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Key Points 

• CCND1 binds to and reduces recruitment of HDAC1 and HDAC2 to the SOX11 

promoter, causing increased histone acetylation and SOX11 transcription. 

•  STAT3 represses SOX11 transcription by interacting directly with the SOX11 gene 

promoter and enhancer. 

Summary 

The neural transcription factor SOX11 is usually highly expressed in typical 

mantle cell lymphoma (MCL), but it is absent in the more indolent form of MCL. Despite 

being an important diagnostic marker for this hard-to-treat malignancy, the mechanisms 

of aberrant SOX11 expression are largely unknown. Herein, we describe two modes of 

SOX11 regulation by the cell cycle regulator cyclin D1 (CCND1) and the signal 

transducer and activator of transcription 3 (STAT3). We found that ectopic expression of 

CCND1 in multiple human MCL cell lines resulted in increased SOX11 transcription, 

which correlated with increased acetylated histones H3K9 and H3K14 (H3K9/14Ac). 

Increased H3K9/14Ac and SOX11 expression were also observed after HDAC1 or 

HDAC2 was depleted by RNA interference or inhibited by the HDAC inhibitor vorinostat. 

Mechanistically, we showed that CCND1 interacted with and sequestered HDAC1 and 

HDAC2 from the SOX11 locus, leading to SOX11 up-regulation. Interestingly, our data 

revealed a potential inverse relationship between phosphorylated Y705 (pY705) STAT3 

and SOX11 expression in MCL cell lines, primary tumors and patient-derived 

xenografts. Functionally, inactivation of STAT3 by inhibiting the upstream Janus kinase 

(JAK) 1 or JAK2 or by STAT3 knockdown was found to increase SOX11 expression, 

whereas interleukin 21 (IL21)-induced STAT3 activation or overexpression of the 
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constitutively active form of STAT3 decreased SOX11 expression. In addition, directly 

targeting SOX11 by RNA interference or indirectly by IL21 treatment induced toxicity in 

SOX11-positive MCL cells. Collectively, we demonstrate the involvement of CCND1 and 

STAT3 in the regulation of SOX11 expression, providing new insights and therapeutic 

implications in MCL.  

Introduction 

The high-mobility-group neural transcription factor SOX11 is predominantly 

expressed in the developing brain and has critical roles in neurogenesis and embryonic 

development.1-4 Although SOX11 is not expressed in normal B cells and does not 

appear to play a role in lymphopoiesis, its aberrant expression has been found in 

several lymphoproliferative diseases including mantle cell lymphoma (MCL),5-7 Burkitt 

lymphoma,8 and B- and T-cell lymphoblastic leukemia.7,8 SOX11 is also overexpressed 

in several types of solid tumors including ovarian carcinoma9,10 basal-like breast 

carcinoma,11,12 glioma,13 medulloblastoma14 and prostate cancer.15 In MCL, SOX11 is 

highly expressed in most classical cases with nodal presentation, but is notably absent 

in indolent leukemic cases that display an IGVH-mutated phenotype.16  

The role of SOX11 in MCL is incompletely understood. Previous studies have 

identified several direct targets of SOX11 in MCL including DBN1, SETMAR, HIG2 and 

WNT signaling.17,18 Subsequent studies have revealed that SOX11 is essential for MCL 

xenograft growth in vivo and directly mediates transcription of the B-cell transcription 

factor PAX5 and, thus, is thought to promote lymphomagenesis through deregulated B-

cell differentiation.19 SOX11 also mediates the expression of platelet-derived growth 

factor alpha (PDGFA),20 C-X-C motif chemokine receptor 4 (CXCR4), and focal 
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adhesion kinase (FAK),21 which promote angiogenesis, tumor cell migration and 

metastasis, respectively. Despite conflicting results regarding its prognostic value,6,16,22 

SOX11 is an established diagnostic marker for MCL.7 In breast cancer, SOX11 is 

essential for proliferation and expression of a gene signature characteristic of 

aggressive basal-like breast cancer.12 

Given the important biology of SOX11, several studies have investigated the 

mechanism of aberrant SOX11 expression. Gustavsson et al.23 demonstrated that, 

while SOX11 is important in developing neurons, its expression is virtually absent in 

other tissues owing to promoter hypermethylation. Studies by Vegliante et al.24 showed 

that SOX11 expression in embryonic stem cells and some B-cell lymphomas was 

associated with unmethylated DNA and active histones H3K9/14Ac and H3K4me3. 

SOX11 can be induced in MCL and breast cancer cell lines after treatment with the 

HDAC inhibitor vorinostat (also known as SAHA) or trichostatin A, suggesting that 

HDACs might participate in the regulation of SOX11 expression.24,25 More recently, an 

elegant integrative analysis of the epigenome in primary MCL uncovered a distant 

regulatory element 675 kb downstream from the SOX11 gene that appears to influence 

transcriptional activity at the SOX11 promoter.26 Using the circularized chromosome 

conformation capture sequencing (4C-seq) method to detect long-range chromatin 

interactions, Queiros et al.26 demonstrated that this distant enhancer has three-

dimensional contact with the SOX11 gene promoter, but how it affects SOX11 

expression remains to be determined. 

In this study, we have investigated two potential mechanisms of SOX11 

expression. By ectopically expressing CCND1 in human MCL cell lines, we demonstrate 

For personal use only.on December 21, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


 

 5 

that CCND1 mediates SOX11 expression through interaction with HDAC1 and HDAC2 

at the SOX11 locus. In addition, using genetic and pharmacological inhibition, we show 

that the signal transducer and activator of transcription 3 (STAT3) binds to the SOX11 

promoter and enhancer, and functions as a transcriptional repressor. These findings 

demonstrate two distinct modes of SOX11 regulation and may have implications for the 

treatment of MCL.  

Materials and Methods 

Cell lines and culture conditions 

Human MCL lines Z-138, JEKO-1, UPN-1 and SP-53 were kindly provided by Dr. Louis 

Staudt. GRANTA-519, JVM-2, MINO and MAVER-1 cells were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA). The MCL lines Z-138, JEKO-

1, GRANTA-519 and UPN-1 were authenticated by short tandem repeat DNA profiling 

(ATCC, Manassas, VA) (Supplementary Table S1). Other cell lines were not 

authenticated. Cells were cultured in RPMI-1640 medium, except GRANTA-519 in 

DMEM medium (Life Technologies, Grand Island, NY), supplemented with 10% fetal 

bovine serum, 100 IU/mL penicillin and 100 μg/mL streptomycin in a humidified 

incubator at 37°C with 5% CO2. 

Primary MCL samples and patient-derived xenografts   

Primary cells were obtained from the tumor bank of the Pathology Department of City of 

Hope as de-identified samples after approval by the Institutional Review Board and 

prepared as previously described.27 Briefly, frozen cells were thawed in 37°C water 

bath, washed in RPMI-1640 medium and cultured in RPMI-1640 medium supplemented 
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with 20% fetal bovine serum and 200 Kunits/ml of DNAse I (Sigma, St. Louis, MO) for 

15 minutes in 37°C CO2 incubator followed by washing. Cells were recovered overnight 

in CO2 incubator before experiments. MCL patient-derived xenografts (PDX) were 

obtained from the public repository of xenografts (ProXe)28 (Supplementary Table S2). 

