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ABSTRACT

RHEA is a single-mode échelle spectrograph designed to be a replicable and cost effective method of undertaking
precision radial velocity measurements. The instrument has a novel fiber feed with an integral field unit injecting
into a grid of single-mode fibers reformatted to form a pseudo-slit, increasing throughput and enabling high-
spatial resolution observations when operating behind Subaru and the SCExAQ adaptive optics system. The past
18 months have seen a replacement cable constructed for the instrument to address modal noise caused by closely
packed fibers with similar path lengths. Here we detail the cable fabrication procedure, design improvements,
increased precision in meeting the required sub-micron optical tolerances, throughput gains, and known remaining
issues.

Keywords: spectrograph, radial velocity, optical fibers, fiber injection, diffraction-limited spectrograph, high
resolution, integral field unit

1. INTRODUCTION

The Replicable High-resolution Exoplanet and Asteroseismology Spectrograph, RHEA for short, is a compact,
single-mode fiber (SMF) fed, échelle spectrograph, conceived and built with the goal of creating a replicable
and cost-effective device with which to undertake precision radial velocity (RV) measurements.! To increase
throughput, RHEA is equipped with a unique optical fiber feed, employing a diffraction-limited miniature integral
field unit (IFU) to inject light into a 2-dimensional grid of SMF which, when reformatted into an array, forms
the pseudo-slit of the spectrograph.

The primary objective of the RHEA program was long-term precision RV monitoring from a distributed
network of automated telescopes, capitalizing on the instrument’s inexpensive and technically mature design,
as well as the dedicated nature of the network. In such a setup, RHEA could establish large observational

Further author information: (Send correspondence to A.Rains)
A.Rains: E-mail: adam.rains@anu.edu.au

Ground-based and Airborne Instrumentation for Astronomy VI, edited by Christopher J. Evans, Luc Simard, Hideki Takami,
Proc. of SPIE Vol. 10702, 107025J - © 2018 SPIE - CCC code: 0277-786X/18/$18 - doi: 10.1117/12.2314336

Proc. of SPIE Vol. 10702 107025J-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/2/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



time baselines on bright exoplanet host stars, eventually enabling for the disentanglement of exoplanet and
asteroseismic signals. For this observational program, using only small telescopes (diameters < 50cm), and
minimal adaptive optics (AO) in the form of tip-tilt correction, RHEA’s TFU and fiber cable exists to offset
the principle disadvantage of using SMF's by increasing throughput, particularly in the presence of atmospheric
turbulence, through the small, but modal noise free, fibers.

However, when RHEA is placed behind an extreme adaptive optics system on an 8 m class telescope, the IFU
becomes capable of spatially resolving targets at the 11 milli-arcsecond level at high-spectral resolution, opening
up a wide (and entirely different) array of science cases to the instrument. These include, but are not limited to,
velocity maps of spatially resolved stellar photospheres and outflows, scattered light from protoplanetary disks,
and the direct detection of accreting protoplanets.

The 8.2m Subaru Telescope and the Subaru Coronographic Extreme Adaptive Optics (SCExAQ) system?
atop Mauna Kea in Hawaii make this possible. The Subaru copy of RHEA, known as RHEA@Subaru,’ is a
prototype IFU behind an extreme AO system, designed for bright resolved star science and as a prototype
for future high dispersion coronagraphy. It was commissioned using SCExAQO engineering time in early 2016,
largely in “piggy-back” mode using wavelengths neither required for wavefront sensing or infrared instruments.
RHEA@Subau is the first optical (R-band) IFU behind an extreme AO system, with parameters as per Table 1.
RHEA’s small IFU does not equip it to be a discovery or survey machine. Rather, it provides excellent follow-up
of isolated targets, or objects barely resolved with only the largest of modern telescopes.

Table 1. Design specifications of the RHEA@Subaru spectrograph and IFU.

