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Porous carbons have been widely utilized as electrode materials for capacitive energy storage. Whereas
the importance of pore size and geometry on the device performance has been well recognized, little
guidance is available for identification of carbon materials with ideal porous structures. In this work,
we study the phase behavior of ionic fluids in slit pores using the classical density functional theory.
Within the framework of the restricted primitive model for nonaqueous electrolytes, we demonstrate
that the accessibility of micropores depends not only on the ionic diameters (or desolvation) but also
on their wetting behavior intrinsically related to the vapor-liquid or liquid-liquid phase separation of
the bulk ionic systems. Narrowing the pore size from several tens of nanometers to subnanometers may
lead to a drastic reduction in the capacitance due to capillary evaporation. The wettability of micropores
deteriorates as the pore size is reduced but can be noticeably improved by raising the surface electrical
potential. The theoretical results provide fresh insights into the properties of confined ionic systems
beyond electric double layer models commonly employed for rational design/selection of electrolytes
and electrode materials. Published by AIP Publishing. https://doi.org/10.1063/1.5064360

I. INTRODUCTION

Capacitive energy storage hinges on electrochemical
adsorption/desorption of ionic species at the surface of porous
electrodes that are typically made of various forms of acti-
vated carbons.1,2 The energy storage capacity can be improved
by increasing the electric double layer (EDL) capacitance,
which is linearly proportional to the surface area, and/or by
using nonaqueous electrolytes (viz., organic electrolytes or
room-temperature ionic liquids) with wide operating poten-
tial windows (OPW). The importance of pore size and shape
on capacitive energy storage has been well documented.3,4

The customary opinion is that mesoporous carbons, with the
average pore size larger than 2 nm, are ideally suited for
the electrode material, while micropores make no significant
contributions to energy storage because they are not easily
accessible to solvated ions and the ionic motions in such pores
may be severely compromised.5 Recently, a number of exper-
imental and theoretical studies indicate that an anomalous
increase in the EDL capacitance can be achieved by match-
ing the pore size with the diameters of ionic species6 and
that ion diffusion in micropores can be an order of magni-
tude faster than that in the bulk.7 However, it has been shown
by Monte Carlo (MC) simulation that a first-order phase tran-
sition may occur in porous electrodes when the pore size is
comparable to the ion size.8–10 Recent molecular dynamics
(MD) simulation also indicates that capillary evaporation may

a)Author to whom correspondence should be addressed: jwu@engr.ucr.edu

take place in 1-ethyl-3-methylimidazolium tetrafluoroborate
([EMIM][BF4]) confined between solvophobic sheets.11

Experimental verification of the pore-size effects on EDL
capacitance has been elusive because activated carbons typi-
cally do not have a well-defined pore structure. The problem
is further complicated by the imprecise characterization of
porous materials in terms of the surface areas and the pore
size distributions. For example, the Brunauer-Emmett-Teller
(BET) adsorption isotherms are routinely used to determine
the specific surface areas of porous material, but it only works
for adsorbents with large pores because it assumes uniform
adsorption of gas molecules on a flat surface without lateral
interactions. For micropores (pore size < 2 nm), the BET
analysis describes only an apparent surface area instead of
a true geometrically accessible area. The BET and geomet-
rical surface areas may differ by orders of magnitude.12 It
has been shown that the capacitance per unit area is vir-
tually independent of the average pore size for an organic
electrolyte, (C2H5)4NBF4/acetonitrile, in electrodes made of
carbon monoliths with narrow pore size distributions.13 Fur-
thermore, carbon electrodes exhibiting a large area-specific
capacitance are not necessarily correlated with those with a
high gravimetric capacitance.14 Nevertheless, a number of
theoretical investigations of ionic liquids in idealized pores
unequivocally predict a maximized capacitance when the pore
size is comparable to the ion diameters, albeit the oscilla-
tory dependence of the capacitance on the pore size has been
subjected to rather different interpretations.15–18 While vari-
ous effects may contribute to the oscillatory variation of the
capacitance as a function of the pore size, the discrepancy
between theory and the experiment may also arise from the
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accessibility of micropores to ionic species. To our knowl-
edge, none of previous investigations of EDL capacitance
account for the accessibility or the phase behavior of ionic
liquids in small pores at conditions pertinent to energy
storage.