Samples were transplanted into sublethally irradiated NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ 

(NSG) mice (The Jackson Laboratory, Bar Harbor, ME) through tail vein injection. 

Lymphoma xenografts were frozen in aliquots and subsequently thawed and cultured in 

RPMI-1640 medium supplemented with 20% fetal bovine serum, 100 IU/mL penicillin 

and 100 μg/mL streptomycin in a humidified incubator at 37°C with 5% CO2. 

cDNA expression vectors 

The retroviral expression vector pBMN-CCND1-HA-IRES-Hygro, encoding carboxy-

terminus HA-tagged CCND1 wild type or mutants, was previously constructed.27 

HDACs-HA constructs were a kind gift from Dr. Yue Xiong (University of North Carolina, 

Chapel Hill), as previously described.29 FLAG-tagged SOX11 expression vector was 

constructed by cloning the PCR-generated SOX11 products from Z-138-derived cDNA 

template into the pBMN-IRES-Hygro vector (a gift from Gary Nolan) at BamHI and XhoI 

restriction sites. FLAG-SOX11 PCR products were generated using the following primer 

pairs: 

5’TAGTAGGGATCCGCCGCCACCATGGACTACAAAGACGATGACGACAAGGTGCAG

CAGGCGGAGAGCTTG and 

5’CTACTACTCGAGTCAATATGTGAACACCAGGTCGGAGAA. The final SOX11 

construct was confirmed by DNA sequencing. The lentiviral STAT3 constitutive active 

construct EF.STAT3C.Ubc.GFP was a gift from Linzhao Cheng (Addgene plasmid # 
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24983) and its retroviral subclone was a gift from Lixin Rui. 

RNA interference reagents 

CCND1 and HDAC1 shRNA constructs and sequences were obtained from a previously 

generated shRNA library.30 STAT3 shRNA (#840) pKLO construct was kindly provided 

by Anna Scuto as previously reported.31 SOX11 shRNA (#454) and HDAC2 shRNA 

(#1678) pKLO constructs were obtained from Sigma (Sigma, St. Louis, MO). RNAi 

sequences are listed in Supplementary Table S3. A DNA insert encoding a fusion 

puromycin N-acetyl-transferase-green fluorescence protein (GFP) was cloned into the 

SOX11 shRNA pKLO vector at the BamHI and KpnI restriction sites to produce a GFP-

coexpressing vector. 

Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) reactions were performed using RT2 SYBR® Green 

qPCR Master Mix (Qiagen, Valencia, CA) or Taqman Universal PCR Master Mix 

(Thermo Fisher Scientific, Waltham, MA) and analyzed by the StepOnePlus Real-time 

PCR system (Life Technologies, Grand Island, NY). Since SOX11 is encoded by an 

intronless gene, in addition to DNAse treatment before cDNA synthesis, a poly-A 

specific primer for SOX1132 was used to minimize amplification of potential genomic 

DNA (gDNA) contamination. As a negative control, mock cDNA synthesis without 

addition of reverse transcriptase was also prepared to verify for the presence of 

contaminating gDNA. We demonstrated that the cycle threshold (Ct) values for the poly-

A specific SOX11 primer in RT-positive cDNA samples were consistently >10 cycles 

less than those in mock cDNA samples (Ct 24 vs. 39) (Supplementary Table S4). 

Additional primers that can amplify SOX11 or GAPDH from gDNA also yielded similarly 
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large differences in Ct values between RT-positive and mock cDNA samples (Ct 25 vs. 

36 and 23 vs. 39, respectively) (Supplementary Table S4). These results confirm the 

validity of our mRNA assessment using either SOX11 primers. Primer sequences for 

SOX11 and GAPDH are shown in Supplementary Table S5. Taqman probes for 

SOX11 (Hs00848583_s1), STAT3 (Hs00374280_m1), HDAC1 (Hs02621185_s1) and 

GAPDH (Hs02786624_g1) were purchased from ThermoFisher (ThermoFisher, 

Waltham, MA). Relative mRNA expression was normalized to GAPDH signals and 

calculated using the ddCt method.  

Immunoblot and immunoprecipitation analyses 

Cells were lysed in the presence of protease inhibitor cocktail (Sigma, St. Louis, MO) 

and Halt phosphatase inhibitor cocktail (Pierce Biotechnology, Rockford, IL) for 30 min. 

Lysates were cleared by centrifugation and protein concentrations were determined by 

BCA protein assay (Pierce Biotechnology, Rockford, IL). Twenty micrograms of lysates 

per lane were separated by 4-15% SDS-PAGE and immobilized on the nitrocellulose 

membranes (ThermoFisher, Waltham, MA) for immunoblotting. Immunoblot signals 

were developed by a chemiluminescent detection method (Pierce Biotechnology, 

Rockford, IL) and captured by standard autoradiographic films. For immunoprecipitation, 

see Supplementary Methods. 

Chromatin immunoprecipitation 

Chromatin immunoprecipitation was performed using the ChIP Assay Kit (Millipore, 

Temecula, CA) according to manufacturer’s instructions. Details are described in 

Supplementary Methods.  

Statistical analyses: 
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A two-tailed Student t-test or linear regression analysis was performed for comparison 

between two groups, using Prism Version 6.0b (GraphPad Software, La Jolla, CA). P 

values < 0.05 were considered statistically significant. 

Additional detailed method descriptions are available in Supplementary Materials. 

Results 

CCND1 up-regulates SOX11 expression in human MCL cell lines.  

To determine whether CCND1 induces SOX11, hemaglutinin (HA)-tagged 

CCND1 was ectopically expressed in the human MCL lines Z-138, JEKO-1 and 

GRANTA-519. The recurrent mutation CCND1 Y44D, which affects phosphorylation-

dependent proteolysis and result in increased protein levels,27 was also expressed in Z-

138 and JEKO-1 cells. Compared to empty vector controls, both wild-type (WT) and 

mutant CCND1 increased protein expression levels of SOX11 in these cell lines by 

immunoblot analysis (Figures 1A and Supplementary Figures S1A). To ensure the 

specificity of the SOX11 antibody used in the current study, depletion or overexpression 

of SOX11 was carried out in MCL cell lines, and specific loss or increase in SOX11 

expression was confirmed by immunoblot analysis (Supplementary Figures S2A, B). 

We next used reverse transcription (RT)-PCR assays to determine whether CCND1 

mediated SOX11 transcription. Since SOX11 is encoded by an intronless gene, we 

used a mRNA-specific RT-PCR assay (see Materials and Methods) and demonstrated 

that overexpression of WT or mutant CCND1 increased SOX11 mRNA levels in these 

cell lines (Figures 1B and Supplementary Figures S1B). 