Spatial Resolution 11 milli-arcsec per lenslet
Spectral Resolution R~60,000

Total Field of View ~4 arcsec

Instantaneous Field of View | 40 milli-arcsec

IFU Elements 9 (with dithering capability)
Wavelength Range 590-810 nm

As per the discussion in 5, the original cable for RHEA@Subaru was found to be flawed in that it was afflicted
with modal noise due to the closely packed nature the near identical length SMFs. This has since been remedied
with a replacement cable, the third fiber cable fabricated for the RHEA program, and the most advanced in
terms of fiber alignment procedure and structural stability. Despite this, the measured system throughput at
Subaru is currently significantly lower than the predicted value. As such, the cause of this discrepancy, as well
as advancements in the cable manufacturing and characterization techniques, are the primary motivation for the
following proceedings.

In this paper we begin with a short overview of the spectrograph itself in Section 2. Section 3 covers the
fiber cable, going into detail on each component and the fabrication process of both the original cable and
its replacement. Characterization of the fiber cable and instrument in terms of fiber alignment and system
(component-wise) throughput take place in Sections 4 and 5 respectively. The future of the instrument is
discussed in Section 6, before finally summarizing this work in Section 7.

2. INSTRUMENT DESCRIPTION

The RHEA@Subaru spectrograph is almost identical to the instrument described in 1-3, receiving only minor
modifications for the Subaru version. Operating at a resolution of 75,000 to 50,000 and over a wavelength
range of 590-810 nm, RHEA is a prism cross-dispersed near-littrow échelle spectrograph, with a ~ 13mm 1/e2
beam width. Thermal control maintains the spectrograph optics at < 5mK and < 10 mK precisions in lab and
telescope environments respectively. The remaining instrument parameters for RHEA@Subaru are as described
in Table 2, and the departures from the design in previous publications as follow:

e Multi-fiber input at the spectrograph slit,

e Installed, but not operational grating vacuum chamber,
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e Two cross-dispersion prims to allow for a larger slit width and longer wavelengths,

e Different grating angle to allow for said longer wavelengths.

Table 2. Summary of RHEA properties 3

Parameter Value
Spectrograph working aperture £/15.4
Fiber link SMF 630HP, 12m, 0.13 NA
Beam Size 13mm (1/e%)
Wavelength range 590 — 810 nm
Resolving power A/AN = 60,000(700 nm)
Number of orders 45 orders
Pixel sampling ~ 2.5 pix per FWHM
Collimator /camera Infinity-corrected tube lens, f = 200mm (f/6.7)
Cross-disperser N-SF5 prism, 40° apex angle, X2 (in series)
Vacuum window N-BK7 3°53" apex angle
Echelle grating R2, 31.6 groovesmm ', 50 x 25 mm ruled area
CCD Detector Sony ICX694AL Exview CCD

2750 x 2200, 4.54pum, 77% QE (580 nm), Grade 1

Cooled detector package Starlight Xpress Trius-SX694

3. FIBER CABLE

As previously described, the RHEA@Subaru’s fiber cable takes a 3x3 grid of SMF as input, and places them in a
linear (v-groove) array at the spectrograph slit. A tenth fiber introduced at the slit end (separated by a one fiber
gap) enables for calibration and simultaneous RV monitoring when illuminated by white-light or neon references
sources respectively. The cable described in 5, the first such cable fabricated for the RHEA program, was in
many respects a prototype, with the current RHEA@Subaru cable boasting a number of design improvements as
detailed in Table 3. The most critical of these exists to address the modal noise observed in the original cable, a
problem resolved through the insertion of path length differences between adjacent fibers at the slit end. Both
ends of the completed cable are shown in Figure 1, with more information on their design requirements and
assembly presented in Sections 3.1 and 3.2.

Table 3. Comparison of fiber cables fabricated.
Cable Fiber | # Fibers | Length | Features & Improvements
Original 630HP 9+1 ~ 12m | Far field active optical alignment.
3-axis directional alignment (X,Y,Z).
Stainless steel ferrules.
Reference fiber for simultaneous calibration.
8 milli-arcsec on-sky resolution per lenslet.
Replacement | 630HP 9+1 ~ 12m | Near & far field active optical alignment.
3-axis directional alignment (X,Y,Z).
3-axis angular alignment (0x, 0y, 0z).
Glass ferrules with tight inner diameter (@).
Reference fiber for simultaneous calibration.
11 milli-arcsec on-sky resolution per lenslet.
Improved alignment & gluing procedures.
Reduced cross-talk on detector.
Improved cable strength.
Glass mask to locate & support ferrules.
Anti-reflection coatings on all optics.