Conventionally the accessibility of ionic fluids to the
micropores of a carbon electrode is often loosely defined in
terms of the pore geometry; viz., a pore is accessible to sol-
vated or bare ions if its size is larger than the ion diameter.
While the geometric constraint for the accessibility of individ-
ual ions is rather intuitive, such a definition of pore accessibility
can easily be misleading because it assumes molecules as
rigid bodies and ignores multi-body correlations or collective
effects. Micropores larger than the ionic diameters may not
make a significant contribution to energy storage if the ion
density inside the pore is exceedingly low. Boukhalfa et al.
used in situ small angle neutron scattering (SANS) to study
the electroadsorption of organic ions in carbon pores of dif-
ferent sizes. They observed incomplete wetting of the smallest
carbon pores by deuterated acetonitrile and enhanced ion sorp-
tion in subnanometer pores under the applied potential. This
behavior may explain the characteristic butterfly wing shape of
the cyclic voltammetry curve of specific capacitance in elec-
trical double layer capacitors.19 The low-density state may
be introduced by either vapor-liquid or liquid-liquid separa-
tion of the ionic fluid inside the pore. Unlike the size effects,
phase transitions are collective phenomena depending not only
on the interactions of ionic species with the pore surface and
with themselves but also on the thermodynamic conditions.20

Although the wettability of micropores has been routinely dis-
cussed in the literature and, clearly, it plays an important role
in commercial applications of porous electrodes, substantially
less attention has been given to the phase behavior of ionic
liquids and organic electrolytes under confinement. Previous
studies on the pore-size effects on electrode performance are
mostly focused on the EDL capacitances and the ionic dis-
tributions without an explicit consideration of possible phase
transitions.3

Phase transitions in inhomogeneous simple fluids have
been reasonably well understood.21 However, much less is
known about how the phase behavior of ionic systems is influ-
enced by confinement, especially under conditions whereby
ionic fluids in micropores are subject to an external electrical
potential. The long-range Coulomb interactions make the crit-
ical behavior and phase transitions in ionic fluids substantially
more complicated than those corresponding to neutral sys-
tems.22 In comparison to the bulk systems, theoretical studies
of the phase behavior of ionic liquids under confinement are
necessarily even more difficult because they must account for
the density inhomogeneity and be consistent with the existing
results in the bulk limit.

Previous studies on the phase behavior of ionic liquids in
the bulk are largely based on the restricted primitive model
(RPM), in which ions are described as charged hard spheres
of the same size and absolute valence.23 RPM has been widely
used to represent the properties of both aqueous and organic
electrolyte solutions, molten salts, as well as room-temperature
ionic liquids.24 Although the model is much oversimplified
to quantitatively reproduce the thermodynamic properties of

any specific electrolyte, it incorporates key features of ion-
ion interactions, namely, the excluded volume effects and the
Coulomb potential, which are essential to describe the unique
properties of ionic systems. As a result, RPM is routinely
used to study the phase behavior of ionic systems includ-
ing liquid-liquid equilibrium in organic electrolytes25,26 and
wetting transitions of ionic liquids.27,28