To determine whether CCND1 is required for SOX11 expression, we depleted 

CCND1 in MCL cells using an shRNA that has been validated in a previous study.33 
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CCND1 depletion in both Z-138 and JEKO-1 cells resulted in reduced SOX11 protein 

levels (Figures 1C), in addition to decrease in cell viability (Figures 1D) similar to 

previously observed in JEKO-1 cells.33 Depletion of SOX11 also resulted in reduced cell 

viability in Z-138, JEKO-1 and an additional MCL line MINO (Figure 1E). We next 

determined whether SOX11 up-regulation was due to altered protein stability by treating 

CCND1-HA-expressing Z-138 cells with cyclohexamide (CHX) and assessing SOX11 

protein turnover by immunoblot analysis. In this experiment, WT and mutant CCND1 

samples consistently expressed more SOX11 than empty vector controls before CHX 

treatment (Figure 1F). However, the rate of SOX11 protein turnover in WT and mutant 

CCND1 samples was comparable to that of controls after 3 hours in CHX (Figure 1F). 

This result excluded increased protein stability as a mechanism of increased SOX11 

expression. Together, these data suggest a role for CCND1 in the regulation of SOX11 

expression in MCL cell lines. 

CCND1 affects histone modification at the SOX11 locus. 

Since SOX11 transcription is associated with histone acetylation,24,25 we 

performed chromatin immunoprecipitation (ChIP) and quantitative PCR (qPCR) assays 

to examine whether CCND1 influences histone modification at the SOX11 locus. To 

determine the chromatin regions on the SOX11 gene that are likely reactive to the 

active histone mark H3K9/14Ac antibody, we searched for H3K9Ac ChIP signals in 

SOX11 expressing cells in the ENCODE database and identified two potential DNA 

regions for PCR amplification (amplicons) (Figure 2A). ChIP-qPCR experiments were 

carried out in Z-138 and JEKO-1 cells that overexpress CCND1 using a previously-

validated H3K9/14Ac antibody and PCR primers for the two amplicons.24 Compared to 
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empty vector controls, overexpression of CCND1 significantly increased H3K9/14Ac 

signals in both cell lines (Figures 2B-E). Enrichment of H3K9/14Ac at the SOX11 locus 

was also observed in Z-138 cells treated with the HDAC inhibitor SAHA (Figure 2F). In 

addition, SOX11 expression was positively correlated with H3K9/14Ac levels following 

treatment with SAHA in Z-138 cells (Figures 2G). Thus, these data indicate that 

CCND1 mediates SOX11 expression through histone acetylation at the SOX11 locus.  

CCND1 interacts with HDAC1 and HDAC2.  

The effects of CCND1 overexpression and HDAC inhibition on histone 

acetylation of the SOX11 locus led us to examine whether CCND1 physically associates 

with members of the HDAC family to mediate SOX11 transcription. We co-expressed 

individual HDACs with CCND1 in HEK-293T cells and analyzed potential interactions 

using co-immunoprecipitation. Figure 3A shows that CCND1 strongly interacts with 

HDAC1, HDAC2 and, to a lesser extent, HDAC3, but not with other HDAC members. 

Validation of this interaction in Z-138 cells or in primary MCL samples by 

immunoprecipitation with CCND1 or HDAC1 antibody also showed CCND1 in the 

complex with HDAC1 and HDAC2 (Figure 3B). In addition, shRNA-mediated depletion 

of HDAC1 from Z-138, JEKO-1 (Figures 3C and Supplementary Figures S3A) or 

GRANTA-519 (Supplementary Figures S3B, C) cells resulted in increased SOX11 

mRNA and protein levels, further confirming the role of HDAC1 in modulating SOX11 

expression. Increased SOX11 expression was also observed when HDAC2 was 

depleted in Z-138 and JEKO-1 cells (Figures 3D).  Together, these results indicate that 

interaction of CCND1 with HDAC1 and HDAC2 plays a role in mediating SOX11 

expression.  
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Reduced chromatin recruitment of HDAC1 in CCND1 overexpressing cells.  

We next asked whether CCND1 affected recruitment of HDAC1 at the SOX11 

locus. ChIP-qPCR assays were performed in CCND1-overexpressing Z-138 cells using 

anti-HDAC1 antibody and PCR primers located near the SOX11 transcription start site. 

HDAC1 ChIP signals were significantly reduced in CCND1-expressing cells as 

compared to empty vector controls (Figure 4A). As an alternative approach, cell 

fractionation was used to assess the distribution of HDAC1 and HDAC2 within cellular 

compartments. Protein extracts from soluble cytoplasmic and nuclear fractions, as well 

as from insoluble nuclear fractions, from equal numbers of control or CCND1 

overexpressing Z-138 cells were evaluated by immunoblot analysis. The nuclear 

proteins histone H3 and LAMIN A and C were used as markers for the nuclear fractions. 

We found that both HDAC1 and HDAC2 resided predominantly in the insoluble nuclear 

fraction in the empty vector controls. However, in cells with CCND1 overexpression, 

there was increased accumulation of HDAC1 and HDAC2 in the soluble nuclear fraction 

(Figure 4B). Similar increase of HDAC1 and HDAC2 protein levels in the soluble 

nuclear fraction was also observed in GRANTA-519 cells that overexpressed CCND1 

(Supplementary Figure S4).  Taken together, these results indicate that CCND1 

overexpression results in re-distribution of HDAC1 and HDAC2 from the chromatin 

environment, including the chromatin of the SOX11 gene.  

STAT3 negatively regulates SOX11 expression.  

 To further confirm the positive role of CCND1 in regulating SOX11 expression, 

we transduced CCND1-expressing lentivirus into the SOX11-negative MCL cell line 

JVM-2. Surprisingly, compared to an increase in SOX11 levels in JEKO-1 cells, 
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ectopically expressed CCND1 did not induce SOX11 in JVM-2 cells (Figure 5A). 

Analysis of publicly-available gene expression data from SOX11-positive and -negative 

MCL cases34 also revealed no correlation between SOX11 and CCND1 (Figure 5B). 

However, a positive correlation between CCND1 and SOX11 was observed in SOX11-

positive cases albeit not statistically significant due to a small sample size (n=15) 

(Supplementary Figure S5A). Analysis of relevant public data from another study,16 in 

which SOX11 positivity was identified in 13 cases, also showed a positive correlation 

between CCND1 and SOX11 although, again, not statistically significant 

(Supplementary Figure S5B).   

 These observations prompted us to investigate additional mechanisms of SOX11 

regulation. Since SOX11-negative MCL cases typically have plasmacytic 

differentiation,16,35 we hypothesized that SOX11 transcription might be negatively 

regulated during B-cell differentiation. To identify the molecules potentially involved in 

this process, we analyzed transcription factors that bind to the SOX11 locus, including 

the recently identified SOX11 enhancer,26 using ChIP-Seq data from the ENCODE 

project.36 Among SOX11-locus bound factors, STAT3 was chosen for further study 

because of its role in B-cell differentiation.37 Interestingly, expression of SOX11 and the 

active pY705 STAT3 were inversely correlated in MCL cell lines (except JEKO-1) 

(Figure 5C), in primary MCL samples (except samples #11 and #15)  (Figure 5D), and 

in MCL patient-derived xenographs (PDX) (Figure 5D). To determine whether SOX11 is 

negatively regulated by activated STAT3, we treated JEKO-1, GRANTA-519, MAVER-1 

and JVM-2 cells, which express high pY705 STAT3 levels, with AZD1480, an inhibitor of 

the upstream kinases JAK1 and JAK2.38 Immunoblot analysis showed that AZD1480 
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effectively blocked STAT3 phosphorylation and resulted in increased SOX11 mRNA 

and protein levels in JEKO-1, GRANTA-519 and MAVER-1 cells (Figure 5E, F), but not 

in JVM-2 cells (Supplementary Figure S6A). Similar increases in SOX11 expression 

were also observed in GRANTA-519 cells after treatment with another STAT3 inhibitor, 

JAK inhibitor I (MilliporeSigma, Burlington, MA, USA) (Supplementary Figure S6B). 

