
ar
X

iv
:1

70
8.

02
14

6v
1

 [
cs

.I
T

]
 7

 A
ug

 2
01

7

Rank-Modulation Codes for DNA Storage

Netanel Raviv⋆,†, Moshe Schwartz†, and Eitan Yaakobi⋆

⋆Computer Science Department, Technion – Israel Institute of Technology, Haifa 3200003, Israel
†Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel

netanel.raviv@gmail.com, schwartz@ee.bgu.ac.il, yaakobi@cs.technion.ac.il

Abstract

Synthesis of DNA molecules offers unprecedented advances in storage technology. Yet, the microscopic world in which
these molecules reside induces error patterns that are fundamentally different from their digital counterparts. Hence, to maintain
reliability in reading and writing, new coding schemes must be developed.

In a reading technique called shotgun sequencing, a long DNA string is read in a sliding window fashion, and a profile
vector is produced. It was recently suggested by Kiah et al. that such a vector can represent the permutation which is induced by
its entries, and hence a rank-modulation scheme arises. Although this interpretation suggests high error tolerance, it is unclear
which permutations are feasible, and how to produce a DNA string whose profile vector induces a given permutation.

In this paper, by observing some necessary conditions, an upper bound for the number of feasible permutations is given.
Further, a technique for deciding the feasibility of a permutation is devised. By using insights from this technique, an algorithm
for producing a considerable number of feasible permutations is given, which applies to any alphabet size and any window length.

Index Terms

DNA storage, permutations codes, DeBruijn graphs.

I. INTRODUCTION

Coding for DNA storage devices has gained increasing attention lately, following a proof of concept by several promising

prototypes [1], [2], [4]. Due to the high cost and technical limitations of the synthesis (i.e., writing) process, these works

focused on producing short strings, but as the cost of synthesis declines, longer strings can be produced. In turn, long strings

are read more accurately by a technique called shotgun sequencing [11], in which short substrings are read separately and

reassembled together to form the original string.

The shotgun-sequencing technique has motivated the definition of the DNA storage channel [7] (see Figure 1). In a channel

with alphabet Σ of size q, and window length ℓ, data is stored as a (possibly circular) string over Σ; the output of the

channel is a (possibly erroneous) histogram, or a profile vector with qℓ entries, each containing the number of times that the

corresponding ℓ-substring was observed. Errors in this channel might occur as a result of substitutions in the synthesis or

sequencing processes, or imperfect coverage of reads.

In order to cope with different error patterns, several code constructions were recently suggested [7], however, much is yet

to be done to obtain high error resilience and high rate. It was also suggested in [7, Sec. VIII.B] to employ a rank-modulation

scheme, which has the potential for coping with any error pattern that does not revert the order among the entries of the

profile vector.

In this scheme, the absolute values of the profile vector are ignored, and only their ranks in relation to each other are

considered. That is, a given profile vector represents the permutation which is induced by its entries. Clearly, to induce a

permutation the entries of the profile vector must be distinct, which is a reasonable assumption for long strings and short

window length. For example, the (actual) stored string in Figure 1 represents the permutation

π = (AA,AC,CA,GA,AG,CC,CG,GC,GG), (1)

since AA has the lowest frequency, followed by AC, and so on, until reaching GG with the highest frequency. Furthermore,

it is evident that the noisy output in Figure 1, due perhaps to the shotgun-sequencing process, still represents the same

permutation π, and hence, this error pattern in the profile vector is correctable by using a rank-modulation scheme.

A well known tool in the analysis of strings is the DeBruijn graph Gℓ
q , whose set of nodes is Σℓ, and two nodes are

connected by a directed edge if the (ℓ− 1)-suffix of the former is the (ℓ− 1)-prefix of the latter. This graph is a useful tool in

the analysis of the DNA storage channel since any string over Σ induces a path in the graph, and since a (normalized) profile

vector can be seen as measure on its node set. Further, we may restrict our attention to closed strings only (i.e., strings that

correspond to closed paths), since in our context, they are asymptotically equivalent to their ordinary counterparts.

The material in this paper was presented in part at the IEEE International Symposium on Information Theory (ISIT 2017), Aachen, Germany, June 2017.
This work was supported in part by the Israel Science Foundation under grant no. 130/14 and grant no. 1624/14.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216298002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1708.02146v1

2

(AA : 2,AC : 4,AG : 10,CA : 6,CC : 12,CG : 14,GA : 8,GC : 16,GG : 18)

AGGGGGGGGGGCGCGCGCGCGCGCGAGAGAGAGCCCCCCCACACA-

-AGGGGGGGGGGCGCGCGCGCGCGCGAGAGAGAGCCCCCCCACACA

Data

synthesis

(AA : 2,AC : 4,AG : 10,CA : 6,CC : 13,CG : 14,GA : 8,GC : 16,GG : 17)

shotgun sequencing

Storage

Output

Fig. 1. An example of a transmission in the DNA storage channel with the parameters q = 3, ℓ = 2, and n = 90. The data is encoded into a circular DNA
string using a process called synthesis. The stored string is read using a process called shotgun sequencing, whose output is a (possibly erroneous) profile
vector.

Due to flow conservation constraints in the DeBruijn graph [6], it is evident that not every permutation is feasible, i.e.,

there exist permutations that are not induced by any profile vector, and hence by any string. Consequently, [7] suggested to

disregard a certain subset S of the entries in the profile vector, encode any permutation on the complement of S, and complete

the entries of S to obtain flow conservation.

In this paper the feasibility question is studied in a more restrictive setting, where all the entries of the profile vector are

considered. By formulating several necessary conditions, an upper bound is given on the number of feasible permutations, out

of all permutations on qℓ elements. In addition, a linear-programming technique is devised to decide the feasibility of a given

permutation. Using insights from this technique, an encoding algorithm for producing a large number of feasible permutations

for any q and any ℓ is given. Interestingly, some of the above results rely on an interpretation of the encoding process as a

Markov chain on the DeBruijn graph.

Finally, this problem may also be seen in a more general setting, beyond any applications for DNA storage. For example,

it may be seen as a highly-restrictive variant of constraint coding, an area of coding theory that concerns the construction

of strings with or without some prescribed substrings. This resemblance is apparent by observing that in our setting, every

ℓ-substring is required to be more or less frequent than any other ℓ-substring.

The paper is organized as follows. In Section II we provide notation as well as formal definitions which are used throughout

the paper. In Section III we prove an upper bound on the number of feasible permutations. An efficient algorithm for deciding

whether a permutation is feasible is described in Section IV. We turn in Section V to devise a construction for a large set

of feasible permutations, thus also providing a lower bound on their total number. An important parameter of interest is the

length of the shortest string for a given feasible permutation. An upper bound on this parameter is given in Section VI. The

paper is concluded in Section VII with a short discussion.

II. PRELIMINARIES

For an alphabet Σ , {σ1, . . . , σq} and a window size ℓ ∈ N, let Gℓ
q be the DeBruijn graph of order ℓ over Σ. That is, the

node set V (Gℓ
q) is Σℓ, and for any two nodes u and v in V (Gℓ

q), the edge set E(Gℓ
q) contains (u, v) if the (ℓ− 1)-suffix of u

equals the (ℓ− 1)-prefix of v. An edge (u, v) is labeled by a string w ∈ Σℓ+1 whose ℓ-prefix is u and whose ℓ-suffix is v.

For a string x ∈ Σn, x = x0x1 . . . xn−1, with xi ∈ Σ, the ℓ-profile vector px ∈ Z
qℓ (or simply, the profile vector)

is a vector with qℓ non-negative integer entries (px(w))w∈Σℓ , each of which contains the number of occurrences of the

corresponding ℓ-substring in x. That is, px(w) = |{0 ≤ i ≤ n− 1 | xi, . . . , xi+ℓ−1 = w}| for all w ∈ Σℓ, where indices are

taken modulo |x| = n. The entries of px may be identified by either the set of nodes of Gℓ
q or the set of edges of Gℓ−1

q , and

the subscript x is omitted if clear from context.

For a given set A, let SA be the set of permutations on A, i.e., the set of vectors in A|A| in which every element of A appears

exactly once. For brevity, let Sq,ℓ , SΣℓ , and Si , S[i] for any positive integer i, where [i] , {1, 2, . . . , i}. Let π ∈ Sq,ℓ

and p ∈ R
qℓ , where the coordinates of R

qℓ are identified by the elements of Σℓ, ordered lexicographically. We say that p
satisfies π, and denote p � π, if the entries of p are distinct, and their ascending order matches π, i.e., p(w) < p(w′) if and

only if π(w) < π(w′), for all w,w′ ∈ Σℓ. Similarly, for a string x ∈ Σ∗ (where Σ∗ is the set of all closed strings) and a

permutation π ∈ Sq,ℓ we say that x satisfies π, and denote x � π, if px � π, i.e., if the profile vector of x satisfies π.

3

For example, in Figure 1, the vector at the output of the channel is p , (2, 4, 10, 6, 13, 14, 8, 16, 17) ∈ R
9; and since the

entries of R9 are indexed by the elements of {A,C,G}2, ordered lexicographically, it follows that p � π for the permutation π
that was given in (1). Consequently, the string x in the Storage phase of Figure 1 satisfies π.

A permutation π ∈ Sq,ℓ is called feasible if there exists a string x ∈ Σ∗ such that x � π, and infeasible otherwise. Similarly,

for any subset U ⊆ Σℓ, a permutation on U is called infeasible if it cannot be extended to a feasible permutation in Sq,ℓ.

Clearly, only vectors with distinct entries can satisfy a permutation, and hence, not every string satisfies a permutation.