Classical density functional theory (DFT) represents one
of the most efficient theoretical tools to study phase transi-
tions in confined fluids.29,30 Previously, different versions of
DFT had been applied to describe the vapor-liquid coexis-
tence of ionic fluids confined in slit pores.31,32 Within the
framework of RPM for ionic systems, DFT predicts that con-
finement leads to a narrowed vapor-liquid coexistence region
and reduces both the critical temperature and the critical den-
sity as the pore width decreases. It was found that an explicit
consideration of association between oppositely charged ions
reduces the critical temperature but does not change the
qualitative behavior of the vapor-liquid-like phase diagram
of confined ionic fluids. Similar predictions were made for
the same ionic model in a cylindrical pore using the field-
theoretical variational approach33 and in a disordered porous
matrix using the method of collective variables.34,35 Con-
sistent with MC simulations,8,9,36 these theoretical methods
predict that the vapor-liquid coexistence region gets narrower
as the pore width or porosity decreases. However, opposite
trends were observed on the dependence of capillary evap-
oration on the electrostatic potential. While MC simulation
shows that an ionic liquid in narrow pores can be stabi-
lized by applying a surface electrical potential, classical DFT
predicts destabilizing effects, suggesting that the theoretical
results are sensitive to the formulation of the free-energy
functional.

In this work, we study the wettability of nonaqueous elec-
trolytes in the slit pores of carbon electrodes using a new
version of classical DFT. RPM is used as a unified model
to represent both vapor-liquid and liquid-liquid phase sepa-
rations in ionic liquids and in organic electrolytes, respec-
tively. Special attention is given to the effects of pore size
and surface electrical potential on capillary evaporation and
its implications to the properties of ionic fluids in the micro-
pores of activated carbons important for capacitive energy
storage. We find that capillary evaporation becomes more
likely to occur as the pore width decreases and that the
critical surface electrical potential exhibits a non-monatomic
dependence on the pore size. The theoretical results offer
fresh insights into the accessibility of ionic fluids to the
ultrasmall pores of activated carbons important for the ratio-
nal design and optimization of porous structure for energy
storage.

II. THE IONIC LIQUID MODEL AND THEORY
A. The restricted primitive model

The restricted primitive model (RPM) assumes that
cations and anions have the same diameter (σ+ = σ− = σ)
and valence (Z+ = −Z− = 1). In dimensionless units, the pair
potential between two ionic species is given by
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βuij(r) =



∞, r < σij

ZiZjlB/r, r ≥ σij,
(1)

where r is the center-center distance between ions i and j,
σij = (σi + σj)/2, β = 1/kBT, and lB = βe2/(4πε0ε) is the
Bjerrum length. As usual, kB is the Boltzmann constant, T is
the absolute temperature, e is the unit charge, ε0 is the vacuum
permittivity, and ε is the relative permittivity of the dielectric
background.

In a slit-like pore of width H, each ion experiences an
external energy along the normal direction of the planar walls
positioned at z = 0 and z = H,

Vi(z) = VHW
i (z) + VC

i (z), (2)

where VHW
i (z) represents the hard-wall potential

VHW
i (z) =




∞, z < σi/2 or z > H − σi/2

0, otherwise
(3)

and VC
i (z) is the electrical potential due to the surface charge

of the planar walls

βVC
i (z) = −2πlBZiHQ/e, (4)

where Q is the surface charge density for each wall.
Figure 1 shows schematically that an ionic fluid in the

bulk may exist either as a liquid or as a vapor (in the con-
text of organic electrolytes, two liquid states of different ion
densities) in a slit pore. For an ionic fluid with only one
type of cations and one type of anions, the phase behavior
in the bulk is typically described in terms of reduced temper-
ature T ∗ = 4πεε0σ/(βe2) = σ/lB and reduced overall density
ρ∗ = (ρ+ + ρ−)σ3, where ρ+ and ρ− are the number den-
sities of cations and anions. For the ionic fluid in a slit
pore, the phase behavior depends on thermodynamic con-
ditions in the bulk as well as on the pore width and the
surface charge or the surface electrical potential (i.e., volt-
age). Throughout this work, the pore width and the distance
from a slit surface are denoted as H∗ = H/σ and z∗ = z/σ,
respectively. The dimensionless electric potential is defined as
ψ∗ = βψe, and the dimensionless charge density at the wall is
Q∗ = Qσ2/e.

FIG. 1. Schematic picture of the model ionic liquid in a slit pore. The bulk
liquid is in equilibrium with either a liquid-like or a vapor-like phase under
confinement.