AZD1480-induced up-regulation of SOX11 was mediated by STAT3 inhibition, as 

depletion of STAT3 also led to increased SOX11 mRNA and protein expression in both 

JEKO-1 and GRANTA-519 cells (Figures 5G, H).  

 In line with the repressive role of STAT3, interleukin (IL) 21-induced STAT3 

activation39 in MINO, SP-53, Z-138 (Figures 6A, B) and MCL PDX models (Figures 

6C) or ectopic expression of a constitutively active form of STAT340 in Z-138 cells 

(Supplementary Figure S7) resulted in reduced SOX11 expression. Interestingly, IL21 

also reduced viability of MCL lines (MINO, SP-53 and Z-138) or PDX models (#5 and 

#7) with low or negative STAT3 activity (Figure 6D, E) while it had little effect on MCL 

cells with high pY705 STAT3 expression (JEKO-1, MAVER-1 and GRANTA-519) 

(Supplementary Figure S8). As depletion of SOX11 also reduced cell viability in MINO, 

Z-138 and JEKO-1 cells (Figure 1E), we depleted SOX11 from the remaining MCL lines 

and determine their survival. We found that SOX11 depletion had little effect on the 

viability of GRANTA-519 cells and slightly increased cell growth in MAVER-1 cells 

(Supplementary Figure S9A, B). Data from SP-53 cells were not available due to 

sensitivity of this cell line under our lentiviral transduction conditions. Thus, similar to 

IL21 treatment, SOX11 depletion is toxic in MINO and Z-138 cells while having little 
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effect in GRANTA-519 and MAVER-1 cells.  JEKO-1 cells appear to be an exception, as 

they are resistant to IL21 but sensitive to SOX11 depletion.   

 We next determined whether STAT3 was recruited directly to the SOX11 gene by 

performing ChIP-qPCR experiments with an anti-pY705 STAT3 antibody in JEKO-1 

cells. Since STAT3 phosphorylation is required for DNA binding41 and this 

phosphorylation is efficiently inhibited by AZD1480, we used AZD1480-treated JEKO-1 

cells as a negative control for the pY705 STAT3 ChIP-qPCR experiments. Figure 7A 

shows that pY705 STAT3 was specifically recruited to the SOX11 gene and enhancer, 

and this recruitment was significantly impaired after AZD1480 treatment. Increased 

active histone H3K9/14Ac signals at the SOX11 promoter and enhancer regions were 

also observed in AZD1480-treated MAVER-1 cells using H3K9/14Ac ChIP-qPCR 

(Figure 7B). Taken together, these findings indicate that STAT3 represses SOX11 

transcription through recruitment of pY705 STAT3 to the SOX11 locus, and that 

manipulation of the STAT3-SOX11 axis directly through SOX11 or indirectly  through 

STAT3 induces toxicity in SOX11+ MCL cells. 

Discussion 

The current study reveals two distinct regulatory mechanisms of SOX11 

expression in MCL, specifically through CCND1 and STAT3. By genetically 

manipulating CCND1 levels using ectopic expression and gene knockdown, we have 

demonstrated that CCND1 is sufficient and necessary for SOX11 expression in the MCL 

cell lines Z-138, JEKO-1 and GRANTA-519. SOX11 expression is also negatively 

regulated by the post-germinal center B-cell differentiation factor STAT3, which may link 

SOX11 regulation to specific stages of B-cell differentiation.  
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In our proposed model, CCND1 interacts with and sequesters HDAC1 and 

HDAC2 from regulatory elements in the SOX11 locus, leading to increased histone 

acetylation and SOX11 transcription (Figure 7C). The ability of CCND1 to associate 

with transcriptional regulators and affect gene transcription is well recognized42. Fu et 

al.43 demonstrated that CCND1 preferentially associates with HDAC1, HDAC2, HDAC3 

and HDAC5, and recruits HDAC1 to the PPAR-gamma promoter to repress its 

transcription. We found that CCND1 consistently binds to HDAC1 and HDAC2 and, to a 

lesser extent, HDAC3, but not other HDAC members (Figure 3A). In contrast to 

transcriptional repression as a consequence of HDAC1 recruitment to the gene 

promoter as reported by Fu et al.,43 we have shown that elevated CCND1 levels in MCL 

cells result in reduced HDAC1 recruitment at the SOX11 promoter and subsequent 

increased gene transcription. Mechanisms of gene expression through HDAC1 

relocation from transcriptional regulators have been described. For example, Di et al.44 

reported that treatment with estrogen or the glycolysis inhibitor 2-deoxyglucose in the 

breast cancer cell line MCF-7 caused eviction of HDAC1 from a co-repressor complex, 

leading to increased histone acetylation at the BRCA1 promoter and BRCA1 

transcription. In another study focusing on developing neurons, expression of Lmo4 led 

to displacement of Hdac1 from the transcriptional repressor complex NuRD, resulting in 

derepression of the Ctip2 locus.45 Together, these observations support the removal of 

HDAC1 from regulatory elements as a common mechanism, and indicate that diverse 

signals can mediate this process depending on the cellular context. In line with this 

notion, we speculate that, in addition to CCND1, other abnormalities that interfere with 

HDAC1 function may also contribute to SOX11 expression. Characterization of new 
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mutations, particularly those affecting HDAC1-interacting proteins, may provide further 

insight into the mechanisms of deregulated SOX11 expression. 

Although our data favor CCND1-mediated HDAC1 sequestration as the 

mechanism of SOX11 up-regulation, it is possible that CCND1 may influence SOX11 

transcription by affecting enzymes that maintain the dynamic histone 

acetylation/deacetylation equilibrium, such as the histone acetyltranferases EP300, 

PCAF and GCN5. Indeed, CCND1 has been shown to physically associate with 

EP30046 and PCAF47 and regulate gene expression. Furthermore, through its cyclin-

dependent kinase (CDK) partners CDK4 and CDK6, CCND1 elicits transcriptional 

changes by phosphorylating and activating GCN5.48 In the current study, we found that 

treating MCL cell lines with the EP300 inhibitor C646 strongly down-regulated SOX11 

expression (Supplementary Figure S10), consistent with involvement of EP300 in 

regulating SOX11 expression. These observations warrant further studies into the 

molecular interactions between CCND1 or the CCND1/CDK4 complex and 

transcriptional regulators at the SOX11 promoter.  