3.1 Integral Field Unit

The IFU itself is composed of an OKOTech microlens array (APO-Q-P1000-F4,64 (633), fused silica, 2.12mm
radius of curvature, 4.64mm focal length), and a pair of Thorlabs unmounted anamorphic prisms (PS870),
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Figure 1. Left: Completed IFU for replacement RHEA@Subaru cable prior to shipment to Hawaii. The IFU is mounted
on the SCExAO alignment optics with 6y, §x and focus adjustments possible. Right: Sealed RHEA@Subaru cable and
completed slit-optics. The orange cables contain the 9 science fibers (the loop a result of fiber path length differences),
and the yellow cable contains the simultaneous reference fiber.

bonded together with index matching NOA 61 UV curing glue. The use of sliding prisms aided in achieving the
designed glass separation between the microlens array and surface to be used for fiber gluing, as contrasted with
the more complex and expensive process of glass machining.

By changing the designed microlens-source separation, the on-sky resolution of each lenslet can be selected,
influencing the overall coupling in the process. The original cable was fabricated for an on-sky resolution of
8 milli-arcsec per lenslet, but by reducing this distance and opting instead for higher throughput (by nearly a
factor of 2), its replacement has a resolution of 11 milli-arcsec per lenslet and needs only to consider a different
dither pattern.

Another departure from the original cable was to use glass, rather than stainless steel, ferrules for rigidity on
the fiber tips. This offered two main improvements on the original design:

1. UV-curing glue could be cured through the ferrules to bond them to the fibers, removing the constraints
placed on gluing by more viscous, and quicker setting, epoxy. By having a defined setting time once mixed,
the epoxy made it difficult to have a consistent gluing procedure for each fiber, resulting in bubbles forming
in the glue, and rendering the fiber polishing procedure more difficult,

2. The glass ferrules were specifically selected to have much tighter inner diameters (see Figure 2, thus
requiring less glue (plus a correspondingly smaller opportunity for bubbles), and reducing much of the
potential for the fiber to become offset (i.e. non-concentric with respect to the ferrule).

Polishing of the ferrule-clad fiber tips was done using incrementally finer grained polishing paper (5 pm to 0.1 gm),
with the refractive index matching nature of the UV-curing glue able to account for minor imperfections in an
otherwise unchipped and polishing-debris-free core.

In an effort to provide additional stability to bonded fibers, which received no extra support in previous
cables beyond stainless-steel ferrules and their bond directly to the glass prism, a glass mask (Figure 2) was
incorporated into the design. The mask, bonded to the prism-unit prior to optical fiber alignment, served to
provide additional lateral strength to the fibers, preventing them from being jostled out of position once being
glued in place, and restricting potential fiber movement during glue curing. Relative to the 410 ym diameter
fibers, the 500 um holes machined into the mask provide enough space to maneuverer the ferrule-clad fibers
during positioning, whilst still being suitably tight to provide strength once the cavity has been filled with glue
and cured.

A three camera active optical alignment procedure was used in the fabrication of the IFU, as shown in Figure
3. A six-axis stage (X, Y, Z, 0x, 0y, 0z,) was used for fiber positioning and alignment, guided by an overhead
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Figure 2. Comparison of polished ferrules and adhesives, and glass fiber locating mask. Left: Metal and epoxy [OD =
400 pm, fiber cladding @ = 125 um +1.5 um] Center: Glass and UV-curing glue [OD = 410 um, ID = 135 um, fiber
cladding @ = 125 um +1.5 um] Right: 1.15mm pitch grid, 0.5 mm hole diameter glass mask during alignment from the
perspective of the imaging camera. Note the IFU microlens array bringing light to focus at the centre of each hole.

microscope, and two cameras for imaging the near and far fields of the back-illuminated fibers. The first fiber
glued served as a continually-illuminated fiducial, with all subsequent fibers having their far fields (i.e. the
common pupil plane) aligned with respect to it. Following all 9 fibers being bonded, additional UV-curing glue
was added for strength, and a rigid metal “neck” epoxied into place to further protect the now complete IFU.