RPM has been extensively used to represent, among other
electrolyte systems, the phase behavior of both room tempera-
ture ionic liquids and organic electrolytes. In the former case,
the relative permittivity accounts for polarizability effects and
other ionic interactions not included in the charged hard-sphere
model. In applications of RPM to organic electrolytes, we
assume that the solvent is a dielectric continuum with relative
permittivity ε . At room temperature, the dielectric constants
of bulk ionic liquids are approximately in the range of 5–15,37

and ε = 5.5 is chosen in this work to represent a residual rela-
tive permittivity for pair interactions between ions. The same
dielectric constant is assumed for organic electrolytes or ionic
liquids in organic solvents. It should be noted that, for a given
ionic system, the relative permittivity is in general not the same
as that corresponding to the bulk value; the former accounts
for interactions beyond the Coulomb potential between a pair
of isolated ions in the medium, while the latter is related
to the potential of mean force between ions in a bulk ionic
system.

To make RPM relevant to EDL capacitors for energy
storage, we take dimensionless temperature T ∗ = 0.05
for most of our discussions on the pore size and the
surface voltage effects on wettability. Approximately, the
condition corresponds to an ionic liquid or an organic
electrolyte of ion diameter σ = 0.5 nm at temperature
T ≈ 300 K (e.g., ionic liquid 1-ethyl-3-methylimidazolium bis-
(trifluoromethylsulfonyl)imide(EMIM-TFSI) or ionic solu-
tions of C18mim-NTF2 in decalin). The dimensionless
temperature is lower than that corresponding to the critical
temperature for the vapor-liquid equilibrium of the bulk ionic
system presented by the equation of state used in this work
T ∗c ≈ 0.072.

B. Classical DFT

The basic ideas of classical DFT have been described in
detail.29,30 From a theoretical perspective, the essential task
is to derive an analytical expression for the grand potential
Ω, or equivalently, the intrinsic Helmholtz free energy F, as a
functional of the density profiles of underlying particles. For
an inhomogeneous ionic fluid represented by RPM, the grand
potential is related to the intrinsic Helmholtz functional via the
Legendre transformation

Ω
[
ρi

(
r
)]
= F

[
ρi

(
r
)]

+
∫

dr
∑

i

ρi
(
r
) [

Vi
(
r
)
− µi

]
, (5)

where µi and ρi(r) denote the chemical potential and the den-
sity profiles of ionic species i, respectively, and V i(r) stands
for a one-body external potential. In a slit pore, both the
external potential and the ionic density profiles vary only in
the z-direction, i.e., V i(r) = V i(z) and ρi(r) = ρi(z). Equi-
librium properties of the system can be obtained by mini-
mizing the grand potential with respect to the ionic density
profiles.

A number of classical DFT methods are available to
describe the thermodynamic properties of inhomogeneous
ionic systems.38,39 Different versions of DFT distinguishes
from each other in formulating the intrinsic Helmholtz free
energy F, which is conventionally decomposed into an ideal
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part to account for the particle translational entropy and an
excess for inter-particle interactions,

F[ρi(r)] = F id[ρi(r)] + Fex [ρi(r)
]
. (6)

For ionic systems considered in this work, the ideal-gas term
is known exactly,

βF id[ρi(r)] =
∑

i=+,−

∫
drρi(r)

[
ln(ρi(r)Λ3

i ) − 1
]
, (7)

where Λi denotes the thermal wavelength, a parameter imma-
terial to phase-equilibrium calculations.