Although ectopic expression of CCND1 can induce SOX11 expression in multiple 

MCL lines, SOX11 is not expressed in a subset of t(11;14)-positive MCL cases16 or in 

any t(11;14)-positive multiple myeloma (MM) cases.49 These observations suggest that 

SOX11 expression is regulated by additional factors and/or cellular contexts. To 

investigate additional mechanisms of SOX11 expression, we turned to a recent study 

profiling the methylome of MCL. In that study, Queirós et al.26 found a potential SOX11 

regulatory element 675 kb downstream of the SOX11 gene that was hypomethylated 

and associated with the active enhancer mark H3K27ac in SOX11-positive, but not in 
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SOX11-negative, MCL cells. We then examined the transcription factors that are 

associated with this putative enhancer, as previously reported by the ENCODE 

project.36 Among factors that bind to this enhancer, we focused on STAT3 as a potential 

repressor of SOX11 because STAT3 is important for post-germinal center B-cell 

differentiation,37 a commonly recognized phenotype of SOX11-negative MCL.16,19 

Indeed, our data revealed that STAT3 is recruited to both SOX11 gene and enhancer 

loci, and functions as a transcriptional repressor in multiple MCL lines including JEKO-1, 

GRANTA-519 and MAVER-1. Our findings are consistent with previous reports that 

showed constitutively active STAT3 in the majority (70%) of indolent leukemic MCL 

cases,50 which do not express SOX11.16 As mentioned above, t(11;14)-positive MM is 

another example of the inverse correlation of STAT3 activation and SOX11 expression, 

as the majority of MM cases show constitutive activation of STAT3.51 Our data, 

however, do not exclude additional mechanisms of SOX11 regulation as non-

concordant cases do exist, including JEKO-1, MCL#15 and MCL#24 (pY705 STAT3+, 

SOX11+) and MCL#11 (pY705 STAT3-, SOX11-). Similarly, despite AZD1480 effectively 

reduced pY705 STAT3 levels in JVM-2 cells, little SOX11 induction was observed, 

implicating a repressive mechanism other than pY705 STAT3 (Supplementary Figure 

S6A). The Epstein-Barr virus (EBV)-positive status of JVM-2 cells unlikely contributed to 

the lack of AZD1480-induced SOX11 expression, as EBV+ GRANTA-519 cells readily 

up-regulated SOX11 expression after STAT3 inhibition (Figure 5E, F and 

Supplementary Figure S6B). It is possible that mutations affecting SOX11 

transcriptional machinery exist in MCL cells with little STAT3 activity. In support of this 

notion, many MCL tumors, including JVM-2 cells, were found to harbor frameshift 
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mutations52-54 that affect mixed-lineage leukemia (MLL) 2 and/or MLL4 genes, which 

encode enzymes that methylate histone 3 lysine 4 (H3K4) and positively regulate gene 

transcription.55 Confirmation of these mutations and elucidation of the underlying 

mechanisms that regulate SOX11 expression are thus warranted. In addition, potential 

crosstalks between CCND1 and STAT3, which have been observed in other systems, 

may provide further clues to understand SOX11 regulation. For example, 

overexpression of a constitutively active form of STAT3 in HEK-293T cells56 or of a 

dominant negative variant of STAT3 in mouse NIH-3T3 cells57 directly activated or 

inhibited CCND1 promoter activity, respectively. Interestingly, CCND1 was also found to 

repress STAT3 activation in HepG2 cells.58 Therefore, investigating how such crosstalks 

influence SOX11 expression in the context of MCL will be needed to further improve our 

understanding of the complex SOX11 regulation. 

Our findings have implications for better understanding of the two clinically-

distinct MCL subtypes, i.e., typical and indolent MCL. We believe that the previously-

described post-germinal center phenotype of SOX11-negative, indolent MCL16,19 could 

be related to upregulated STAT3 activity. In contrast, MCLs that initially express high 

levels of CCND1 and SOX11 are likely prevented from plasmacytic differentiation, 

possibly due to SOX11-mediated PAX5 upregulation,19 and thus have low STAT3 

activity. Our data also have implications for the development of new treatment 

strategies for MCL. While CCND1 and SOX11 are promising therapeutic targets, 

pharmacological inhibitors for these molecules are currently not available. In contrast, 

despite the availability of small-molecule inhibitors for HDAC1 and HDAC2 or STAT3 

signaling, targeting these molecules would not be beneficial for MCL patients due to the 
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undesired effect of increasing SOX11 levels. Indeed, clinical studies in mantle cell 

lymphoma using vorinostat as a single agent have shown very modest activity to 

date. For example, Kirschbaum et al. found that none of nine MCL patients responded 

to vorinostat.59 Similarly, Ogura et al. showed that vorinostat had no effect on the overall 

survival of all four enrolled MCL patients.60 While the efficacy of STAT3 inhibition 

remains unclear from one study with limited MCL patient enrollment,61 the present study 

implicates that STAT3 may not be an ideal target in MCL owing to its negative role in 

SOX11 regulation. Instead, our data advocates for further studies that target the 

regulatory mechanisms of SOX11 to reduce SOX11 levels and potentially differentiate 

aggressive MCL tumors to an indolent phenotype. In support of this notion, we showed 

that IL21, a potent plasma cell-inducing cytokine,62 effectively up-regulated STAT3 

activity, leading to reduced SOX11 levels and viability in SOX11+ MCL cells. Our data 

are thus consistent with previous studies that showed IL21-mediated toxicity in MCL 

through a STAT3-dependent mechanism.63,64 However, IL21 susceptibility appears 

limited to MCL cell lines with low or negative STAT3 activity, as pY705 STAT3high MCL 

cells are resistant to IL21 treatment. Thus, our results also reveals pY705 STAT3 as a 

potential biomarker for IL21-based therapy. 

In summary, we have demonstrated that CCND1 and STAT3 play key roles in 

regulating SOX11 expression. CCND1 binds to and reduces recruitment of HDAC1 and 

HDAC2 to the SOX11 promoter, leading to increased histone acetylation and SOX11 

transcription. In contrast, STAT3 directly interacts with the SOX11 gene locus and its 

enhancer and functions as a transcriptional repressor. These findings have implications 

for our understanding of SOX11 deregulation in MCL and may have therapeutic 
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potential for MCL patients. 

 

Acknowledgements 

 This work was supported in part by the National Institutes of Health, National 

Cancer Institute Cancer Center Support Grant P30CA033572 to the City of Hope; the 

American Society of Hematology, the Gabrielle’s Angel Foundation for Cancer 

Research and the Department of Defense grant CA140945 to VNN. 

Author’s Contributions 

 AM and VNN designed the experiments. AM, NS, AP and VNN performed the 

experiments. AM, MM and VNN analyzed data. TVN provided essential research 

reagents. RWC, EB, MM, LP, LVP, LWK, DMW, DDW, STR, W-CC and MM provided 

and reviewed pathological data. DDW edited the manuscript. VNN directed the research 

and wrote the manuscript. 

Disclosure of Potential Conflicts of Interest 

 No potential conflicts of interest were disclosed by all authors.  

 

References 

1. Dy P, Penzo-Mendez A, Wang H, Pedraza CE, Macklin WB, Lefebvre V. The 
three SoxC proteins--Sox4, Sox11 and Sox12--exhibit overlapping expression patterns 
and molecular properties. Nucleic Acids Res. 2008;36(9):3101-3117. 
2. Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J. The establishment of 
neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 2006;20(24):3475-
3486. 
3. Bhattaram P, Penzo-Mendez A, Sock E, et al. Organogenesis relies on SoxC 
transcription factors for the survival of neural and mesenchymal progenitors. Nat 
Commun. 2010;1:9. 