3.2 Slit Optics

As shown in Figure 1, the slit end of the cable forms a sealed unit, fed by the reference fiber and science fibers
of two different path lengths, each contained in their own length of furcation tubing. As mentioned in 5 and
earlier in these proceedings, an unexpected flaw was identified in the original RHEA@Subaru cable in the form
of “modal noise”. The closely packed fibers in the v-groove had almost identical path lengths, resulting in their
electric fields overlapping on the detector. For small path length differences (< A\?/8)), either constructive or
destructive interference occurred on each pixel, an effect sensitive to the injection conditions, cable temperature
and temperature gradients. To combat this, the replacement cable was fabricated with path length differences
between neighboring fibers in the slit, achieved in practice by alternating the lengths in the pattern long-short-
long-short. This resolves the issue, at the expense of a slightly more complex design.

The slit of RHEA’s cable consists of each science fiber, along with the simultaneous reference fiber, being
arranged in a v-groove - a piece of glass or silicon with parallel ‘V’ shaped channels locate each fiber relative
to its neighbours. Given the cable for RHEA@Subaru was to receive light from a resolved source (i.e. each
IFU element, and thus fiber, will observe a different part of the target), consideration had to be given to the
ordering of each fiber in the array to reduce unnecessary crosstalk for non-adjacent IFU elements on the detector.
Whilst not possible to unwrap a 2D grid to a 1D array while maintaining all fiber proximities, using a winding
continuous “snake” pattern is optimal, rather than discontinuous strategies such as row by row, or even arbitrary
selection. Following the unwrapped fibers in the v-groove, the continuous reference fiber was preceded by a one
fiber gap to minimize crosstalk. The v-groove was then sealed with UV-curing glue, mounted, and subsequently
polished using the same process as the ferrule-clad fibers.

A schematic view of the slit optics is shown in Figure 4, showing the optics for injection into RHEA itself.
The polished v-groove is aligned and bonded to a second microlens array to bring the light from the fibers
individually to focus, and the two larger lenses serving to demagnify and bring the images of the microlens array
and fiber cores to focus on the CCD and grating respectively, thus completing RHEA’s pseudo-slit.
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Figure 3. IFU fiber gluing setup. Top-Left: IFU gluing bench setup, consisting of a 6-axis stage, overhead microscope,
two imaging cameras, and IFU/beam splitter platform. Top-Right: Two camera alignment setup with IFU, beam
splitter and fiber clamp. Bottom-Left: Corresponding near field camera view (i.e. the surface of the microlens array)
for the same illuminated central fiber. Bottom-Right: Far field camera view (i.e the common fiber pupil plane) for the
illuminated central fiber.

B \U (-

Figure 4. Zemax layout of slit optics for RHEA@Subaru (12 channel OzOptics v-groove, SUSS 18-00030 microlens array,
Thorlabs LA1304-B, and N414TM-B), optimized for input F-ratio of 15.4, pixel size of 4.54 ym px ', and minimum order
spacing of 43 px.

4. FIBER ALIGNMENT CHARACTERIZATION

Completing the IFU manufacture and fiber alignment to arbitrary precision should result in the light from
all fibers coming to focus and overlapping at their common pupil plane when back-illuminated. However, the
challenging procedure resulted in offsets slightly outside our design tolerances, and can be determined through
the comparison of images taken far enough on either side of this plane to resolve the grid pattern of the IFU and
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fiber PSFs (i.e. such that the fibers are not overlapping).

To accomplish such measurements, both ends of the cable were mounted on an optical bench, and the slit
optics injected with an LED source. To this end, a BlackFly BFLY-U3-05S52M-CS camera was positioned in
front of the IFU atop a horizontal translation stage to provide motion along the optical axis. By translating the
stage from one side of the common fiber overlap plane, through focus, and to the other, the images in Figure 5
could be taken and analysed for each RHEA@Subaru cable.

Noticeable immediately is that while neither cable maintains a perfectly spaced grid of Airy disks, the
original cable demonstrates significantly less well defined fiber core images both before and beyond the common
plane, while the fibers in the replacement cable more or less maintain their shape. This can be attributed to a
combination of design improvements in the replacement cable, specifically the additional precision enabled by
having the near field camera during fabrication, and the more robust design.
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Figure 5. Back-illumination of both RHEA@Subaru cables, with images taken either side of the common fiber source
plane. Top Left: original IFU 5mm before overlap Top Right: original IFU 5mm after overlap. Bottom Left:
replacement IFU 2mm before overlap Bottom Right: replacement IFU 2mm after overlap. Note that some variations
in intensity can likely be attributed to uneven illumination at the slit end, as well as the relative alignment quality of
each fiber. Each fiber is labeled numerically and will be referenced as such for the remainder of this proceeding.