Most previous applications of classical DFT to ionic
systems are based on an excess intrinsic Helmholtz energy
derived from various forms of the mean-spherical approxima-
tion (MSA).40 While these methods are able to predict ionic
density profiles in reasonably good agreement with simulation
data, MSA provides a poor description of the phase behavior of
ionic fluids in the bulk. It fails to reproduce the existence of the
liquid-vapor coexistence from the virial or the compressibility
equation of state, and its predictions of the critical temper-
ature and the critical density through the energy route show
severe deviations from molecular simulation values. It has
been shown that, to represent the phase behavior of bulk sys-
tems, the theoretical performance of MSA can be significantly
improved by incorporation of association between oppositely
charged ions.41,42

Considering the discrepancy between the previous DFT
predictions31 and simulation results8 on the effect of the sur-
face potential on capillary evaporation, we propose in this work
a new theoretical scheme whereby MSA is used to account
for electrostatic correlations, and the thermodynamic pertur-
bation theory (TPT) is used to represent association between
oppositely charged ions. Specifically, we incorporate the mod-
ified fundamental measure theory (MFMT) to account for the
ionic excluded volume effects,43,44 the reference fluid den-
sity (RFD) perturbation for electrostatic correlations,45 and
an extension of MFMT for the association free energy.46 The
excess intrinsic Helmholtz energy can be formally written
as

Fex[ρi(r)] = Fex
hs [ρi(r)] + Fex

C [ρi(r)] + Fex
el [ρi(r)] + Fex

as [ρi(r)],

(8)

where Fex
hs [ρi(r)] represents the contribution to the free energy

functional due to hard-sphere repulsions, Fex
C [ρi(r)] is the

direct Coulomb energy, Fex
el [ρi(r)] arises from electrostatic

correlations, and Fex
as [ρi(r)] is that from ion associations.

Explicit expressions for the individual terms in Eq. (8) are
given in the Appendix.

Minimizing the grand potential with respect to the ionic
density profiles yields the Euler-Lagrange equation,

ρi(z) = ρb
i exp[βµex

i − βZieψ(z) − βλex
i (z)], (9)

where ρb
i and µex

i stand for the ionic density and the excess
chemical potential of species i in the bulk, respectively, ψ(z)
represents the local electrical potential, and λex

i (z) is the local
one-body potential other than that due to the direct Coulomb
interactions. The excess chemical potential of species i in
the bulk can be calculated from MSA. The local electrical

potential is related to the surface charge density and the direct
electrostatic interactions among ionic species

Zieψ(z) = VC
i +

δFex
C

δρi(z)
. (10)

The electrical potential can be solved from the local charge
density from the Poisson equation,

∇2ψ(z) = −
1
εε0

∑
i

Zieρi(z). (11)

For the model electrolyte systems discussed in this work, the
extra one-body potential can be written as

λex
i (z) = VHW

i (z) +
δFex

hs

δρi(z)
+
δFex

el

δρi(z)
+
δFex

as

δρi(z)
. (12)

With suitable boundary conditions and an analytical
expression for each item in Eq. (12), we can numerically solve
for the density profiles from Eq. (9) using the Picard iteration.
From the ionic density profiles, we then calculate the average
density of all ions in the pore,

ρ =

∫ H

0
dz

∑
i

ρi(z)/H . (13)

In classical DFT calculations, the ionic density profiles are
typically obtained by specifying the surface electrical poten-
tial rather than the surface charge density. For an ionic liquid
confined in a slit pore of fixed width and surface electrical
potential, we can calculate the surface charge density from the
electroneutrality condition for the entire system,

Q = −
1
2

∑
i

Zie
∫
ρi(z)dz. (14)

III. RESULTS AND DISCUSSIONS
A. Phase diagram of confined ionic fluids

We consider first the phase diagram for the model ionic
system in slit pores with uncharged walls. Because of the
symmetry for cations and anions, the local electric potential,
as well as the local charge density, is everywhere zero, i.e.,
ψ∗(z) = 0 and q∗(z) = 0. In construction of the phase dia-
gram, we calculate the vapor-like and the liquid-like density
profiles at different chemical potentials of the ionic species at
each temperature. Subsequently, we obtain two curves for the
dependence of the grand potential versus the chemical poten-
tial, and the crossing point corresponds to the condition of
phase coexistence inside the pore.