For personal use only.on December 21, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


 

 22

4. Sock E, Rettig SD, Enderich J, Bosl MR, Tamm ER, Wegner M. Gene targeting 
reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue 
remodeling. Mol Cell Biol. 2004;24(15):6635-6644. 
5. Ek S, Dictor M, Jerkeman M, Jirstrom K, Borrebaeck CA. Nuclear expression of 
the non B-cell lineage Sox11 transcription factor identifies mantle cell lymphoma. Blood. 
2008;111(2):800-805. 
6. Wang X, Asplund AC, Porwit A, et al. The subcellular Sox11 distribution pattern 
identifies subsets of mantle cell lymphoma: correlation to overall survival. Br J 
Haematol. 2008;143(2):248-252. 
7. Mozos A, Royo C, Hartmann E, et al. SOX11 expression is highly specific for 
mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 
2009;94(11):1555-1562. 
8. Dictor M, Ek S, Sundberg M, et al. Strong lymphoid nuclear expression of SOX11 
transcription factor defines lymphoblastic neoplasms, mantle cell lymphoma and 
Burkitt's lymphoma. Haematologica. 2009;94(11):1563-1568. 
9. Brennan DJ, Ek S, Doyle E, et al. The transcription factor Sox11 is a prognostic 
factor for improved recurrence-free survival in epithelial ovarian cancer. Eur J Cancer. 
2009;45(8):1510-1517. 
10. Sernbo S, Gustavsson E, Brennan DJ, et al. The tumour suppressor SOX11 is 
associated with improved survival among high grade epithelial ovarian cancers and is 
regulated by reversible promoter methylation. BMC Cancer. 2011;11:405. 
11. Zvelebil M, Oliemuller E, Gao Q, et al. Embryonic mammary signature subsets 
are activated in Brca1-/- and basal-like breast cancers. Breast Cancer Res. 
2013;15(2):R25. 
12. Shepherd JH, Uray IP, Mazumdar A, et al. The SOX11 transcription factor is a 
critical regulator of basal-like breast cancer growth, invasion, and basal-like gene 
expression. Oncotarget. 2016;7(11):13106-13121. 
13. Weigle B, Ebner R, Temme A, et al. Highly specific overexpression of the 
transcription factor SOX11 in human malignant gliomas. Oncol Rep. 2005;13(1):139-
144. 
14. Lee CJ, Appleby VJ, Orme AT, Chan WI, Scotting PJ. Differential expression of 
SOX4 and SOX11 in medulloblastoma. J Neurooncol. 2002;57(3):201-214. 
15. Yao Z, Sun B, Hong Q, et al. The role of tumor suppressor gene SOX11 in 
prostate cancer. Tumour Biol. 2015;36(8):6133-6138. 
16. Navarro A, Clot G, Royo C, et al. Molecular subsets of mantle cell lymphoma 
defined by the IGHV mutational status and SOX11 expression have distinct biologic and 
clinical features. Cancer Res. 2012;72(20):5307-5316. 
17. Wang X, Bjorklund S, Wasik AM, et al. Gene expression profiling and chromatin 
immunoprecipitation identify DBN1, SETMAR and HIG2 as direct targets of SOX11 in 
mantle cell lymphoma. PLoS One. 2010;5(11):e14085. 
18. Kuo PY, Leshchenko VV, Fazzari MJ, et al. High-resolution chromatin 
immunoprecipitation (ChIP) sequencing reveals novel binding targets and prognostic 
role for SOX11 in mantle cell lymphoma. Oncogene. 2015;34(10):1231-1240. 
19. Vegliante MC, Palomero J, Perez-Galan P, et al. SOX11 regulates PAX5 
expression and blocks terminal B-cell differentiation in aggressive mantle cell 
lymphoma. Blood. 2013;121(12):2175-2185. 

For personal use only.on December 21, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


 

 23

20. Palomero J, Vegliante MC, Rodriguez ML, et al. SOX11 promotes tumor 
angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. 
Blood. 2014;124(14):2235-2247. 
21. Balsas P, Palomero J, Eguileor A, et al. SOX11 promotes tumor protective 
microenvironment interactions through CXCR4 and FAK regulation in mantle cell 
lymphoma. Blood. 2017;130(4):501-513. 
22. Nygren L, Baumgartner Wennerholm S, Klimkowska M, Christensson B, Kimby 
E, Sander B. Prognostic role of SOX11 in a population-based cohort of mantle cell 
lymphoma. Blood. 2012;119(18):4215-4223. 
23. Gustavsson E, Sernbo S, Andersson E, et al. SOX11 expression correlates to 
promoter methylation and regulates tumor growth in hematopoietic malignancies. Mol 
Cancer. 2010;9:187. 
24. Vegliante MC, Royo C, Palomero J, et al. Epigenetic activation of SOX11 in 
lymphoid neoplasms by histone modifications. PLoS One. 2011;6(6):e21382. 
25. Nordstrom L, Andersson E, Kuci V, et al. DNA methylation and histone 
modifications regulate SOX11 expression in lymphoid and solid cancer cells. BMC 
Cancer. 2015;15:273. 
26. Queiros AC, Beekman R, Vilarrasa-Blasi R, et al. Decoding the DNA Methylome 
of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. Cancer Cell. 
2016;30(5):806-821. 
27. Mohanty A, Sandoval N, Das M, et al. CCND1 mutations increase protein 
stability and promote ibrutinib resistance in mantle cell lymphoma. Oncotarget. 
2016;7(45):73558-73572. 
28. Townsend EC, Murakami MA, Christodoulou A, et al. The Public Repository of 
Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer 
Cell. 2016;30(1):183. 
29. Lin HP, Cheng ZL, He RY, et al. Destabilization of Fatty Acid Synthase by 
Acetylation Inhibits De Novo Lipogenesis and Tumor Cell Growth. Cancer Res. 
2016;76(23):6924-6936. 
30. Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for 
molecular targets in cancer. Nature. 2006;441(7089):106-110. 
31. Scuto A, Kujawski M, Kowolik C, et al. STAT3 inhibition is a therapeutic strategy 
for ABC-like diffuse large B-cell lymphoma. Cancer Res. 2011;71(9):3182-3188. 
32. Hamborg KH, Bentzen HH, Grubach L, Hokland P, Nyvold CG. A highly sensitive 
and specific qPCR assay for quantification of the biomarker SOX11 in mantle cell 
lymphoma. Eur J Haematol. 2012;89(5):385-394. 
33. Mohanty S, Mohanty A, Sandoval N, et al. Cyclin D1 depletion induces DNA 
damage in mantle cell lymphoma lines. Leuk Lymphoma. 2016:1-13. 
34. Fernandez V, Salamero O, Espinet B, et al. Genomic and gene expression 
profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70(4):1408-
1418. 
35. Perez-Galan P, Mora-Jensen H, Weniger MA, et al. Bortezomib resistance in 
mantle cell lymphoma is associated with plasmacytic differentiation. Blood. 
36. Consortium EP. An integrated encyclopedia of DNA elements in the human 
genome. Nature. 2012;489(7414):57-74. 