Figure 6 quantifies what can be seen in Figure 5 by giving numerical X and Y misalignment for each fiber
relative to an ideally positioned fiber core. These are on average, for the original and replacement cables
respectively, misalignments of (X = 0.85 + 0.09um, Y = 1.29 £+ 0.09 yum) and (X = 0.63 £ 0.16 um, Y =
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0.54 + 0.16 pm) - thus demonstrating a clear improvement in sub-micron positioning accuracy. Considering the
original cable, fibers 4, 8, and 7 (within errors) are positioned such that their centers are outside of the ideal
fiber core, with the misalignment of at least fiber 4 known since fabrication where it shifted during UV glue
curing. Similar incidents of fibers shifting during curing were not observed during the fabrication of the second
IFU, likely helped in part due to the tight cavities provided by the glass mask. No fibers from the original cable
can be considered aligned with the ideal fiber core, and are instead scattered radially in all X and Y directions.
The replacement IFU demonstrates an obvious improvement, with the fibers clustered more tightly around this
point, clearly showing the benefits of the cable design and fabrication procedure improvements.

A Original Replacement
- |
2 - .
TEN @% A
°' \+2 ] ' +)
ftf -1 _+9 _+3 _+6 .
> \\// \\ ¥/
—2 _+8 .
_3 s -
-4 . 1 1 1 1 1 1 1 1 1
-2 -1 0 1 2 -2 -1 0 1 2
X fibre offset (um) X fibre offset (um)

Figure 6. Fiber misalignment in X and Y dimensions (in the plane of the fiber cores) of RHEA@Subaru for Left: original
IFU, and Right: replacement IFU. Errors are of +1px in initial profile center selection using the images in Figure 5,
with the circles representing the core size of an ideally positioned 630HP SMF (rcore=1.75 pm)

5. CABLE THROUGHPUT

Following characterization of fiber alignment issues, more informed investigation could then be conducted into
fiber throughputs. Optimally injecting into RHEA’s IFU requires micron-level alignment across multiple axes, a
process made easier when it is known which fibers can be expected to perform poorly. Unless otherwise stated,
all reported throughputs consist of the following optical setup:

e 7.2mm SCExAQ input pupil with 31% secondary obstruction,

e 300 mm focusing lens (AC254-300-B),

e 1.45mm re-focusing lens (354140-B),

e IFU and fiber cable
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e BlackFly BFLY-U3-05S2M-CS camera and lens mounted to image fiber slit (resolving the outputs of each
fiber individually),

e Power meter on removable post mounted between pseudo-slit and camera.

To conservatively calculate the predicted maximum throughput, the cables were considered to have 9x (or
7x for the original cable) anti-reflection coated interfaces (99% each, 96% each for the 2x uncoated original
surfaces); a beam sampler (96.5%); 4x silica-NOAG1 glue interfaces, 2x 30° SF11-NOAG61 interfaces, and 2x
normal SF11-NOAG61 interfaces (97.5% combined), 12m of 630HP SMF (< 12dBkm ™!, or 96%). Fiber coupling
was calculated using simulation code written in Python for the optical setup described above, including the
designed for pupil-IFU separations of each cable. This resulted in values of 43.9% and 59.4% for the original and
replacement cables respectively, which the change in throughput primarily due to the different on-sky resolution
between the two versions. An additional loss at the second microlens array (96%) for a fundamental mode was
also incorporated, resulting in theoretical maximum throughputs of approximately 33% for the original cable,
and 47% for it replacement.

With these expectations, and informed by the known fiber offsets, the procedure to observationally measure
throughputs was as follows:

1. Inject a laser source into the IFU, coarsely adjusting with reference to the live camera feed of the pseudo-slit
end until light emerges from the cable.

2. Determine orientation of now-illuminated pseudo-slit by temporarily switching on calibration source to
inject through the simultaneous reference fiber.