Another constraint on feasibility is flow conservation. For every ℓ ≥ 2, and any x ∈ Σ∗, we must have
∑

σ∈Σ

px(σw) =
∑

σ∈Σ

px(wσ),

for all w ∈ Σℓ−1. We call these the flow-conservation constraints, which easily follow by noting that each side of the equation

equals the number of occurrences of w in x. Another view of these constraints follows by noting that any string x ∈ Σ∗ may

be scanned using a sliding window of length ℓ, inducing cycle in the DeBruijn graph Gℓ−1
q . The flow-conservation constraints

simply state that, along the cycle, the number of times we enter vertex w ∈ Σℓ−1 is
∑

σ∈Σ px(σw), must equal the number of

times we exit this vertex, i.e.,
∑

σ∈Σ px(wσ). Due to flow conservation constraints in the DeBruijn graph, some permutations

are infeasible, as illustrated in Figure 2.

We note that, given a profile vector p with flow conservation of order ℓ, there exists a string x ∈ Σ∗ whose profile vector is

p provided another condition is met: Construct the DeBruijn graph Gℓ−1
q , and remove all edges w ∈ Σℓ such that p(w) = 0.

Then remove all isolated vertices (i.e., vertices with no incoming edges and no outgoing edges). If the resulting graph is

strongly connected, such a string x exists. To see that, take p(w) parallel copies of each edge w. Then, each vertex has

in-degree that equals its out-degree (due to flow conservation of p), and since the graph is strongly connected, there exists an

Eulerian cycle. The string x associated with the Eulerian cycle (i.e., whose sequence of sliding windows of length ℓ equals

the sequence of edges in the cycle) has a profile vector p.

Given a (flow conserving) profile vector p such that p � π for some permutation π, the above implies a deterministic

algorithm for generating a string x such that x � π. Alternatively, given any vector r ∈ R
qℓ such that r � π for some π, it is

possible to produce the corresponding string x by either turning it to an integer vector1 which satisfies the same permutation

and repeating the above, or by the following randomized algorithm.

Given such a vector r, find α and β in R such that s , αr + β1 is a positive vector whose sum of entries is 1 (which

clearly satisfies the same permutation as r), and define Ms ∈ R
qℓ×qℓ such that

(Ms)a,b =

{

s(vσ)∑
τ∈Σ s(vτ) if (a, b) is an edge and b = vσ,

0 otherwise,
. (2)

It is proved in Lemma 18 in Appendix A that Ms is a transition matrix of a Markov chain on Gℓ
q , and its stationary distribution

is s. Hence, it follows from the law of large numbers for Markov chains that following this chain for long enough produces

a string whose profile vector satisfies the same permutation as s and r.

The main goals of this paper are to characterize, bound, and construct sets of feasible permutations in Sq,ℓ. To this end,

given q and ℓ, let

Fq,ℓ , |{π ∈ Sq,ℓ | ∃x ∈ Σ∗, x � π}| , and

Rq,ℓ ,
log2 Fq,ℓ

log2(q
ℓ!)

. (3)

It is evident that Fq,1 = q! for any q. In addition, F2,ℓ = 0 for every ℓ ≥ 2, since (assuming Σ = {0, 1}) the flow-conservation

constraint px(01
ℓ−1) + px(1

ℓ) = px(1
ℓ−10) + px(1

ℓ) implies px(01
ℓ−1) = px(1

ℓ−10) contradicting the requirement that

profile-vector entries be distinct. Therefore, the simplest set of parameters, that will be prominent in the sequel, is ℓ = 2
and q = 3.

III. UPPER BOUND

For a given permutation π ∈ Sq,ℓ, a necessary condition for π to be feasible is given, and later used to obtain a bound

on the number of feasible permutations. To formulate this condition, color an edge (a, b) of Gℓ
q in green if π(a) < π(b),

and in red if π(a) > π(b). In addition, for a non-constant string2 v ∈ Σℓ−1, let G(v) be an induced subgraph of Gℓ
q on the

set T (v) , {σiv}
q
i=1 ∪ {vσi}

q
i=1, whose edges are colored as in Gℓ

q . For the next lemma, recall that a perfect matching in a

graph is a vertex-disjoint set of edges which covers the entire vertex set of the graph.

1This is possible by finding a close enough rational approximation, and multiplying by the least common multiple of its entries’ denominators. Alternatively,
one may multiply it by a large enough constant such that the absolute difference between any two distinct entries is at least 3, and apply the algorithm of [3,
Thm. 39].

2That is, a string v that contains at least two distinct symbols.

4

A

AA

CA

GA

AC

AG

CA < GA < AC < AG

Fig. 2. An infeasible permutation. Since only closed strings are considered, any profile vector p must satisfy flow conservation constraints at any node

of Gℓ−1
q . For example, if q = 3 and ℓ = 2, the constraint that corresponds to the node A is p(AA) + p(CA) + p(GA) = p(AA) + p(AC) + p(AG). Hence,

any permutation in which (CA,GA,AC, AG) can be attained by deletion of entries is infeasible.

Lemma 1. If there exists v ∈ Σℓ−1 such that G(v) contains an all-red perfect matching or an all-green perfect matching,

then π is infeasible.

Proof: Assume that there exists a subgraph G(v) with an all-red perfect matching {(σiv, vσκ(i))}
q
i=1 for some per-

mutation κ on [q] , {1, . . . , q}. If there exists a string x over Σ which satisfies π, then since x is a closed string,

the profile vector p of x satisfies that
∑q

i=1 p(σiv) =
∑q

i=1 p(vσi). However, since p(σiv) > p(vσκ(i)), we have that
∑q

i=1 p(σiv) >
∑q

i=1 p(vσi), a contradiction. If G(v) contains an all-green matching, the proof is similar.

Let π|T (v) be the result of deleting from π any element not in T (v). For example, if we take q = 3, ℓ = 2, and π =
(AA,AC,CA,GA,AG,CC,CG,GC,GG), then π|T (A) = (AA,AC,CA,GA,AG). The given bound is derived by counting the number

of infeasible permutations on mutually disjoint sets {T (ui)}
k
i=1, and estimating the number of permutations in Sq,ℓ which

contain an infeasible permutation on at least one T (ui). To this end, the following lemmas are given.

Lemma 2. If {ui}
k
i=1 ⊆ Σℓ−1 is an independent set of vertices in Gℓ−1

q , then the sets T (ui) are mutually disjoint.

Proof: If there exist i and j in [k] such that T (ui) ∩ T (uj) 6= ∅, then since ui 6= uj it follows that there exist σ and τ
in Σ such that either σui = ujτ or uiσ = τuj . Without loss of generality assume that σui = ujτ and notice that in Gℓ−1

q , σui

is an edge entering node ui, and ujτ is a edge leaving node uj . Thus, ui and uj are connected by an edge, a contradiction.

Lemma 3. Let {ui}
k
i=1 ⊆ Σℓ−1 be an independent set of non-constant vertices in Gℓ−1

q . For any set of permutations {πi}
k
i=1,

where πi is a permutation on T (ui), there are qℓ!
(2q)!k

permutations π on Σℓ such that π|T (ui) = πi for all i ∈ [k].

Proof: According to Lemma 2, the sets T (ui) are mutually disjoint. Hence, the elements of ∪k
i=1T (ui) may be arbitrarily

interleaved such that for all i, the relative order πi of T (ui) is maintained. It is readily verified that the number of ways to

interleave the elements of {T (ui)}
k
i=1, while maintaining the relative orders {πi}

k
i=1, equals the number of multi-permutations

on the multi-set

{1, . . . , 1, 2, . . . , 2, . . . , k, . . . , k},

where each element appears exactly 2q times. Since the number of multi-permutations on this multi-set is given by the

multinomial coefficient (2q, . . . , 2q)! , (2qk)!
(2q)!k

, and since the remaining qℓ − k · 2q elements may by inserted consecutively

and arbitrarily into the resulting permutation, we have that the number of permutations π ∈ Sq,ℓ such that π|T (ui) = πi is

(2qk)!

(2q)!k
·

qℓ
∏

i=2qk+1

i =
qℓ!

(2q)!k

For any non-constant v ∈ Σℓ−1, we now show that the set of monochromatic perfect matchings in G(v) is in one-to-one

correspondence with the set Sq ⊆ {±1}2q, where s ∈ Sq if and only if
∑2q

i=1 si = 0 and
∑j

i=1 si ≥ 0 for all j ∈ [2q].
Consequently, the number of monochromatic perfect matchings is given by the q-th Catalan number Cq = 1

q+1 ·
(

2q
q

)

. For

s ∈ Sq , let s+ , {i ∈ [2q] | si = 1}, and s− , {i ∈ [2q] | si = −1}.

5

Lemma 4. For s ∈ Sq there exists a bijection φ : s+ → s− such that φ(t) > t for all t ∈ s+.

Proof: The function φ is defined in a recursive manner. This definition relies on the recursive structure of Sq , which is

as follows. First we observe that the first entry of s must be s1 = 1. Next, denote the index of the left-most (−1)-entry of s
by m, and let s′ be the vector which results from s by replacing both s1 = 1 and sm = −1 by 0. For any j ∈ [2q] we have

that
j
∑

i=1

s′i =

{

j − 1 1 ≤ j < m
∑j

i=1 si m ≤ j
.

Hence, it is readily verified that by omitting the first and m-th entry of s we obtain a vector in Sq−1. Therefore, the function φ
may be defined by setting φ(1) = m, omitting the first and m-th entry, and applying the same rule recursively.

Lemma 5. For v ∈ Σℓ−1, the number of infeasible permutations on T (v) is at least 2
q+1 · (2q)!.

Proof: We count the number of permutations on T (v) that induce a monochromatic matching in G(v). Clearly, the

existence of a monochromatic matching is oblivious to the internal permutation on each of the sets {σiv}
q
i=1 and {vσi}

q
i=1.