Figure 2(a) illustrates the dependence of the reduced grand
potential, βΩ, on the reduced chemical potential of the ionic
species, βµ, in a H∗ = 5.0 pore at two representative tem-
peratures, T ∗ = 0.050 and 0.0525. At each temperature, the
two curves provide the thermodynamic relations for the dilute-
and the concentrated-branches of the confined ionic system,
and their intersection corresponds to the condition of phase
equilibrium, i.e., two ionic density profiles for the coexisting
vapor-like and liquid-like phases (or dilute and concentrated
electrolytes) inside the pore. By applying the same procedure
to different temperatures, we can construct a phase diagram in



234708-5 Liu, Zhang, and Wu J. Chem. Phys. 149, 234708 (2018)

FIG. 2. (a) The reduced grand potential versus the reduced chemical potential
of ionic species in a H = 5.0σ slit pore. (b) Phase diagram for the ionic fluid
in the bulk (solid line) and in different neutral slit pores.

terms of the reduced temperature and the average reduced ion
density similar to that for the bulk system.

Figure 2(b) shows the vapor-liquid-like coexistence
curves for the model ionic system in slit pores of different pore
widths. The solid line corresponds to the coexistence curve in
the bulk. Consistent with earlier theoretical investigations,32,47

confinement narrows the phase coexistence envelope. While
the dilute branch is weakly dependent on the slit pore width,
the concentrated branch considerably shifts leftwards as the
pore width decreases. Two effects might be responsible for
the shift of the binodal curve. First, inhomogeneous screen-
ing of electrostatic interactions results in a correlation effect
responsible for ion depletion near the surface:48 an ion inter-
acts more favorably with its full ionic atmosphere far away
from the surface than that in the vicinity of the surface. Sec-
ond, the leftward shift may also be attributed to the inclu-
sion of association between oppositely charged ions. Pizo and
Sokołowski32 compared the phase diagram of the ionic system
with and without ion associations. They found that formation
of pairs between oppositely charged ions alters the effective
interactions between all particles. The ion pairing results in
a weaker effective attraction between structural entities and
thus lowers the critical temperature of the phase transition. In
Fig. 2(b), we did not include the critical points for the con-
fined ionic systems due to numerical issues. Nevertheless, it
is clear that confinement reduces the critical temperature and
the critical density as predicted before.31 As the pore width
decreases, the entire coexistence curve is shifted toward lower

temperatures and lower densities in comparison to the bulk
phase diagram.

As shown in Fig. 3, the depletion effect near a neutral
wall is evident from the ionic density profiles. For the model
ionic system in a neutral slit pore, the density profiles of the
cations and anions are identical due to the system symmetry. In
a dilute phase, the average ion density is small such that the cor-
relation effect is relatively insignificant. As the ionic density
increases, electrostatic correlation becomes more important
and ion depletion from the surface is more magnified. Similar
to the bulk phase diagram, the average coexisting density of
the liquid-like phase falls as temperature increases, while the
trend is opposite for the vapor-like phase.

B. Capillary evaporation

At a given temperature, an ionic fluid in a slit pore may
exist either as a liquid-like or as a vapor-like phase depending
on the pore size, surface electrical potential, as well as temper-
ature and the chemical potential of the ionic species in the bulk.
In this work, capillary evaporation is referred to as the phase
transition of the confined fluid from a liquid-like to a vapor-
like phase in response to changes in the external potential or
thermodynamic conditions.