For personal use only.on December 21, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


 

 24

37. Avery DT, Deenick EK, Ma CS, et al. B cell-intrinsic signaling through IL-21 
receptor and STAT3 is required for establishing long-lived antibody responses in 
humans. J Exp Med. 2010;207(1):155-171. 
38. Hedvat M, Huszar D, Herrmann A, et al. The JAK2 inhibitor AZD1480 potently 
blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell. 2009;16(6):487-
497. 
39. Zeng R, Spolski R, Casas E, Zhu W, Levy DE, Leonard WJ. The molecular basis 
of IL-21-mediated proliferation. Blood. 2007;109(10):4135-4142. 
40. Hillion J, Dhara S, Sumter TF, et al. The high-mobility group A1a/signal 
transducer and activator of transcription-3 axis: an achilles heel for hematopoietic 
malignancies? Cancer Res. 2008;68(24):10121-10127. 
41. Levy DE, Darnell JE, Jr. Stats: transcriptional control and biological impact. Nat 
Rev Mol Cell Biol. 2002;3(9):651-662. 
42. Bienvenu F, Jirawatnotai S, Elias JE, et al. Transcriptional role of cyclin D1 in 
development revealed by a genetic-proteomic screen. Nature. 2010;463(7279):374-378. 
43. Fu M, Rao M, Bouras T, et al. Cyclin D1 inhibits peroxisome proliferator-activated 
receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol 
Chem. 2005;280(17):16934-16941. 
44. Di LJ, Fernandez AG, De Siervi A, Longo DL, Gardner K. Transcriptional 
regulation of BRCA1 expression by a metabolic switch. Nat Struct Mol Biol. 
2010;17(12):1406-1413. 
45. Harb K, Magrinelli E, Nicolas CS, et al. Area-specific development of distinct 
projection neuron subclasses is regulated by postnatal epigenetic modifications. Elife. 
2016;5:e09531. 
46. Fu M, Wang C, Rao M, et al. Cyclin D1 represses p300 transactivation through a 
cyclin-dependent kinase-independent mechanism. J Biol Chem. 2005;280(33):29728-
29742. 
47. Reutens AT, Fu M, Wang C, et al. Cyclin D1 binds the androgen receptor and 
regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-
dependent manner. Mol Endocrinol. 2001;15(5):797-811. 
48. Lee Y, Dominy JE, Choi YJ, et al. Cyclin D1-Cdk4 controls glucose metabolism 
independently of cell cycle progression. Nature. 2014;510(7506):547-551. 
49. Chen YH, Gao J, Fan G, Peterson LC. Nuclear expression of sox11 is highly 
associated with mantle cell lymphoma but is independent of t(11;14)(q13;q32) in non-
mantle cell B-cell neoplasms. Mod Pathol. 2010;23(1):105-112. 
50. Baran-Marszak F, Boukhiar M, Harel S, et al. Constitutive and B-cell receptor-
induced activation of STAT3 are important signaling pathways targeted by bortezomib in 
leukemic mantle cell lymphoma. Haematologica. 2010;95(11):1865-1872. 
51. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of 
Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. 
Immunity. 1999;10(1):105-115. 
52. Rahal R, Frick M, Romero R, et al. Pharmacological and genomic profiling 
identifies NF-kappaB-targeted treatment strategies for mantle cell lymphoma. Nat Med. 
2014;20(1):87-92. 

For personal use only.on December 21, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


 

 25

53. Bea S, Valdes-Mas R, Navarro A, et al. Landscape of somatic mutations and 
clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A. 
2013;110(45):18250-18255. 
54. Zhang J, Jima D, Moffitt AB, et al. The genomic landscape of mantle cell 
lymphoma is related to the epigenetically determined chromatin state of normal B cells. 
Blood. 2014;123(19):2988-2996. 
55. Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of 
regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65-
95. 
56. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell. 
1999;98(3):295-303. 
57. Sinibaldi D, Wharton W, Turkson J, Bowman T, Pledger WJ, Jove R. Induction of 
p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: 
role of activated STAT3 signaling. Oncogene. 2000;19(48):5419-5427. 
58. Bienvenu F, Gascan H, Coqueret O. Cyclin D1 represses STAT3 activation 
through a Cdk4-independent mechanism. J Biol Chem. 2001;276(20):16840-16847. 
59. Kirschbaum M, Frankel P, Popplewell L, et al. Phase II study of vorinostat for 
treatment of relapsed or refractory indolent non-Hodgkin's lymphoma and mantle cell 
lymphoma. J Clin Oncol. 2011;29(9):1198-1203. 
60. Ogura M, Ando K, Suzuki T, et al. A multicentre phase II study of vorinostat in 
patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle 
cell lymphoma. Br J Haematol. 2014;165(6):768-776. 
61. Hong D, Kurzrock R, Kim Y, et al. AZD9150, a next-generation antisense 
oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma 
and lung cancer. Sci Transl Med. 2015;7(314):314ra185. 
62. Ettinger R, Sims GP, Fairhurst AM, et al. IL-21 induces differentiation of human 
naive and memory B cells into antibody-secreting plasma cells. J Immunol. 
2005;175(12):7867-7879. 
63. Gelebart P, Zak Z, Anand M, Dien-Bard J, Amin HM, Lai R. Interleukin-21 
effectively induces apoptosis in mantle cell lymphoma through a STAT1-dependent 
mechanism. Leukemia. 2009;23(10):1836-1846. 
64. Bhatt S, Matthews J, Parvin S, et al. Direct and immune-mediated cytotoxicity of 
interleukin-21 contributes to antitumor effects in mantle cell lymphoma. Blood. 
2015;126(13):1555-1564. 
 

 

 

 

 

FIGURE LEGENDS  

For personal use only.on December 21, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


 

 26

Figure 1. CCND1 upregulates SOX11 expression. A. Immunoblot analysis of Z-138 

and JEKO-1 cells stably transduced with empty vector (EV), WT or Y44D mutant 

CCND1-HA constructs. Cell lysates (30 μg per lane) were separated by SDS-PAGE gel 

and immunoblotted with indicated antibodies. Arrow indicates a mobility shift of the 

CCND1-HA protein. Arrowhead indicates endogenous CCND1. B. Quantitative PCR 

(qPCR) analysis of SOX11 mRNA expression. Cell lines generated as described in (A) 

and mRNAs were harvested for SOX11 qPCR. Shown are the means of mRNA 

expression levels after normalization to GAPDH signals from four independent 

amplification experiments. Error bars, SD. *** P<0.001 by a 2-sided Student t-test. (See 

also Supplementary Figures S1A, B). C. CCND1 is required for SOX11 expression. Z-

138 and JEKO-1 cells were stably transduced with control or CCND1 shRNA and 

protein expression was analyzed by immunoblotting with indicated antibodies 2 days 

after transduction. D. Effect of CCND1 knockdown on cell survival. Z-138 and JEKO-1 

cells were stably transduced with control or CCND1 shRNA and propidium iodide (PI)-

negative (viable) cells were assessed by flow cytometry over time. Shown are the 

means of PI negative fractions compared to day-2 samples from at least two 

independent experiments. E. Effect of SOX11 knockdown on MCL survival. Indicated 

MCL cell lines were transduced with control or SOX11 shRNA lentiviral vector that 

coexpresses GFP. Shown are the means of GFP+ fractions compared to Day 2 from two 

independent experiments. F. Z-138 cells expressing EV, WT or Y44D CCND1-HA were 

treated with 10 μM of cyclohexamide (CHX) for indicated times and cell lysates were 

prepared for immunoblot analysis with indicated antibodies. Numbers below 
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immunoblots are relative densitometric values of corresponding bands after 

normalization to ACTIN or GAPDH and respective control signals.   