Further, the color of a monochromatic matching, if it exists, is uniquely determined by the lowest-ranking element of T (v).
That is, if the lowest-ranking element belongs to {σiv}

q
i=1, the matching is green, and otherwise it is red. Therefore, the

number of permutations on T (v) that induce a monochromatic matching is

(q!)2 · 2 · κ,

where κ is the number of ways to interleave two fixed permutations on {σiv}
q
i=1 and on {vσi}

q
i=1, such that the identity of the

lowest-ranking element (i.e., if it belongs to {σiv}
q
i=1 or to {vσi}

q
i=1) is determined, and such that the resulting permutation

induces a monochromatic matching. In what follows we show that κ equals the q-th Catalan number, by employing the

aforementioned set Sq .

For a permutation π1 on {σiv}
q
i=1 and a permutation π2 on {vσi}

q
i=1, let C(π1, π2) be the number of permutations π on T (v)

such that reducing π to {σiv}
q
i=1 results in π1, reducing π to {vσi}

q
i=1 results in π2, and there exists a monochromatic green

matching in G(v). By using a bijection to Sq , it is shown that |C(π1, π2)| = Cq .

Given a vector s ∈ Sq, let f(s) be the permutation of T (v) which results from replacing the 1 entries of s by the elements

of {σiv}
q
i=1, sorted by π1, and replacing the −1 entries by the elements of {vσi}

q
i=1, sorted by π2. According to Lemma 4,

in the resulting permutation f(s) any element in {σiv}
q
i=1 has a unique element in {vσi}

q
i=1 that is higher ranked than it,

and hence, f(s) induces a green matching.

Conversely, let π be a permutation on T (v) that induces a green matching M , and hence, the smallest ranking element

belongs to {σiv}
k
i=1. Let g(π) be the vector in {±1}2q that results from replacing all entries of π which contain an element

from {σiv}
q
i=1 by 1, and replacing all entries which contain an element from {vσi}

q
i=1 by −1 (this is well defined since v

has no self loops, and thus {σiv}
q
i=1 ∩ {vσi}

q
i=1 = ∅).

Assume for contradiction that g(π) induces a negative partial sum
∑j

i=1 si < 0 for some j ∈ [2q]. Since s1 = 1, we may

choose a minimal such j, where
∑j−1

i=1 si = 0,
∑j

i=1 si = −1, and sj = −1. Consider the edges of M as connecting between

the respective indices of s, and note that since the matching is green, all edges (i, j) ∈ M satisfy that si = 1, sj = −1, and

i < j. If there is no edge in the set [j − 1]× {j, . . . , 2q}, we have that M contains an edge (j, t) with t > j and sj = −1, a

contradiction. Similarly, if there exists an edge of M in [j − 1]× {j, . . . , 2q}, since the number of 1 and −1 entries among

s1, . . . , sj−1 is equal, we have that there exists a (−1)-entry st, for t ≤ j − 1, such that (t,m) ∈ M for some m > t. Once

again, a contradiction.

Since the above mappings g and f are injective, we have that |C(π1, π2)| = |Sq| = Cq [12, p. 116]. Note that the proof

of this equality is identical for any π1 and π2, and that the proof is symmetric if the induced matching is red. Note also

that a permutation π on T (v) cannot induce both a red and a green matching, since this would imply that
∑

σ∈Σ π(σv) <
∑

σ∈Σ π(vσ) and
∑

σ∈Σ π(σv) >
∑

σ∈Σ π(vσ), a contradiction. Therefore, we have that the number of permutations on T (v)
that induce a monochromatic matching is at least

(q!)2 · 2 · Cq =
2

q + 1
· (2q)!.

To state the main result of this section, we introduce the loopless independence number α∗(q, ℓ) of Gℓ
q [9], which is the

size of the largest subset of nodes that contains no internal edges and no self-loops (i.e., the nodes are non-constant). A lower

bound on α∗ may be easily derived from [9].

Lemma 6 ([9]). α∗(q, ℓ) ≥ qℓ−qℓ−2

4 , for all q ≥ 2 and ℓ ≥ 2.

Proof: According to [9, Proposition 5.2] we have that if q ≥ 2 and ℓ ≥ 3, then α∗(q, ℓ) ≥ q · α∗(q, ℓ− 1). By applying this

claim recursively, we have that α∗(q, ℓ) ≥ qℓ−2 ·α∗(q, 2). According to [9, Sec. 5] we have that if q ≥ 2 then α∗(q, 2) ≥ q2−1
4 .

The result follows from combining these claims.

6

Theorem 1. For all q ≥ 3 and ℓ ≥ 3, the number of feasible permutations is at most

Fq,ℓ ≤ qℓ! ·

(

q − 1

q + 1

)
1
4 (q

ℓ−1−qℓ−3)

.

Proof: Let α∗ = α∗(q, ℓ − 1), and let {ui}
α∗

i=1 ⊆ Σℓ−1 be a maximum loopless independent set in Gℓ−1
q . Since it is

loopless, it follows that none of {ui}
α∗

i=1 is constant. Hence, Lemma 3 implies that for every set {πi}
α∗

i=1 of permutations,

where πi is a permutation on T (ui), there are qℓ!
(2q)!α∗ permutations π ∈ Sq,ℓ, such that π|T (ui) = πi for all i ∈ [α∗].

Since by Lemma 5 the number of infeasible permutations on each T (ui) is at least 2
q+1 (2q)!, it follows that there are at

least

(2q)!α
∗

−

(

q − 1

q + 1
· (2q)!

)α∗

=

(

1−

(

q − 1

q + 1

)α∗)

(2q)!α
∗

sets {πi}
α∗

i=1 which contain at least one infeasible permutation. This implies, together with Lemma 6, that the number of

infeasible permutations π ∈ Sq,ℓ is at least

qℓ!−Fq,ℓ ≥

(

1−

(

q − 1

q + 1

)α∗)

· (2q)!α
∗

·
qℓ!

(2q)!α∗ =

(

1−

(

q − 1

q + 1

)α∗)

· qℓ! ≥

1−

(

q − 1

q + 1

)
qℓ−1−qℓ−3

4

 · qℓ!

For ℓ = 2, similar techniques do not hold since α∗ = α(q, 1) = 0. However, we may apply Lemma 5 directly without

enhancing it by the loopless independence number of Gℓ−1
q . This results in the following weaker bound, whose proof is similar

to that of Theorem 1, and is therefore omitted.

Theorem 2. For all q ≥ 3 we have Fq,2 ≤ (q2)! · q−1
q+1 .

Theorem 1 readily implies that if either q or ℓ goes to infinity, the fraction of feasible permutations goes to zero. However,

in terms of rate, both Rq,ℓ −−−→
q→∞

1 and Rq,ℓ −−−→
ℓ→∞

1, leaving the possibility for high-rate schemes wide open. In the sequel,

a set of feasible permutations is constructed, whose rate is bounded from below by a constant when ℓ is fixed and q tends to

infinity (Lemma 10 in Section V).

IV. A POLYNOMIAL ALGORITHM FOR DECIDING FEASIBILITY

In this section it is shown that a given permutation π ∈ Sq,ℓ can be decided to be feasible or not in time polynomial in qℓ

(i.e., polynomial in the length of the permutation). If it is feasible, the time complexity of producing a string which satisfies

it depends on its minimal length, a topic which is studied in Section VI. The given algorithm relies on the following simple

claim.

Lemma 7. A permutation π ∈ Sq,ℓ is feasible if and only if there exists a nonnegative vector χ ∈ R
qℓ such that π � χ and

for all v ∈ Σℓ−1,
∑

σ∈Σ χ(vσ) =
∑

σ∈Σ χ(σv).

Proof: If π is feasible, then by the definition of feasibility, there exists x ∈ Σ∗ such that its ℓ-profile vector px satisfies π,

and hence, setting χ = px suffices. Conversely, given a non-negative vector χ that satisfies π, as well as flow conservation,

we make the following observation: for any α, β ∈ R, α, β ≥ 0, we have that αχ+ β1 is a non-negative vector that satisfies

π as well as flow conservation. Choose α and β such that χ′ , αχ + β1 has χ(v) ≥ 1 and |χ′(v) − χ′(v′)| ≥ 3 for all

v, v′ ∈ Σℓ, v 6= v′.
By [3, Appendix], there exists an integer flow-conserving vector χ′′ where ⌊χ′(v)⌋ ≤ χ′′(v) ≤ ⌈χ′(v)⌉+1. By our choice

of α and β, all the entries of χ′′ are positive, distinct, and retain their rank, i.e., χ′′ satisfies π. By Section II, this suffices

for the existence of a string x ∈ Σ∗ whose profile vector is px = χ′′, hence x satisfies π.

Given a permutation π, Lemma 7 gives rise to the following linear programming algorithm for deciding its feasibility.

• Variables: {χ(v) | v ∈ Σℓ}.

• Objective: None.

• Constriants:

– For all v ∈ Σℓ, χ(v) ≥ 1.

– For all distinct u and v in Σℓ such that π(u) > π(v), χ(u) ≥ χ(v) + 1.

– For all v ∈ Σℓ−1,
∑

σ∈Σ χ(vσ) =
∑

σ∈Σ χ(σv).

According to Lemma 7, determining the feasibility of this system is equivalent to determining the feasibility of the given

permutation π.

Note that the number of variables is qℓ, and the number of constraints is qℓ +
(

qℓ

2

)

+ qℓ−1, which is polynomial in qℓ.
Hence, the feasibility question may be solved in polynomial time (in qℓ).

7

Since the coefficients in the linear program are all rational, the feasible solutions contain a solution χ that is rational in all

of its entries. One may then find a corresponding string by the techniques that are mentioned in Section II.

V. ENCODING ALGORITHMS

In this section encoding algorithms are given for any ℓ and any q. These algorithms provide a lower bound on the number

of feasible permutations for the respective parameters. Since an additive structure of the alphabet is required, it is assumed in

this section that Σ = Zq , the set of integers modulo q.

According to Lemma 7 and its subsequent discussion, to come up with a feasible permutation it suffices to provide the

corresponding vector χ. From this vector the corresponding permutation and a suitable string may be computed by either the

randomized or the deterministic algorithms that are mentioned after Lemma 7. Hence, the algorithms that are detailed in this

section focus on providing the vector χ.