3. Finely adjust the optical stages to maximize the light emerging from the best aligned fiber (as per Figure
6).

4. Insert the power meter into its mount between the pseudo-slit and camera and continue to finely adjust
the stages to optimize the output power. Once maximized, only further X and Y shifts will be required to
optimally inject into other similarly well-aligned fibers - no additional angular shifts will be necessary.

Measure and record the output power for this fiber.
Repeat steps 3-5 for each other science fiber in the slit, adjusting only in the X and Y dimensions.

Mount the power meter before the 300 mm focus lens and measure the input power.

® N o o

Calculate all throughputs given input and output powers.

Following this procedure, the throughputs in Table 5 were calculated. The replacement cable is again a
quantifiable improvement over its predecessor, with all fibers having measurable throughputs and only two
having throughputs less than 10%. Despite this improvement, the cable is worse by a factor of 3 than what
theory predicts. Based on observed image quality when the fiber was illuminated in both directions, additional
fabrication errors causing mode mismatch seems to be an unlikely cause of this loss. Given the importance of
high throughput, we recommend that similar devices are tested at each manufacturing step.

Table 4. Measured throughputs for RHEA’s fiber cable. Note that for the original cable, two fibers were so misaligned
that their throughputs were unable to be measured per the steps above.

Throughput (%)
Cable Theoretical Measured (per fiber) Factor Loss
Original 32.7 8.0,4.4,8.4,5,32,75,7.1 3.9x%
Replacement 47.1 12.8, 10.5, 4.5, 6.8, 7.5, 15.8, 14.3, 15.0, 11.3 3%
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5.1 Chromatism in Alignment Procedure

In the process of aligning the replacement cable at Subaru by simultaneously injecting the IFU with a red laser
source, and back-illuminating with a green laser source, a significant chromatic aberration was observed in the
pupil plane. In the absence of this effect, both the incoming red source and back-illuminated green source should
overlap. In reality however, the green pupil was offset by several PSF widths from its red counterpart, resulting
in poor throughputs for any alignment not taking this into account (i.e. alignment without back-illumination).
This heretofore unknown aberration led to the premature assessment of the replacement cable as inferior to the
original based on data taken during SCExAO engineering nights, an assessment that motivated much of this
work.

No such chromatic aberration was observed in the lab for the original cable, with any effect being of the
same order of magnitude as the inherent fiber misalignment. The suspected cause of the effect is the sum of
errors introduced when bonding the prisms and microlens array, specifically optical dispersion through thick glue
layers, prism rotational-misalignment, and (most-likely) wedges of glue. A wedge of glue between the microlens
array and prism of approximately 60 pm thick per mm, or 300 um total, could cause this. Although unexpected,
this is not inconsistent with lab notes and photos taken during fabrication.

Now that it is known, it can be taken into account during the alignment procedure, mitigating its influence
during use. Its existence however does raise further considerations for a final upgrade science cable, or for others
fabricating similar optical systems, where efforts have to made to limit the thickness of glue layers, or remove
them from the design entirely (i.e. by initially fabricating a single unit of glass to the designed thickness rather
than using prisms).

6. FUTURE WORK

With RHEA’s replacement cable installed and characterized, correcting the modal-noise issue plaguing the
original, and improving system throughput, the main remaining task is analysis of preliminary scientific data
taken during SCExAO engineering time. The data reduction algorithm to obtain deconvolved spectra and RVs
from a resolved target however is nontrivial, and work is ongoing.

7. SUMMARY

The RHEA@Subaru module for SCExAO fills a unique niche with its ability to observe at both high spectral and
spatial resolutions targets only resolvable with the largest of contemporary telescopes. Following its commission-
ing, RHEA’s original IFU equipped fiber cable was demonstrated to be flawed, being afflicted by modal-noise
due to closely packed fibers of similar lengths. A more advanced replacement cable has since been fabricated
and installed, correcting the modal noise issue, and increasing system throughput, despite unexpected chromatic
aberrations in the pupil plane. Work is ongoing on the complex data reduction pipeline necessary to obtain
deconvolved spectra and RVs of the resolved targets able to be observed by RHEA, with data taken during
SCExAO engineering nights awaiting reduction.
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