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ABSTRACT

A thermal-infrared polarimetric capability of the Infrared Camera and Spectrograph (IRCS) for the Subaru
Telescope is described. A new half-wave retarder for the thermal-infrared band in 2–5µm is introduced into
the Waveplate Unit of the Nasmyth platform on the infrared side of the telescope to realize imaging- and
low resolution spectro-polarimetry in that wavelength region. Through day-time calibrations using a wire-grid
polarizer, the peak efficiency of the polarization is found to be 90-98% consistently in both imaging- and spectro-
polarimetry in the thermal-infrared bands. In 2016 May and 2017 June, two engineering observing runs have
been carried out to verify the on-sky performance.

Keywords: polarimetry, adaptive optics, thermal infrared, imaging, spectroscopy, dust, protoplanetary disk,
polarimetric differential technique

1. INTRODUCTION

Polarimetry in astronomy is a unique tool to prove various physical conditions of astronomical objects such as
magnetic field, geometry of scattering circumstellar/circumnuclear materials, and dust alignment around the
objects. Though it becomes more popular in astronomical telescopes, polarimetry is not yet a basic function
like imaging and spectroscopy among the existing major facilities. In particular, the polarimetric capability in
the infrared wavelengths is not implemented in most of the astronomical instruments and therefore polarimetric
science has not been fully explored so far in the infrared bands where a high spatial resolution could be stably
achieved by an adaptive optics technology at large (8–10m) telescopes. Moreover, the thermal-infrared (TIR)
polarimetry is so rare and observing opportunities are quite limited, although it is very powerful to characterize
dust properties around a wide variety of astronomical objects.

Infrared Camera and Spectrograph (IRCS) is the first generation instrument at the Subaru Telescope1,2

and has been operating very stably for these two decades since the telescope first light year of 1999.3,4 It was
originally mounted at the Cassegrain focus in conjunction with the first generation of the adaptive optics system
at the Subaru Telescope (AO36)5 and then moved to the Nasmyth platform on the infrared side (NsIR) of the
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Figure 1. Optical layout of the IRCS polarimetry configuration at the NsIR of the Subaru Telescope . Light coming from
the sky goes through the telescope primary (M1), secondary (M2), and tertiary mirrors (M3) to be directed toward the
NsIR of the telescope.

telescope in 2005 to combine with the second generation of the laser-guide star AO system (AO188).6 Infrared
polarimetric function7 was introduced in 2013 into the instrument by using a Wollaston prism which is made of
LiNbO3 as a polarizer. Wavelength coverage of this infrared polarimetry is limited to near-infrared (NIR) band
(0.95–2.5µm) due to no sufficient transmittance of the original retarder (Quartz+MgF2 half-wave plate) at the
NsIR focus of the telescope.

2. OPTICAL LAYOUT AND SPECIFICATION

The optical layout for the TIR polarimetry configuration of the IRCS+AO188 is shown in Fig. 1.

Following a successful commissioning of the NIR imaging- and spectro-polarimetry through engineering runs
from 2013 through 2015, we expanded the polarimetric capability of the IRCS+AO188 into the TIR wavelengths
up to 5µm with a new LiNbO3+MgF2 half-wave plate as a retarder. The new wave plate was manufactured by
Kogakugiken Corp. (Kanagawa, Japan), which has a sufficient throughtput (>90%) throughout 2–5µm and a
clear aperture of 100mm in diameter. We installed it in the third slot of the Waveplate Unit in 2016 May which
is located at the closest to the instrument and the field-of-view with the clear aperture is secured to be φ 68′′.
The Wollaston prism in the dispersion wheel and focal plane/slit masks in the slit wheel which have been utilized
for the NIR polarimetry are available also for the TIR bands, because those are designed for accommodation to
the full wavelength coverage (0.95–5.0µm) of the IRCS+AO188. For imaging-polarimetry, only the fine pixel
scale (20mas/pixel) camera is used for the TIR bands due to its high background from the warm optics. On the
other hand, only the 52mas/pixel camera is available for spectro-polarimetry and slit widths are chosen from
0′′.6, 0′′.15, 0′′.1, and 0′′.22. A lateral chromatism of the Wollaston prism causes an overlap of the field apertures
in L and M ′ as seen in Fig. 2. As a result, the field of view for imaging-polarimetry at L′ and M ′ consists of
two apertures with an area of 4.0′′ and 3.0′′ respectively and the slit length for L spectro-polarimetry is limited
up to 4.0′′. The available mode for the TIR polarimetry of the IRCS+AO188 is summarized in Table 1.