To clearly describe the constraints on the vector χ, by abuse of notation it will be considered either as a vector in R
qℓ or

as a matrix in R
qℓ−1×qℓ−1

. That is, for a given string u ∈ Z
ℓ
q , the notation χ(u) stands for the u-th entry of χ when seen as

a vector, and for two strings w,w′ ∈ Σℓ−1, the notation χ(w,w′) stands for the (w,w′)-entry when seen as a matrix, where

χ(w,w′) ,

{

χ(u) if (w,w′) is a u-labeled edge in E(Gℓ−1
q),

0 else.
(4)

Using this notation, for v ∈ Z
ℓ−1
q the constraint

∑

σ∈Zq
χ(vσ) =

∑

σ∈Zq
χ(σv) may be written as

∑

u∈Z
ℓ−1
q

χ(v, u) =
∑

u∈Z
ℓ−1
q

χ(u, v), i.e., the v-th row sum equals the v-th column sum. A vector (matrix) χ which satisfies these constraints

and satisfies a permutation, is called a feasible vector (matrix). Note that if a feasible vector χ has no zero entries, then the

support of the corresponding matrix is identical to the support of the adjacency matrix of Gℓ−1
q .

We present two algorithms in this section. The first fixes a window size of ℓ = 2, and recursively increases q. The second

algorithm builds on the first one, and extends the window size ℓ.

A. A recursive encoding algorithm for ℓ = 2 and any q

This algorithm operates recursively on q, where the base case is q = 3. To resolve the base case, a repository of all feasible

permutations (or their corresponding feasible matrices) for q = 3 and ℓ = 2 should be maintained. Using a computer program

which is based on Lemma 7, this repository was constructed within a few minutes on a laptop computer, and its size was

discovered to be f3,2 , 30240. For future use, it is convenient to assume that all matrices in this repository contain strictly

positive integer entries, which is always possible in light of the proof of Lemma 7 and the fact that G1
q is the complete graph

on q nodes. In Algorithm 1 which follows, the information vector is taken from

Iq , [f3,2]× (S4 ×K4)× · · · × (Sq ×Kq), (5)

where for any positive integer m, the set Km consists of all (m2−m+1)-bit vectors with Hamming weight m. Given t ∈ Km,

a vector x of length (m− 1)2 and a vector y of length m, let t(x, y) be the vector which results from replacing the 1-entries

in t by the entries of x and the 0-entries by y, while maintaining their original order.

Algorithm 1: Aq(v), an encoding algorithm for ℓ = 2 and any q.

Data: A repositpry R of f3,2 integer feasible matrices for all feasible permutations in S3,2.

Input : An information vector v ∈ Iq .

Output: A feasible matrix χ ∈ N
q×q (which represents a feasible vector χ ∈ N

q2).

1 if q = 3 then return the v-th feasible matrix in R;

2 Denote v = (v′, (πq, tq)) for v′ ∈ Iq−1, πq ∈ Sq , and tq ∈ Kq.

3 Apply Aq−1(v
′) to get a matrix χ′, and for i, j ∈ Zq−1 denote xi,j , (q + 1) · (χ′)i,j .

4 Choose y , (y0, . . . , yq−1) ∈ N
q that is ordered by πq , such that

∑q−1
i=0 yi is minimal, and such

that tq(sort(y), sort((q + 1) · χ′) is sorted3.

5 For ε , 1
q , let

χ ,

x0,0 x0,1 · · · x0,q−2 y0
x1,0 + ε x1,1 · · · x1,q−2 y1 − ε
x2,0 + ε x2,1 · · · x2,q−2 y2 − ε

...
...

. . .
...

...

xq−2,0 + ε xq−2,1 · · · xq−2,q−2 yq−2 − ε
y0 − (q − 2)ε y1 · · · yq−2 yq−1

.

6 return q · χ.

3For a real vector v, let sort(v) be the output of applying a sorting algorithm to v.

8

In a nutshell, each recursive step of Algorithm 1 assigns values for entries in χ that correspond to strings which contain

the newly added symbol of the alphabet. These new strings are ordered according to πq , which is taken from the information

vector, and are interleaved with the entries of χ′ according to tq . Following the next example, the correctness of Algorithm 1

is proved in detail.

Example 1. Assume that for q = 4, the given information vector is v = (v′, (π4, t4)) where

π4 = (2, 3, 4, 1),

t4 = (0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0),

and v′ is the index in [f3,2] of the permutation (00, 01, 10, 20, 02, 11, 12, 21, 22) (which results from (1) by substituting 0 for A,

1 for C, and 2 for G). Assume that by applying A3(v
′), we obtain the feasible matrix

χ′ =

1 2 5
3 6 7
4 8 9

 , (6)

where the rows and columns are identified lexicographically by Z3. Clearly, choosing y = (12, 13, 21, 11) suffices since it is

ordered by π4, since

t4(sort(y), sort(5 · χ′)) = (5, 10, 11, 12, 13, 15, 20, 21, 25, 30, 35, 40, 45),

and since
∑3

i=0 yi is clearly minimal. Thus, it follows that

χ =

5 10 25 12
15 + 1

4 30 35 13− 1
4

20 + 1
4 40 45 21− 1

4
12− 2 · 1

4 13 21 11

,

and hence the output matrix is

4 · χ =

20 40 100 48
61 120 140 51
81 160 180 83
46 52 84 44

,

which is an integer feasible matrix for

(00, 01, 33, 30, 03, 13, 31, 10, 20, 23, 32, 02, 11, 12, 21, 22).

First, notice that by the choice of ε and by the assumption on R, the matrix which is returned in either Line 1 or Line 6

has positive integer entries. Hence, the multiplication of χ′ by q+1 in Line 3 provides q distinct integers between every two

entries of χ′. In turn, this enables the choice of y0, . . . , yq−1, and their interleaving with the entries of χ′, in any possible

way.

Second, to verify that the entries of χ are distinct, recall that {y0, . . . , yq−1}∪{xi,j |i, j ∈ Zq−1} is a set of distinct integers.

Hence, since 1
q ≤ 1

3 and 1−(q−2)ε > ε, it follows that the entries of χ are distinct. To prove the correctness of the algorithm,

it ought to be shown that the row and column sum constraint from Lemma 7 is satisfied, and that different information vectors

result in different permutations.

Lemma 8. Let q · χ be the output of Algorithm 1. Then for all τ ∈ Zq ,
∑

σ∈Zq
χ(τ, σ) =

∑

σ∈Zq
χ(σ, τ).

Proof: First, it is evident that

sum of column q − 1 =
∑

i∈Zq

yi −

q−2
∑

i=1

ε =
∑

i∈Zq

yi − (q − 2)ε = sum of row q − 1,

and since χ′ it a feasible matrix, it follows that

sum of column 0 = y0 − (q − 2)ε+ x0,0 +

q−2
∑

i=1

(xi,0 + ε) = y0 +

q−2
∑

i=0

x0,i = sum of row 0.

Further, for 1 ≤ i ≤ q − 2,

sum of row i = (xi,0 + ε) +

q−2
∑

j=1

xi,j + (yi − ε) =

q−2
∑

j=0

xj,i + yi = sum of column i.

9

Lemma 9. If u and v are distinct information vectors in Iq such that Aq(u) = χu, Aq(v) = χv and χu � πu, χv � πv for

some permutations πu and πv , then πu 6= πv .

Proof: Note that according to the choice of ε, the relative order among the entries of χ′ is preserved. Hence, if ui 6= vi
for some entry i ≥ 2, then either the respective permutations between the yj-s in stage i of the algorithm are distinct, or the

interleaving of the yj-s in the entries of χ′ are distinct. In either case, it follows that there exists a pair of corresponding

strings (either both new, or one is new and the other is old) on whom πv and πu disagree; and since this disagreement persists

throughout the entire algorithm, the result follows. If u and v disagree only on their first (leftmost) entry, the proof is similar.

Corollary 1. For any q ≥ 3,

Fq,2 ≥ f3,2 ·

q
∏

j=4

(

j! ·

(

j2 − j + 1

j

))

.

Even though taking q to infinity is artificial when DNA storage is discussed, it is inevitable if one wishes to estimate the

contribution of Algorithm 1. Hence, the following lemma is given, where the proof is deferred to Appendix A.

Lemma 10. limq→∞ Rq,2 ≥ 1
2 .

B. A recursive encoding algorithm for any ℓ and any q

In this section, the recursive algorithm from Subsection V-A is used to obtain an encoding algorithm for any ℓ and any q.

Inspired by [8] and [10], the recursion at stage ℓ relies on embedding the feasible matrix from stage ℓ − 1 in homomoprhic

pre-images of Gℓ−1
q in Gℓ

q , and breaking ties that emerge according to the information vector.

Definition 1. [5] For graphs G and H , a function f : V (G) → V (H) is a (graph) homomorphism if for each pair of

vertices u, v in V (G), if (u, v) is an edge in G then (f(u), f(v)) is an edge in H .

The algorithm which follows relies on the following homomorphism, and yet, many other homomorphisms exist, and either

of them may be used similarly.

Dℓ : Z
ℓ
q → Z

ℓ−1
q

Dℓ(v) , (v0 + v1, v1 + v2, . . . , vℓ−2 + vℓ−1), and

D : Z∗
q → Z

∗
q

D(v) , D|v|(v).

It is an easy exercise to prove that for any ℓ, the function D is a q to 1 surjective homomorphism from Gℓ
q to Gℓ−1

q . That is,

for every u ∈ Z
ℓ−1
q , the set D−1(u) contains exactly q elements. Moreover, it is readily verified that this set may be written

as

D−1(u) = {v0, . . . , vq−1}, such that vi,0 = i for all i ∈ Zq. (7)

Similarly, every u ∈ Z
ℓ−1
q satisfies that

{D(σu)}σ∈Zq
= {σD(u)}σ∈Zq

, and

{D(uσ)}σ∈Zq
= {D(u)σ}σ∈Zq

. (8)

The information vector is taken from the set Jℓ
q , which is defined as follows.

