	

The domain architectures of proteins with a STI1 domain were obtained initially from InterPro 1061	

[60] and then adjusted as discussed in the text. Each domain within a protein is colored relative to 1062	

the key. (B) Structural comparison of various hydrophobic-binding helical-hand protein 1063	

complexes. For each figure only relevant domains are included. Upper row, color-ramped cartoon 1064	

representation with bound helices in purple. Lower row, accessible surface of each protein colored 1065	

by hydrophobicity again with docked helical clients in purple. In order, the predicted complex of 1066	

ScSgt2-Ccons and ScSbh2-TMD, DP1 domain from yeast Sti1 with N-terminus containing H0 in 1067	

grey (ScSti1-DP1)(PDBID: 2LLV), STI1 domain from yeast Rad23 (ScRad23-STI1) bound to the 1068	

TMD of RAD4 (ScRAD4-TMD) (PDBID: 2QSF), human calmodulin (HsCALM2) bound to a 1069	

hydrophobic domain of calcineurin (HsPPP3CA) (PDBID: 2JZI), and M domain of SRP54 from 1070	

Oryctolagus cuniculus (OcSRP54-M) and the signal sequence of human transferrin receptor 1071	

(HsTR-TMD) (PDBID: 3JAJ). 1072	
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Fig. S1. Biophysical characterization of the Sgt2/A-Ccons domain. (A) CD spectra as in Fig. 1C 1075	

for the conserved C-terminal domains of Sgt2 (blue) and SGTA (orange). (B) NMR spectra as in 1076	

Fig. 1D & E for Sgt2-Ccons (blue) and SGTA-Ccons (orange). 1077	
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Fig. S2. Characterization of STI1 domains. Predicted [117] and calculated [118] secondary 1080	

structure elements (A) and a structure-based alignment (B) of STI1 domains from Fig. 8A in the 1081	

ClustalX color scheme [119]. Dashed lines in A depict previous domain boundary annotations. (C) 1082	

Helical wheel diagrams of H0 of STI1 domains. (D) Additional STI1 domain structures 1083	

represented as in Fig. 8B. Domains are from the DP2 domain from yeast Sti1 (ScSti1-DP2) 1084	

(PDBID:2LLW), the chloroplast import protein Tic40 from Arabidopsis thaliana (AtTic40-STI1) 1085	

(PDBID:2LNM), and yeast Rad23 (ScRad23-STI1) bound to the N-terminus of PNGase 1086	

(ScPNGase-N-term) (PDBID: 1X3W). 1087	
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Table S1. TA Database. A compilation of the putative yeast (Sheet 1) and human (Sheet 2) TA 1090	

proteins shown in Fig. 7B,C. The Uniprot identifiers, predicted TMD sequence and prediction 1091	

method, subcellular localization string and resulting inferred target localization, and 1092	

hydrophobicity metrics (face and overall) are listed for each protein. Those labeled on the plot or 1093	

mentioned in the text are highlighted along with the abbreviations used. (Sheet 3) A comparison 1094	

with yeast TA proteins previously compiled by [64] with an explanation of differences, where they 1095	

exist. 1096	
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