3. POLARIMETRIC CALIBRATION

In general, the polarimetric calibration is much harder at a Nasmyth platform than the one at a Cassegrain focus,
because a tertiary mirror produces an instrumental polarization.8,9 It is estimated to be at a level of P∼0.5%
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Figure 2. Polarimetric image at L′ and polarimetric spectrum at L.

at the Subaru telescope in the wavelength region of 2–5µm and it will be problem in case of measurements for
< 1% polarization. In addition to that complexity, an overcoating on the silver mirror surfaces of the AO188
Image Rotator (ImR) degrades polarization efficiency with a function of its rotating angle in this system.

In the day time calibration, we installed a wire-grid polarizer for 2–5µm with a clear aperture of 110mm
(manufactured by Polatechno Co. Ltd., Niigata, Japan) in the first slot of the Waveplate Unit to measure the
polarization efficiency with a 5◦ step of the AO188 ImR angle from 0◦ to 90◦ by using a halogen lamp as a light
source installed at the NsIR focus of the telescope. Fig. 3 shows results of the measured polarization efficiency
for both imaging and spectroscopy. As expected from theoretical calculation, the polarization efficiency becomes
minimum around the AO ImR angle of 45◦. The peak efficiency of the polarization is found to be 90–98%. With
an angle range of 0–10◦ or 80–90◦, the degradation of the polarization is kept to be > 80%. This will limit a
position angle of the observing field of view and the slit / field position angle is almost uniquely determined at
a given hour angle of the observations.

A finer-step (1◦) result of the polarization efficiency around the AO188 ImR angle of 0◦ is shown in Fig. 4. In
order to obtain the polarization efficiency of > 90◦, the AO188 ImR angle needs to be within a range of -6◦ to 4◦.

Table 1. Summary of the IRCS+AO188 TIR polarimetric functions.

Thermal Infrared (TIR) Polarimetry (1.92–4.80µm )

Mode Imaging Polarimetry Spectro-Polarimetry

Band Broad bands: K, K′, L′, M′ Grism K (R∼869λ w/0.10′′ slit)
Narrow bands in 2–5µm Grism L (R∼869λ w/0.10′′ slit)

Pixel scale 20mas/pixel 52mas/pixel

K, K′: 2 Strips of 4.4′′(W) × 21′′(L) 0.60′′ (W) × 4.0′′ (L)
FoV of L′ 2 Strips of 4.0′′ (W) × 21′′ (L) 0.15′′ (W) × 4.0′′ (L)
mask/slit M′: 2 Strips of 3.0′′ (W) × 21′′ (L) 0.10′′ (W) × 4.0′′ (L)

0.22′′ (W) × 4.0′′ (L)
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Figure 3. Polarization efficiency vs. AO188 ImR.

An efficiency curve interpolated from this calibration result can be applied to observing polarization correction.

4. OBSERVING PERFORMANCE

Two engineering observing runs were conducted in 2016 May and 2017 June to verify the on-sky performance
of the TIR polarimetry mode of the IRCS+AO188. Throughput of the TIR half-wave plate is measured with
FS 147 as 89.9%, 91.9%, and 90.7% at K ′, L′, and M ′, respectively. Increase of background at L′ and M ′ is
17% and 21%. Observing targets in the runs are several polarized standard stars, unpolarized standard stars,
and also two Herbig Ae stars for the performance demonstration. Details of the observations are summarized in
Table 2.

4.1 Imaging Polarimetry

Fig. 5 shows results of imaging polarimetry for the unpolarized and polarized stars with and without the instru-
mental polarization (IP) correction. As for the correction of the IP caused by the telescope M3 and the AO188,
we apply the same method that has been used for the HiCIAO18 data.

The IP corrected data for the unpolarized stars exhibit no significant polarization (Fig. 5(a)), while the errors
are somehow consistently larger than the ones without the IP correction. No IP corrected data are also well
below 1% for all the unpolalrized stars. Regarding the polarized stars, there are a good correlation between
measured and previously reported values as seen in Fig. 5(b). Detailed investigation for the best calibration
analysis to remove the instrumental polarization is on-going.