Jℓ
q , Iq × P3 × P4 × . . .× Pℓ, where

Pi , {P | P : Ai → SZq
}, and

Ai , {u ∈ Z
i−1
q | 0 /∈ {u0, ui−2}} for all i ∈ {3, . . . , ℓ}. (9)

That is, an information vector v ∈ Jℓ
q is of the form v = (v′, P3, . . . , Pℓ), where Pi is a function from Ai to SZq

, and v′ ∈ Iq
(see Subsection V-A). In addition, for i and j in Zq , let 〈i, j〉q , i+ j · q + 1.

In stage ℓ, Algorithm 2 relies on embedding the matrix T , which results from stage ℓ− 1, in entries of χℓ that correspond

to homomorphic pre-images of Gℓ−1
q in Gℓ

q . Since the homomorphism D is q to 1, this results in qℓ−1 sets of entries in χℓ,

of q elements each, that contain identical entries. These equalities are broken by adding small constants to each set, where

these constants are ordered according to the permutations in Sq that appear in the current entry of the information vector.

To maintain the row and column sum constraint (Lemma 7), the additions will be excluded from a single entry in each row

10

and each column, where in turn, these excluded entries will be adjusted to cancel out the additions in their respective row or

column.

Algorithm 2: Bℓ
q(v), an encoding algorithm for any ℓ and any q.

Input : An information vector v ∈ Jℓ
q .

Output: A feasible matrix χ ∈ N
qℓ−1×qℓ−1

(which represents a feasible vector χ ∈ N
qℓ).

1 if ℓ = 2 then return Aq(v);
2 Denote v = (v′, P), where P ∈ Pℓ and v′ ∈ Jℓ−1

q .

3 Set T = 2 ·Bℓ−1
q (v′).

4 foreach v ∈ Z
ℓ
q do

5 Denote v = v0v
′, where v0 ∈ Zq and v′ ∈ Z

ℓ−1
q .

6 Denote D(v) , w = (w0, w
′, wℓ−2), where w0, wℓ−2 ∈ Zq and w′ ∈ Z

ℓ−3
q .

7 Define

χℓ(v) =

T (D(v)) + P (D(v))(v0)

q〈w0,wℓ−2〉
(1) if D(v) ∈ Aℓ

T (D(v))−
∑

µ6=0
P (µ,w′,wℓ−2)(µ+v0)

q〈µ,wℓ−2〉
(2) if w0 = 0, wℓ−2 6= 0

T (D(v))−
∑

τ 6=0
P (w0,w

′,τ)(v0)

q〈w0,τ〉 (3) if w0 6= 0, wℓ−2 = 0

T (D(v)) +
∑

µ6=0

∑

τ 6=0
P (µ,w′,τ)(µ+v0)

q〈µ,τ〉 (4) if w0 = wℓ−2 = 0

8 end

9 return qq
2

· χℓ.

Example 2. For q = 3 and ℓ = 3, notice that A3 = {(11), (12), (21), (22)} and that P3 = {P |P : A3 → SZ3}. The output

matrix in this case is χ = qq
2

χ3, where χ3 is defined by using T = 2B2
3(v

′). The three leftmost columns of χ3 are as follows.

00 01 02

00 T (00) +
∑

µ6=0

∑

τ 6=0
P (µτ)(µ)

q〈µ,τ〉 T (01)−
∑

µ6=0
P (µ1)(µ)

q〈µ,1〉 T (02)−
∑

µ6=0
P (µ2)(µ)

q〈µ,2〉

01 - - -

02 - - -

10 T (10)−
∑

τ 6=0
P (1τ)(1)
q〈1,τ〉 T (11) + P (11)(1)

q〈1,1〉
T (12) + P (12)(1)

q〈1,2〉

11 - - -

12 - - -

20 T (20)−
∑

τ 6=0
P (2τ)(2)
q〈2,τ〉 T (21) + P (21)(2)

q〈2,1〉
T (22) + P (22)(2)

q〈2,2〉

21 - - -

22 - - -

Notice that for each nonzero entry in the above table, the entries of χ3 that share the same row or column and are not listed

above are zero. Hence, one can verify that the row and column sums coincide with those of τ . To witness the distinctness of

entries in a homomorphic preimage of D, consider for example D−1(11) = {010, 101, 222}, and notice that

χ3(010) = T (11) +
P (11)(0)

qq+2

χ3(101) = T (11) +
P (11)(1)

qq+2

χ3(222) = T (11) +
P (11)(2)

qq+2
,

which are clearly distinct since P (11) is a permutation. Yet another example is given by considering D−1(20) = {021, 112, 200},

for which

χ3(021) = T (20)−
∑

τ 6=0

P (2τ)(0)

q〈2,τ〉
= T (20)−

P (21)(0)

qq+3
−

P (22)(0)

q2q+3

χ3(112) = T (20)−
∑

τ 6=0

P (2τ)(1)

q〈2,τ〉
= T (20)−

P (21)(1)

qq+3
−

P (22)(1)

q2q+3

χ3(200) = T (20)−
∑

τ 6=0

P (2τ)(2)

q〈2,τ〉
= T (20)−

P (21)(2)

qq+3
−

P (22)(2)

q2q+3
.

11

Similarly, the above entries are distinct, e.g., on the (q + 3)-rd digit of the fractional q-ary expansion, since P (21) is a

permutation.

To show the correctness of Algorithm 2, it suffices to show that χℓ complies with the row and column sum constraint of

Lemma 7, and that its entries are distinct.

Lemma 11. In Algorithm 2 we have that
∑

σ∈Zq
χℓ(σu) =

∑

σ∈Zq
χℓ(uσ) for every u ∈ Z

ℓ−1
q and every integer ℓ ≥ 3.

Proof: The correctness in stage ℓ follows from the correctness in stage ℓ−1, and the following four technical facts. These

facts show that the additions to the entries of T cancel out, and hence the row and column sums of χℓ are equal to those

of T , which satisfies the row and column sum constraint. First, note that any u ∈ Z
ℓ−1
q satisfies exactly one of the following

two cases.

Case A1. D(u)ℓ−3 6= 0. For any σ ∈ Σ, the string v = σu satisfies that wℓ−2 6= 0 and that w0 = 0 if and only if σ = −u1.

Therefore, χℓ(v) is computed by either (1) or (2). Notice that

∑

σ∈Zq

χℓ(σu) =
∑

σ 6=−u1

(

T (D(σu)) +
P (D(σu))(σ)

q〈σ+u1,uℓ−3+uℓ−2〉

)

+ T (D(−u1, u))−
∑

µ6=0

P (µ,D(u))(µ+ (−u1))

q〈µ,uℓ−3+uℓ−2〉

=
∑

σ 6=−u1

(

T (D(σu)) +
P (σ + u1, D(u))(σ)

q〈σ+u1,uℓ−3+uℓ−2〉

)

+ T (D(−u1, u))−
∑

µ6=−u1

P (µ+ u1, D(u))(µ)

q〈µ+u1,uℓ−3+uℓ−2〉

=
∑

σ∈Zq

T (D(σu))
(8)
=
∑

σ∈Zq

T (σD(u)) =
∑

σ∈Zq

T (D(u)σ).

Case A2. D(u)ℓ−3 = 0. For any σ ∈ Σ, the string v = σu satisfies that wℓ−2 = 0, and that w0 = 0 if and only if σ = −u1.

Therefore, χℓ(v) is computed by either (3) or (4). Hence, let D(u) , (r, 0) for r ∈ Z
ℓ−3
q , and notice that

∑

σ∈Zq

χℓ(σu) =
∑

σ 6=−u1

T (D(σu))−
∑

τ 6=0

P (σ + u1, r, τ)(σ)

q〈σ+u1,τ〉

+ T (D(−u1, u)) +
∑

µ6=0

∑

τ 6=0

P (µ, r, τ)(µ + (−u1))

q〈µ,τ〉

=
∑

σ 6=−u1

T (D(σu))−
∑

σ 6=−u1

∑

τ 6=0

P (σ + u1, r, τ)(σ)

q〈σ+u1,τ〉

+ T (D(−u1, u)) +
∑

µ6=−u1

∑

τ 6=0

P (µ+ u1, r, τ)(µ)

q〈µ+u1,τ〉

=
∑

σ∈Zq

T (D(σu))
(8)
=
∑

σ∈Zq

T (σD(u)) =
∑

σ∈Zq

T (D(u)σ).

Further, any u ∈ Z
ℓ
q also satisfies exactly one of the following two cases.

Case B1. D(u)0 = 0. For any σ ∈ Σ, the string v = uσ satisfies that w0 = 0, and that wℓ−2 = 0 if and only if σ = −uℓ−2.

12

Therefore, χℓ(v) is computed by either (2) or (4). Hence, let D(u) , (0, r) for r ∈ Z
ℓ−3
q , and notice that

∑

σ∈Zq

χℓ(uσ) =
∑

σ 6=−uℓ−2

T (D(uσ))−
∑

µ6=0

P (µ, r, uℓ−2 + σ)(µ + u0)

q〈µ,uℓ−2+σ〉

+ T (D(u,−uℓ−2)) +
∑

µ6=0

∑

τ 6=0

P (µ, r, τ)(µ + u0)

q〈µ,τ〉

=
∑

σ 6=−uℓ−2

T (D(uσ))−
∑

µ6=0

∑

σ 6=−uℓ−2

P (µ, r, uℓ−2 + σ)(µ + u0)

q〈µ,uℓ−2+σ〉

+ T (D(u,−uℓ−2)) +
∑

µ6=0

∑

τ 6=−uℓ−2

P (µ, r, uℓ−2 + τ)(µ + u0)

q〈µ,uℓ−2+τ〉

=
∑

σ∈Zq

T (D(uσ))
(8)
=
∑

σ∈Zq

T (D(u)σ) =
∑

σ∈Zq

T (σD(u)).