Figure 4 shows the chemical potential of ionic species in
a neutral slit pore and that in the bulk at the condition of vapor-
liquid-like coexistence. The two curves allow us to predict the
wettability of the slit pore in contact with a bulk ionic sys-
tem at the same temperature and chemical potential. Wetting

FIG. 3. The density profiles of the liquid-like (a) and vapor-like (b) phases
at coexistence for the model ionic system in a neutral slit pore of width
H∗ = 5.0 at T∗ = 0.050 (solid line), 0.055 (dashed line), and 0.060 (dotted-
dashed line). Because of the symmetry, the density profiles for the cations and
anions are identical.
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FIG. 4. The µ∗ − T∗ phase diagram for the model ionic system in the bulk
and in a 5.0σ slit pore. The inset shows the degree of supersaturation versus
the pore width at T ∗ = 0.05. In all cases, the pore surface is uncharged.

transition occurs when the chemical potential of the confined
fluid is lower than that in the bulk. As a result, Fig. 4 pre-
dicts that a neutral pore promotes capillary evaporation, i.e.,
the ionic fluid may exist as a stable liquid in the bulk but a
vapor-like phase inside the pore.

The inset of Fig. 4 shows the dependence of the
pore width on the “degree of supersaturation” defined as
∆ρ∗ = ρ∗b,co(H∗)−ρ∗b, where ρ∗b is the density of the bulk liquid
at saturation and ρ∗b,co(H∗) is the density of a bulk liquid that
has a chemical potential the same as that of the saturated liquid
inside a pore of width H∗. ρ∗b,co(H∗) can be obtained from the
phase diagram shown in Fig. 2. Figure 4 suggests that, to make
the liquid state stable inside the pore or to make the pore wet,
the corresponding ionic system in the bulk should be “super-
saturated,” i.e., the ionic density should be larger than that of
a saturated liquid at the same temperature. Otherwise, capil-
lary evaporation (or dewetting) takes place inside the pore. For
example, for a given ionic liquid with ∆ρ∗ ≈ 0.009, the coex-
istence of the liquid-like and vapor-like phases occurs near
H∗c ≈ 6.0. In a larger pore, such as H∗ = 10.0, only the liquid-
like state is stable; below H∗c , the liquid-like state becomes
metastable in comparison with the vapor-like phase, and the
phase transition becomes unavoidable.

Capillary evaporation of ionic liquids in porous carbons
has been observed in both experimental and simulation studies.
For example, Gogotsi et al.49 showed that1-ethyl-3-methylim-
idazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI])
cannot wet micropores smaller than 0.75 nm at zero applied
potential. Shrivastav and co-workers found from MD simula-
tions a critical pore width, dc ≈ 1.2 nm, for [EMIM][BF4] in
contact with neutral pores.11 While a quantitative comparison
of the theoretical predictions with the experimental or simu-
lation results has not been attempted in this study, it is clear
that small pores may not be accessible to an ionic fluid due to
dewetting or capillary evaporation.

C. Electrowetting and differential capacitance

Now we proceed to investigate the wettability of the model
ionic system in charged pores. Figure 5(a) shows the sur-
face charge density as a function of the applied voltage for
a slit pore of width H = 3.5σ in contact with a bulk ionic
fluid at three representative densities. Because of the symme-
try of the ionic system, the dependence of the surface charge

FIG. 5. The dependence of surface charge density Q∗ (a) and the differential
capacitance C∗d (b) on the applied voltage. The calculations are for different
bulk densities given in (b). In all cases, the pore width is H∗ = 3.5, and the
reduced temperature is T∗ = 0.05. The reduced voltage and charge density are
ψ∗ = βψe and Q∗ = Qσ2/e, respectively.

density on the surface voltage is equally applicable to condi-
tions when both quantities are negative. As the surface voltage
of the slit pore increases, the surface charge increases smoothly
from zero at high ionic densities (i.e., ρ∗b = 0.4 and 0.6).
In this case, the slit pore is always filled with a liquid-like
ionic fluid because the density is remote from that near the
vapor-liquid-like coexistence. At a lower density (ρ∗b = 0.228),
however, the surface charge density is virtually zero for a slit
pore with a small surface potential; it increases discontinu-
ously to a finite value when the surface potential is above
around ψ∗ ≈ 4.1, signaling a first-order phase transition inside
the pore. Qualitatively, the discontinuous variation of the sur-
face charge density in the ψ∗ −Q∗ phase diagram is consistent
with that predicted by Kiyohara and co-workers using Monte
Carlo simulation.8 The phase transition can be understood
as a manifestation of the balance between the electrostatic
correlations and the volume exclusion interactions. While
the electrostatic correlations lead to depletion of the ionic
fluid from a neutral surface, application of a surface poten-
tial results in electrowetting because of the accumulation of
counterions.