 

 

Figure 2. CCND1 affects histone modifications at the SOX11 locus. A. ENCODE 

H3K9Ac ChIP-Seq data for H1-hESC cells show SOX11 gene regions that have positive 

ChIP peak signals. Arrows indicate regions where PCR primers were designed. B-F. 

H3K9/14Ac chromatin immunoprecipitation assays for the SOX11 gene from indicated 

cells stably transduced with empty vector or CCND1 (B-E) or treated with 1μM of SAHA 

for 16 h (F). Bar graphs show means of qPCR signals of DNA regions 1 or 2 (amplicon 

1 and 2) pulled down by the H3K9/14Ac antibody as fold enrichment relative to the 

background signals from the isotype control IgG antibody. Error bars, SD. *** P<0.001, 

**** P<0.0001 by a 2-sided Student t-test. G. Immunoblot analysis of Z-138 cells treated 

with 2 μM of SAHA for 3 h and immunoblotted with indicated antibodies. 

 

Figure 3. CCND1 interacts with HDAC1 and HDAC2.  A. HEK-293T cells were 

transiently co-transfected with untagged CCND1 and individual HA-tagged HDACs and 

immunoprecipitated with HA antibody followed by immunoblotting with indicated 

antibodies. Lysates before immunoprecipitation were used as input samples. Arrow 

indicates specific bands for HDAC4-HA B. Z-138 cells or primary MCL samples were 

immunoprecipitated with isotype control IgG, CCND1 or HDAC1 antibody and 

immunoblotted with indicated antibodies. Lysates before immunoprecipitation were used 

as input samples. Arrow, specific HDAC1 staining. * non-specific bands. C, D. Z-138 
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and JEKO-1 cells were stably transduced with control, HDAC1 (C) or HDAC2 (D) 

shRNA and protein expression was analyzed by immunoblot analysis with indicated 

antibodies 3 days after transduction (See also Supplementary Figures S3A-C). * non-

specific bands. 

 

Figure 4. Reduced chromatin localization of HDAC1 in CCND1 overexpressing 

cells. A. Chromatin immunoprecipitation assays for the SOX11 gene from Z-138 cells 

stably transduced with empty vector (EV), WT or mutant Y44D CCND1. Bar graphs 

show means of quantitative PCR signals of region 1 (amplicon 1) pulled down by the 

HDAC1 antibody as fold enrichment relative to the background signals from the isotype 

control IgG antibody. Error bars, SD. **** P<0.0001 by a 2-sided Student t-test. B. 

Cytosolic, soluble and insoluble nuclear extracts were prepared as described in 

Materials and Methods from Z-138 cells that stably expressed empty vector or WT 

CCND1-HA. The extracts were immunoblotted with indicated antibodies. LAMIN A/C 

and histone H3 were used to confirm nuclear fractions. Cyto, cytoplasmic; Nu, soluble 

nuclear fraction; Insol, insoluble nuclear fraction (See also Supplementary Figures 

S4). 

 

Figure 5. STAT3 negatively regulates SOX11 expression. A. JEKO-1 and JVM-2 

cells were transduced with empty vector (EV) or CCND1-HA and cell lysates were 

immunoblotted with indicated antibodies. B. Box plots of relative SOX11 and CCND1 

mRNA expression in primary MCL cases. Gene expression data for SOX11 and CCND1 

were obtained from GSE1645534 (see Supplementary Table S6) and plotted using 
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GraphPad Prism v7.0a. **** P<0.0001 by a 2-sided Student t-test, n.s. non-significance 

(See also Supplementary Figure S5A, B). C, D. Immunoblot analysis of MCL cell lines 

(C) or MCL PDXs and primary MCL cases (D) with indicated antibodies. E. Indicated 

MCL cell lines were treated with indicated doses of the JAK1/2 inhibitor AZD1480 for 16 

h and immunoblotted with indicated antibodies. (See also Supplementary Figure S6A, 

B). F, Indicated MCL cell lines were treated with AZD1480 as in (E) and SOX11 mRNA 

was analyzed by qPCR. Shown are the means of mRNA expression levels after 

normalization to GAPDH signals from four independent amplification experiments. G. 

JEKO-1 or GRANTA-519 cells were transduced with control or STAT3 shRNA and 

protein lysates were prepared for immunoblot analysis with indicated antibodies. H. 

Indicated MCL lines were treated with 500 nM of AZD1480 for 16 h and SOX11 mRNA 

was analyzed by qPCR. Bar graphs show the means of mRNA expression levels after 

normalization to GAPDH signals from four independent amplification experiments. Error 

bars, SD. ** P<0.01, *** P<0.001 by a 2-sided Student t-test.  

 

Figure 6. Effects of IL21 on STAT3 activity, SOX11 expression and cell viability in 

MCL cells. A. Indicated MCL cell lines were treated with 50 ng/ml of IL21 for 96 h and 

SOX11 mRNA was analyzed by qPCR. Shown are the means of mRNA expression 

levels after normalization to GAPDH signals from four independent amplification 

experiments. B. Immunoblot analysis of indicated MCL cell lines treated as described in 

(A). C. Immunoblot analysis of MCL PDX models treated with 50 ng/ml of IL21 for 72 h. 

D. Indicated MCL cell lines were treated with 50 ng/ml of IL21 and viable cells (PI-

negative) were assessed by flow cytometry at indicated times. Shown are the means of 
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PI-negative fractions compared to untreated samples from at least two independent 

experiments. E. MCL PDX cells were treated with IL21 and viable cells were analyzed 

as in (D) for the indicated times. Shown are the means of PI-negative fractions 

compared to untreated samples from at least two independent experiments. Error bars, 

SD. ** P<0.01, *** P<0.001, **** P<0.0001 by a 2-sided Student t-test.  

 

Figure 7. pY705 STAT3 is directly recruited to the SOX11 gene. A. Top panel, 

Diagram of the SOX11 gene and enhancer (not drawn to scale). Arrows indicate STAT3 

binding sites. Bottom panel, JEKO-1 cells were treated with 500 nM of AZD1480 or 

DMSO for 16 h and chromatin immunoprecipitation assays were performed using the 

pY705 STAT3 antibody. B. Chromatin immunoprecipitation assays using isotype IgG or 

H3K9/14Ac antibody for MAVER-1 cells treated with  500 nM of AZD1480 or DMSO for 

16 h. Bar graphs (A, B) show means of qPCR signals from four independent 

amplification experiments using primers to regions 1-4 (Amplicons). Data are shown as 

the percentage of total input chromatin DNA. Error bars, SD. * P<0.05, ** P<0.01, *** 

P<0.001, **** P<0.0001 by a 2-sided Student t-test. C. A proposed model of SOX11 

expression through distinct mechanisms mediated by CCND1 and STAT3 in typical or 

indolent form of MCL.  
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