Case B2. D(u)0 6= 0. For any σ ∈ Σ, the string v = uσ satisfies that w0 6= 0, and that wℓ−2 = 0 if and only if σ = −uℓ−2.

Therefore, χℓ(v) is computed by either (1) or (3). Hence, it follows that

∑

σ∈Zq

χℓ(uσ) =
∑

σ 6=−uℓ−2

(

T (D(uσ)) +
P (D(u), uℓ−2 + σ))(u0)

q〈u0+u1,uℓ−2+σ〉

)

+ T (D(u,−uℓ−2))−
∑

τ 6=0

P (D(u), τ)(u0)

q〈u0+u1,τ〉

=
∑

σ 6=−uℓ−2

T (D(uσ)) +
∑

σ 6=−uℓ−2

P (D(u), uℓ−2 + σ))(u0)

q〈u0+u1,uℓ−2+σ〉

+ T (D(u,−uℓ−2))−
∑

τ 6=−uℓ−2

P (D(u), uℓ−2 + τ)(u0)

q〈u0+u1,uℓ−2+τ〉

=
∑

σ∈Zq

T (D(uσ))
(8)
=
∑

σ∈Zq

T (D(u)σ) =
∑

σ∈Zq

T (σD(u)).

Since any u ∈ Z
ℓ−1
q satisfies exactly one of the cases A1, A2, and exactly one of the cases B1, B2, the claim follows from

the correctness of the recursive step.

Lemma 12. All entries of χℓ are distinct.

Proof: Since the output of Algorithm 2 is an integer vector, it follows that the minimum absolute difference between

the entries of T is 2. Hence, since the additions to the entries of T are less than 1 in absolute value, it follows that all

entries with distinct D-values are distinct (i.e., χℓ(u) 6= χℓ(v) for all u, v ∈ Z
ℓ
q such that D(u) 6= D(v)). It remains to

prove that entries with an identical D-value are distinct. To this end, recall that entries with an identical D-value are of the

form D−1(w) = {v0, . . . , vq−1} for some D-value w, where vi begins with i for all i ∈ Zq (7).

Notice that the additions to the entries of T are of the form
∑q2

i=1
ci
qi where ci < q for all i. Hence, it is convenient to consider

these additions in their fractional q-ary expansion. In the sequel, the claim is proven separately for the sets D−1(w) according

to the types (1), (2), (3), or (4) of w, as noted in Algorithm 2. For example, D−1(w) is of type (1) if w ∈ Aℓ, and of type (3)

if w0 6= 0 and wℓ−2 = 0. Since the elements in D−1(w) = {v0, . . . , vq−1} have distinct leftmost entries {v0,0, . . . , vq−1,0},

it follows that –

(1) the additions
P (D(vi))(vi,0)

q〈w0,wℓ−2〉
to T (D(vi)) are distinct for any i ∈ Zq since P (D(vi)) = P (w) is a permutation.

(2) the additions −
∑

µ6=0
P (µ,w′wℓ−2)(µ+vi,0)

q〈µ,wℓ−2〉
to T (D(vi)) contain the digit P (µ,w′wℓ−2)(vi,0 − ρ) in position 〈µ,wℓ−2〉

of the q-ary expansion for any µ ∈ Zq \ {0}, and thus, for any fixed value of µ, different additions are distinct on this

digit.

(3) the additions −
∑

τ 6=0
P (w0,w

′,τ)(vi,0)

q〈w0,τ〉 to T (D(vi)) contain the digit P (w0, w
′, τ)(vi,0) in position 〈w0, τ〉 of the q-ary

expansion for any τ ∈ Zq \ {0}, and thus, for any fixed value of τ , different additions are distinct on this digit.

(4) the additions
∑

µ6=0

∑

τ 6=0
P (µ,w′,τ)(µ+vi,0)

q〈µ,τ〉 to T (D(vi)) are distinct on the 〈µ, τ〉-th digit for any fixed values of ρ
and τ .

Hence, any two additions to T (D(vi)) and T (D(vj)) for i, j ∈ Zq such that i 6= j are distinct, which implies that all entries

of χℓ are distinct.

13

Lemma 11 and Lemma 12 imply that the output of Algorithm 2 is indeed a feasible matrix. It remains to prove that the

outputs of Algorithm 2 for two distinct information vectors correspond to distinct feasible permutations, i.e., that Algorithm 2

is injective.

Lemma 13. If s and t are distinct information vectors in Jℓ
q such that Bℓ

q(s) = qq
2

χs
ℓ , B

ℓ
q(t) = qq

2

χt
ℓ and χs

ℓ � πs, χ
t
ℓ � πt

for some permutations πs and πt, then πs 6= πt.

Proof: Since in every stage i of the algorithm, the additions to the entries of the respective T are less than half of

the minimum absolute distance between the entries of T , it follows that Algorithm 2 preserves the order among the distinct

homomorphic pre-images of D. That is, for any positive integers i and j, and any u, v ∈ Z
i
q , if χi(u) > χi(v), then for

all u′, v′ ∈ Z
i+j
q such that Dj(u′) = u and Dj(v′) = v, we have that χi+j(u

′) > χi+j(v
′).

If ℓ = 2, the claim follows from Lemma 9. Otherwise, denote s = (s′, P s
3 , . . . , P

s
ℓ) and t = (t′, P t

3 , . . . , P
t
ℓ). If s′ 6= t′

then in stage ℓ = 3 of the algorithm, by Lemma 9 there exist distinct u and v in Z
2
q on whom χs

2 and χt
2 disagree, i.e.,

χs
2(u) > χs

2(v) and χt
2(u) < χt

2(v). It follows that χs
3 and χt

3 disagree on any u′, v′ ∈ Z
3
q such that D(u′) = u and D(v′) = v.

If s′ = t′, then assume that P s
i 6= P t

i for some i ∈ {3, . . . , ℓ}, which implies that there exists u ∈ Ai that is mapped by P s
i

and P t
i to distinct permutations in Sq . Hence, the pre-images D−1(u) are ordered differently in χi. Further, according to the

above discussion, all pre-images of D−1(u) are ordered differently in all χj for j > i, and the claim follows.

The above discussion, together with Corollary 1, implies the following lower bound on the number of feasible permutations.

By the definition of Ai (9) we have that its size is qi−1 − 2qi−2 + qi−3. Hence, the size of Pi is (q!)q
i−1−2qi−2+qi−3

, and the

following corollary is immediate.

Corollary 2. For any q ≥ 3 and ℓ ≥ 2,

Fq,ℓ ≥ f3,2 ·

q
∏

j=4

(

j! ·

(

j2 − j + 1

j

))

·

(

ℓ
∏

i=3

(q!)q
i−1−2qi−2+qi−3

)

.

To estimate the contribution of Algorithm 2, one may take either q or ℓ to infinity. The proof of the following claim is

given in Appendix A.

Lemma 14. For any constant ℓ ≥ 3, limq→∞ Rq,ℓ ≥
1
ℓ .

When applications in DNA storage are discussed, it is natural to keep q a constant. However, the rate of the set of

permutations which is given by Algorithm 2 goes to zero as ℓ tends to infinity. Hence, for finite values of q and ℓ, lower

bounds for the corresponding the rates are given in the following table. Due to computational restrictions, the value of

entry (q, ℓ) is
log(q!)(q−1)(qℓ−2−1)

ℓqℓ log(q)
, which is a lower bound on Rq,ℓ.

q
ℓ

3 4 5 6 7 8 9 10

3 0.0805 0.0805 0.0698 0.0597 0.0516 0.0452 0.0403 0.0362

4 0.1075 0.1007 0.0846 0.0714 0.0613 0.0537 0.0478 0.0430

5 0.1269 0.1142 0.0944 0.0792 0.0680 0.0595 0.0529 0.0476

6 0.1417 0.124 0.1015 0.0849 0.0728 0.0637 0.0567 0.0510

7 0.1533 0.1314 0.1070 0.0894 0.0766 0.0671 0.0596 0.0536

8 0.1627 0.1373 0.1113 0.0929 0.0797 0.0697 0.062 0.0558

9 0.1705 0.1421 0.1149 0.0959 0.0822 0.0719 0.0639 0.0575

10 0.1771 0.1461 0.1180 0.0984 0.0843 0.0738 0.0656 0.0590

VI. STRING LENGTH FOR FEASIBLE PERMUTATIONS

In order to obtain a practical rank-modulation scheme from a given set of feasible permutations, it is essential to estimate

the minimal lengths of the corresponding strings. To this end, for a feasible permutation π ∈ Sq,ℓ, let len(π) , min{n | ∃x ∈
Σn, π � x}, and for a set S ⊆ Sq,ℓ of feasible permutations, let len(S) , max{len(π)}π∈S . In this subsection an upper bound

for len(Tq,ℓ) is given, where Tq,ℓ is the set of permutations which are given by Algorithm 2 for the parameters q and ℓ. It

will be evident that for a constant q, the permutations in Tq,ℓ have corresponding strings whose lengths are polynomial in qℓ.
The proofs in this subsection rely on the following simple lemma.

Lemma 15. If π ∈ Sq,ℓ is a feasible permutation and χ ∈ N
qℓ is a feasible vector such that π � χ, then len(π) ≤

∑

v∈Σqℓ χ(v).

Proof: Since χ is feasible, it follows that
∑

σ∈Σ χ(uσ) =
∑

σ∈Σ χ(σu) for all u ∈ Zqℓ−1 . Hence, there exists a closed

path in Gℓ
q that traverses edge v for χ(v) times for all v ∈ Σℓ. Clearly, the length of the corresponding string x is

∑

v∈Σℓ χ(v),
and x � π.