Although a polarimetric differential imaging technique with dual-beam polarimeters has been well demon-
strated (e.g., Ref. [19]), the IRCS+AO188 TIR imaging polarimetry suffers from the image elongation which is
caused by a large lateral chromatism of the LiNbO3 Wollaston prism. We estimated contribution of the chroma-
tism on the polarimetric image directly from the spectra in Fig. 6. At L′ (3.42–4.12µm), it results in 0.′′22. Even
with a narrow band filter of H2O Ice (2.974–3.126µm), it is 0.′′035 which damages a precise extraction of the
differential signal. Manufacturability of alternative Wollaston prism made of a better material (such as AgGaS2)
with the equivalent size (D∼35mm) to the current one is being explored for sufficiently low lateral chromatism.
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Figure 4. Details of polarization efficiency around 0◦ for the AO188 ImR angle.

4.2 Spectro-Polarimetry

Polarimetric spectra in this mode are found to show a ripple feature which is supposed to originate from the new
TIR half-wave plate. The same symptom is often seen in other polarimetric facilities (e.g., UIST at UKIRT20).
Spectral binning by over 8–9 pixels which corresponds to > 0.′′45 slit width can smear out the feature (Fig. 7),
but the resultant spectral resolution is decreased for the case of 0.′′10, 0.′′15, and 0.′′22 slit use. We attempted to
cancel the ripple feature with an A0V star (HR 2757) in an open use program of the telescope time by following a
method described in Ref. [21], which is based on the operations of θWP =[0◦,45◦,22.5◦,67.5◦,90◦,135◦,112.5◦,157.5◦].
The result shows a successful cancel-out of the artificial feature (Fig. 8) and we are establishing the standard
operational procedure with this method.

Polarimetric differential spectra shouldn’t be affected by the large chromatism mentioned in the above. How-
ever, only 52mas/pixel camera is available for the low spectral resolution spectroscopy at L and the polarimetric
spectra are under-sampled. Thus, it may be difficult to go into a closer working angle also in this mode. The
performance will be assessed through our on-going science observing program with the IRCS+AO188 to detect
a water ice signature in scattered light from face-on protoplanetary disks.

5. SUMMARY AND FUTURE PROSPECT

The new function of the thermal infrared polarimetry function for the IRCS was described. While most of the
optical components are shared with the near infrared polarimetry function of the same instrument, the waveplate
dedicated to this new function was newly installed. Performance for the detection of the P<1% polarization was
confirmed through the on-sky observing runs. Capability of polarimetric differential imaging is limited at this
moment by a large lateral chromatic dispersion of the current material of LiNbO3 for the Wollaston prism and
investigation is on-going to find availability of a new Wollaston prism with the proper size (∼ 35mm) made of
better material to produce smaller lateral chromatic dispersion.
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Table 2. Observing log for TIR polarimetry engineering.

Object Date Polarimetric Exp. Time Note Ref.
Name (UT) mode/band (s)

FS 147 2016-06-20 Imag.K ′, L′, M ′ 1.648, 15, 22.5 Photmetric std. [10]

HD 203856 2017-05-20 Imag.H2O Ice, L′ 200, 96 Nearby star [10]

HD 210027 2016-06-20 Spec.L 160 Unpolarized star [11]

BD+32 3739 2016-06-20 Imag.K ′, L′, Spec.K 80, 240, 240 Unpolarized star [12]

HD 154892 2017-05-19 Imag.H2O Ice, L′ 200, 48 Unpolarized star [12]

HD 162208 2017-05-20 Imag.H2O Ice, L′, Spec.L 200, 48, 240 Unpolarized star [13]

Cyg OB2 No.12 2016-06-20 Imag.M ′, Spec.L 48, 131.84 Polarized star [14]

Cyg OB2 No.3 2016-06-20 Imag.K ′, L′, Spec.K 48, 48, 192 Polarized star [14]

HD 150193 2017-05-19 Imag.H2O Ice, L′(w/ ND) 48, 120 Polarized star [14]

Elias 2-25 2017-05-20 Imag.L′ 48 Polarized star [14]

GL 2136 2017-05-19 Imag.L′, Spec.K, L 20, 480, 320 Polarized star [15]

HD 169141 2017-05-20 Imag.H2O Ice 100 Herbig Ae star [16]

PDS 453 2017-05-20 Spec.L 1440 Herbig Ae star [17]
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