14

For the set Tq,2 let cq , minΦ{max(χ)|χ ∈ Φ}, where Φ ranges over all sets of feasible vectors in N
q2 that contain a

unique feasible vector for every permutation in Tq,2. The following lemma provides a bound for cq as a function of c3. Using

a computer program, it was discovered that c3 ≤ 16.

Lemma 16. cq ≤ 2q−3 · q!
6 · (q+1)!

24 · c3.

Proof: It is evident from Algorithm 1 that an entry in χ is at most cq−1(q+1)+ 1 if it is not in the top row or leftmost

column, and cq−1(q + 1) + q + 1 if it is. Hence,

cq ≤ q(cq−1(q + 1) + q + 1) = q(q + 1)(cq−1 + 1)

≤ 2q(q + 1)cq−1 ≤ . . . ≤ 2q−3 ·
q!

6
·
(q + 1)!

24
· c3.

In turn, Lemma 15 and Lemma 16 provide the following.

Corollary 3. len(Tq,2) ≤ q2 · 2q−3 · q!
6 · (q+1)!

24 · c3.

Let cq,ℓ , minΦ{max(χ)|χ ∈ Φ}, where Φ ranges over all sets of vectors in N
qℓ that contain a unique feasible vector for

every permutation in Tq,ℓ. For the next lemma, notice that cq,2 = cq by definition.

Lemma 17. cq,ℓ ≤ cq(3q
q2)ℓ−2.

Proof: Since the additions to the entries of T in Algorithm 2 are of absolute value at most 1, it follows from Line 3,

Line 7 and Line 9 of Algorithm 2 that cq,ℓ ≤ (2cq,ℓ−1 + 1)qq
2

≤ cq,ℓ−1(3q
q2). Solving this recursion relation proves the

claim.

The proof of the following corollary is immediate from Lemma 17.

Corollary 4. len(Tq,ℓ) ≤ c3 ·
2q−3· q!6 ·

(q+1)!
24

2q2 · 3ℓ−2
(

qℓ
)q2+1

.

It is evident from Corollary 4 that Algorithm 2 provides permutations whose corresponding strings are of lengths that is

polynomial in qℓ for a fixed value of q. However, the constants that are involves in this bound, including the constant in the

exponent, are rather large even for small values of q.

VII. DISCUSSION

In this paper the question of feasibility of permutations was addressed. Our contributions include an upper bound on the

number of feasible permutations, a linear programming algorithm for deciding the feasibility of a permutation, and a recursive

algorithm for explicit construction of a large feasible set. Further, the length of the strings which correspond to permutations

in this set was shown to be polynomial in qℓ for a fixed q. In addition, in Appendix B it is shown how feasible permutations

of minimum Kendall-τ distance can be produced by pre-coding the information vector in Algorithm 2. However, the resulting

distance is rather low.

The most prominent directions for future research seem to be studying the values of Rq,ℓ and len(Fq,ℓ), and providing

better constructions in terms of rate, distance, and length. Furthermore, alternative combinatorial models for DNA storage

should be studied. For example, one may group the entries of the profile vector by sum or by cyclic equivalence, and study

the achievable rates of applying rank modulation schemes on the resulting sets of vectors.

REFERENCES

[1] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K. Strauss, “A DNA-based archival storage system,” ACM SIGOPS Operating Systems

Review, vol. 50, no. 2, pp. 637–649, 2016.
[2] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital information storage in DNA,” Science, vol. 337, p. 1628, 2012.
[3] O. Elishco, T. Meyerovitch, and M. Schwartz, “Semiconstrained systems,” IEEE Trans. Inform. Theory, vol. 62, no. 4, pp. 811–824, Apr. 2016.
[4] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, and E. Birney, “Towards practical, high-capacity, low-maintenance information

storage in synthesized DNA,” Nature, vol. 494, no. 7435, pp. 77–80, 2013.
[5] J. L. Gross and J. Yellen, Handbook of Graph Theory. CRC Press, 2004.
[6] P. Jacquet, C. Knessl, and W. Szpankowski, “Counting Markov types, balanced matrices, and Eulerian graphs,” IEEE Trans. Inform. Theory, vol. 58,

no. 7, pp. 4261–4272, 2012.
[7] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence profiles,” IEEE Trans. Inform. Theory, vol. 62, no. 6, pp. 3125–3146, Jun.

2016.
[8] A. Lempel, “On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers,” IEEE Trans. Comput., vol. 100,

no. 12, pp. 1204–1209, 1970.
[9] N. Lichiardopol, “Independence number of de Bruijn graphs,” Discrete Math., vol. 306, no. 12, pp. 1145–1160, 2006.

[10] M. Liu, “Homomorphisms and automorphisms of 2-D de Bruijn-Good graphs,” Discrete Math., vol. 85, no. 1, pp. 105–109, 1990.
[11] A. S. Motahari, G. Bresler, and D. N. C. Tse, “Information theory of DNA shotgun sequencing,” IEEE Trans. Inform. Theory, vol. 59, no. 10, pp.

6273–6289, Oct. 2013.
[12] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd Edition. Cambridge Univ. Press, 2001.

15

APPENDIX A

OMITTED PROOFS

Proof: (Proof of Lemma 10) According to Eq. (3) and Corollary 1, it follows that for any q ≥ 4, and any real number

α > 1,

Rq,2 ≥
1

log(q2!)
log

f3,2 ·

q
∏

j=4

j! ·

(

j2 − j + 1

j

)

≥
1

log(q2!)

∑

i≥1

⌊q/αi−1⌋
∑

j=⌊q/αi⌋+1

(

log(j!) + log

(

j2 − j + 1

j

))

≥
1

log(q2!)

∑

i≥1

(

(⌊ q

αi−1

⌋

−
⌊ q

αi

⌋)

(

log
(⌊ q

αi

⌋

!
)

+ log

(

⌊ q
αi ⌋

2 − ⌊ q
αi ⌋+ 1

⌊ q
αi ⌋

)

))

,

By using the simple lower bound
(

s
t

)

≥ (st)
t, the identity limm→∞

log(m!)
m logm = 1, and by omitting the rounding operation

when q is large enough, it follows that

lim
q→∞

Rq,2 ≥ lim
q→∞

∑

i≥1

1

2q2 log q

(

2q2(α− 1)

α2i
log

q

αi

)

=
∑

i≥1

lim
q→∞

1

2q2 log q

(

2q2(α− 1)

α2i
log

q

αi

)

=
∑

i≥1

α− 1

α2i
=

1

1 + α
,

with a simple application of dominated convergence. Since this holds for every α > 1,

lim
q→∞

Rq,2 ≥ lim
α→1

1

1 + α
=

1

2
.

Proof: (of Lemma 14) According to Corollary 2, it follows that for any q ≥ 3 and ℓ ≥ 3,

Rq,ℓ ≥
log
(

f3,2
∏q

j=4

(

j!
(

j2−j+1
j

)

)

·
(

∏ℓ
i=3(q!)

qi−1−2qi−2+qi−3
))

log(qℓ!)
,

and hence,

lim
q→∞

Rq,ℓ = lim
q→∞

∑ℓ
i=3(q

i−1 − 2qi−2 + qi−3)q log q

ℓqℓ log q
=

1

ℓ

Lemma 18. For a given vector positive vector s ∈ R
qℓ whose sum of entries is 1, the matrix Ms (2) is a transition matrix

of a Markov chain on a DeBruijn graph, whose stationary distribution is s.

Proof: For given v ∈ Σℓ−1, the sum of row τv of Ms for any τ ∈ Σ is

∑

σ∈Σ

s(vσ)
∑

ρ∈Σ s(vρ)
=

∑

σ∈Σ s(vσ)
∑

ρ∈Σ s(vρ)
= 1,

and hence Ms is a transition matrix. Further, for any v ∈ Σℓ−1 and σ ∈ Σ, the vσ-th entry of sMs equals

(sMs)vσ =
∑

ρ∈Σ

s(ρv) · (Ms)ρv,vσ

=
∑

ρ∈Σ

s(ρv) · s(vσ)
∑

τ∈Σ s(vτ)

= s(vσ) ·
Σρ∈Σs(ρv)

Στ∈Σs(vτ)
= s(vσ),

where the last equality follows from the flow-conservation of s. Hence, s is the stationary distribution of Ms.

16

APPENDIX B

MINIMUM DISTANCE BY THE KENDALL τ METRIC

Recall that the purpose of applying a rank-modulation scheme for the DNA storage channel is to endure small errors in

the profile vector which is given at the output of the channel. Clearly, any pattern of errors that does not cause two entries in

the profile vector to surpass one another is correctable. However, if the channel is restricted to a rank-modulation code by the

Kendall-τ distance (see below), error resilience is improved at the cost of lower information rate. In particular, if the channel

is restricted to permutations that are of distance at least 2t+1 apart, then any error pattern of at most t adjacent transpositions

is correctable. Fortunately, the structure of the information vectors in Algorithm 1 and Algorithm 2 allows rank-modulation

codes to be incorporated conveniently. However, the resulting distances are rather low for small values of q.

First, it is worth noting that each recursive step of Algorithm 1 relies on interleaving a new set of strings, which contain

the newly added symbol q − 1, into a permutation on Z
2
q−1. The permutation among these added strings, and the particular

way by which the interleaving is made, are determined by the information vector. In what follows, this intuition is formalized,

and the resulting minimum distance is discussed.

Definition 2. The Kendall-τ distance dτ between two strings is the minimum number of adjacent transpositions that can be

applied on one to obtain the other.

Although Definition 2 is usually applied over permutations, i.e., for strings which contain all symbols of the alphabet with

no repetitions, it may also be applied over ordinary strings.

Example 3. dτ (10010, 00110) = 2.

For disjoint sets of symbols A and B let CA ⊆ SA and CB ⊆ SB be codes of minimum Kendall-τ distances dA and dB ,

respectively, and let D ⊆ {0, 1}|A|+|B| be of constant Hamming weight |A| and minimum Kendall-τ distance dD. Define the

operator ∗D as

CA ∗D CB , {π ∈ SA∪B : π|A ∈ CA, π|B ∈ CB , f(π) ∈ D}, (10)

where π|A (resp. π|B) denotes the result of deleting all symbols that are not in A (resp. π|B) from π, and

f : SA∪B → {0, 1}|A|+|B|

f(π)i =

{

1 πi ∈ A

0 πi ∈ B
.

Lemma 19. The minimum distance dτ (C) of C , CA ∗D CB is at least min{dA, dB , dD}.

Proof: It is readily verified that the mapping g : SA∪B → SA × SB × {0, 1}|A|+|B|, π 7→ (π|A, π|B , f(π)) is injective.

Further, notice that for an adjacent transposition e, if it affects two elements from A then g(π) and g(e(π)) differ only on

the SA component. Similarly, if e affects two elements from B then g(π) and g(e(π)) differ only on the SB component, and

if it affects one element from A and one from B then g(π) and g(e(π)) differ only on the {0, 1}|A|+|B| component. Hence,

for π1 and π2 in C,

dτ (π1, π2) = dτ (π1|A, π2|A) + dτ (π1|B, π2|B) + dτ (f(π1), f(π2)),

from which the claim follows.

To obtain a minimum distance guarantee at the output of Algorithm 1, let C3 be a rank-modulation code in T3,2 (where

the notation Tq,ℓ is as in Section VI) of minimum Kendall-τ distance d3, for all i ∈ {4, . . . , q} let Ci be a rank-modulation

code in Si of minimum Kendall-τ distance di, and let Bi ⊆ {0, 1}i
2−i+1 be a binary code of constant Hamming weight i

and minimum Kendall-τ distance ti. Replace the information set Iq (5) by the set

I ′q , C3 × (C4 ×B4)× · · · × (Cq ×Bq). (11)

Lemma 20. If the information vectors in Algorithm 1 are taken from I ′q rather than from Iq , then the minimum distance of

the resulting permutations is at least min({di}
q
i=3 ∪ {ti}

q
i=4).

Proof: Let T ′
q,2 be the permutations which result from Algorithm 1 when applied over information vectors from I ′q . The

claim is proved by using induction on q. It follows from the definition of the algorithm that T3,2 = C3, which proves the claim

for q = 3. Assume that dτ (T
′
q−1,2) ≥ min({di}

q−1
i=3 ∪ {ti}

q−1
i=4). Notice that for q ≥ 4, the set T ′

q,2 is given by considering

T ′
q−1,2 ∗Bq

Cq , replacing the elements of [q] by the strings which correspond to y0, . . . , yq−1, and adding the strings which

corresponds to y0 − (q − 2)ε and to yi − ε for 1 ≤ i ≤ q − 2, at fixed positions. Since the addition of the latter strings may

only increase the minimum distance in comparison with T ′
q−1,2 ∗Bq

Cq , it follows from Lemma 19 that

dτ (T
′
q,2) ≥ dτ (T

′
q−1,2 ∗Bq

Cq) ≥ min{dτ (T
′
q−1,2), dτ (Bq), dτ (Cq)}.

17

Hence, since the induction hypothesis implies that d(T ′
q−1,2) ≥ min({di}

q−1
i=3∪{ti}

q−1
i=4), since dτ (Bq) = tq, and since dτ (Cq) =

dq , the result follows.

If follows from Lemma 20 that by pre-coding the information vectors into I ′q , a non-trivial minimum distance guarantee is

obtained. Notice that codes of size one, whose minimum distance is infinite, can be used as either of the Ci-s or Bi-s in (11)

to increase the minimum distance of the resulting code.

To incorporate similar approach to Algorithm 2, notice that each recursive step of it relies on splitting any string w ∈ Z
ℓ−1
q

to q strings of the form D−1(w) ⊆ Z
ℓ
q . The order between strings in Z

ℓ
q with different D-preimage is consistent with that of

their D-ancestors, whereas the order between strings in Z
ℓ
q with identical D-preimage is determined by information vector. To

state this intuition in the spirit of (10), the following definitions are given. Let A and B be disjoint sets, and for u ∈ SA, v ∈ SB ,

and b ∈ B, let h(u, b, v) be the permutation on A ∪ (B \ {b}) which results from replacing the occurrence of b in v by u.

Example 4. If A = {1, 2, 3}, B = {4, 5, 6}, and u = (3, 1, 2), v = (4, 5, 6), then h(u, 4, v) = (3, 1, 2, 5, 6).

For CA ⊆ SA, CB ⊆ SB , and b ∈ B, let h(CA, b, CB) , {h(u, b, v)|u ∈ CA, v ∈ CB}. In an inductive manner, for

pairwise disjoint sets {A1, . . . , At, B} and distinct b1, . . . , bt, let

h((CAi
)ti=1, (bi)

t
i=1, CB) , h(CAt

, bt, h((CAi
)t−1
i=1 , (bi)

t−1
i=1 , CB)),

which reads as replacing bi in every codeword of CB by codewords of CAi
, for every i ∈ [t].

Lemma 21. Let {A1, . . . , A|B|, B} be disjoint sets such that |Ai| , q for all i, let CAi
⊆ SAi

be a code of minimum distance di

for all i, and let CB ⊆ SB be a code of minimum distance dB . The minimum distance dτ (H) of H , h((CAi
)
|B|
i=1, (bi)

|B|
i=1, CB)

is at least min({di}
|B|
i=1 ∪ {q2dB}).

Proof: For π ∈ H and A , ∪
|B|
i=1Ai, let r : SA → Bq|B| be such that r(π)i equals bj for the unique j ∈ {1, . . . , |B|}

for which πi ∈ Aj ; intuitively, the function r identifies the index j ∈ {1, . . . , |B|} of the set Aj from which each symbol πi

in π is taken, and places bj instead of πi. It is readily verified that the function g : SA → SA1 × . . . × SA|B|
× Bq|B|,

π 7→ (π|A1 , . . . , π|A|B|
, r(π)) is injective. Further, notice that for an adjacent transposition e, if it affects two elements from

some Ai, then g(π) and g(e(π)) differ only on the SAi
component. On the other hand, if e affects two elements from

distinct Ai and Aj , then g(π) and g(e(π)) differ only on the Bq|B| component.

Hence, let π1 and π2 be codewords in H, and let c1 and c2 be the corresponding codewords from CB from which π1

and π2 were generated. The minimal set of adjacent transpositions which differs π1 from π2 contains q2 transpositions for

each transposition which differs c1 from c2. Furthermore, it contains a unique transposition on Ai for each transposition which

differs π1|Ai
from π2|Ai

, for each i. Therefore,

dτ (π1, π2) =

|B|
∑

i=1

dτ (π1|Ai
, π2|Ai

) + q2dτ (c1, c2),

which proves the claim.

Similar to (11), to obtain a rank-modulation code at the output of Algorithm 2, a different set of information vectors is

used. Recall that the information vector Jℓ
q of Algorithm 2 (9) consists of mappings from sets of strings Ai into SZq

. Due to

Lemma 21, the set SZq
can be replaced in Jℓ

q by some rank-modulation code. However, due to the q2 factor in the recursive

term of Lemma 21, it suffices to replace SZq
only in the rightmost entry of Jℓ

q . To this end, let C ⊆ SZq
be a rank-modulation

code of minimum distance d, and let

PC
ℓ , {P |P : Ai → C}, and

Jℓ
q,C , Iq × P3 × . . .× Pℓ−1 × PC

ℓ .

Lemma 22. For ℓ ≥ 3, if the information vectors in Algorithm 2 are taken from Jℓ
q,C rather than from Jℓ

q , then the minimum

distance of the resulting permutations is at least d.

Proof: Let T ′
q,ℓ be the permutations which result from Algorithm 2 when applied over information vectors from Jℓ

q,C . The

claim is proved using induction on ℓ. For ℓ = 3, the set T ′
q,3 is given by splitting permutations on Z

2
q . Each string w ∈ A3 ⊆ Z

2
q

is replaced by a permutation P (w) on D−1(w) from4 the code CD−1(w). Subsequently, strings u ∈ Z
2
q \A3 are replaced with

permutations that depend only on the values of {P (w)|w ∈ A3}. Hence, since removing elements may only decrease the

minimum distance, it suffices to bound the minimum distance of the permutations of ∪w∈A3D
−1(w). The latter is given as

h
(

(CW)W∈D−1(A3), (a)a∈A3 , Tq,2

)

, where

D−1(A3) , {D−1(w)|w ∈ A3}.

4Note that the q elements of D−1(w) are arranged according to a codeword the code C ⊆ Sq , and hence it may be seen as a code CD−1(w) on D−1(w)
of identical minimum distance d.

18

Therefore, according to Lemma 21, it follows that dτ (T
′
q,3) ≥ min{d, q2 · dτ (Tq,2)} = d.

For any ℓ ≥ 4, similar arguments show that it suffices to bound the minimum distance of

h
(

(CW)W∈D−1(Aℓ), (a)a∈Aℓ
, T ′

q,ℓ−1

)

, where

D−1(Aℓ) , {D−1(w)|w ∈ Aℓ},

and by again by Lemma 21, it follows that dτ (T
′
q,ℓ) ≥ min{d, q2 · dτ (T

′
q,ℓ−1)} = d.

	I Introduction
	II Preliminaries
	III Upper Bound
	IV A Polynomial Algorithm for Deciding Feasibility
	V Encoding Algorithms
	V-A A recursive encoding algorithm for =2 and any q
	V-B A recursive encoding algorithm for any and any q

	VI String Length for Feasible Permutations
	VII Discussion
	References
	Appendix A: Omitted Proofs
	Appendix B: Minimum Distance by the Kendall metric