A key quantity of practical interest for energy storage is
the differential capacitance, which is defined as

C∗d = ∂Q∗/∂ψ∗. (15)

Without an explicit consideration of phase transitions, the dif-
ferential capacitance is always a smooth function of the surface
voltage as predicted by typical EDL models.

Figure 5(b) shows how the differential capacitance varies
with the applied surface voltage for the ionic systems described
above. At high ionic density (e.g., ρ∗b = 0.4), the ψ∗−C∗d curve
exhibits a camel-shape, showing a minimum at zero surface
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voltage and a maximum at a higher surface voltage. Increasing
the density from ρ∗b = 0.4 to 0.6, the ψ∗ −C∗d curve still shows
a camel-shape, while the differential capacitance at zero volt-
age increases. As discussed in previous studies,50–52 a further
increase in the bulk density induces the change of the ψ∗ −C∗d
curve from the camel-shape to a bell-shape. For the model
ionic liquid at a lower density, ρ∗b = 0.228, the ψ∗ − C∗d curve
shows a discontinuity around ψ∗ ≈ 4.1, at which condition the
first-order phase transition is observed.

Figure 6 presents the density profiles of ions inside the
pore at surface potentials slightly below and above that cor-
responding to the jump in the surface charge density. At
ψ∗ = 4.2, the ionic fluid is in a liquid-like state inside the
pore. Although counterions are accumulated near the sur-
face, the local density inside the pore is uniformly lower than
that in the bulk due to the depletion of the coions. At the
pore center, the coion concentration is slightly larger than
the counterion concentration, which can be attributed to the
local charge inversion, i.e., the local electrical potential has
a sign opposite to that of the surface charge. At a slightly
lower surface potential, ψ∗ = 4.0, the pore is filled with an
ionic fluid at a much lower density. In this case, the den-
sity profiles show depletion of both coions and counterions
because of long-range electrostatic correlations. As expected,
C∗d is virtually negligible if the micropore is filled with a low-
density ionic fluid. A drastic increase in the capacitance occurs
when the slit pore is wetted by the ionic fluid, i.e., when the
ionic fluid inside the pore exists in a liquid-like state [see
Fig. 5(b)].

Figure 7(a) shows the surface charge density as a func-
tion of the voltage for different pore sizes, H∗ = 1.6, 2.0,
2.4, 3.2, and 4.8. In small pores (e.g., H∗ < 4.8), the sur-
face charge density is virtually zero until the voltage is larger

FIG. 6. Density profiles of cations and anions in a slit pore of H = 3.5σ at
T∗ = 0.05 and reduced surface potential (a) ψ∗ = 4.2 and (b) ψ∗ = 4.0. The
reduced density for the bulk ionic liquid is ρ∗b = 0.228.

FIG. 7. (a) The surface charge density as a function of the voltage in slit pores
of different reduced pore width H∗ = H/σ. (b) The critical surface potential
as a function of the reduced pore width. Here the density for the bulk ionic
liquid is ρ∗b = 0.228.

than a certain value, ψ∗ ≈ 4.0. Beyond that voltage, the sur-
face charge density jumps to a finite value and rises continu-
ously as the voltage is further increased. In a large pore (viz.,
H∗ = 4.8), the surface charge density increases smoothly with
the surface potential over the entire range of the voltage.
Qualitatively, the response of the surface charge density to
the surface potential is similar to the MC results reported
by Kiyohara8 but contradicts to that from earlier classical
DFT predictions.31 Although MSA was used in both ver-
sions of classical DFT, the results are qualitatively different
because we formulated the free-energy functional in terms
of the non-local reference fluid theory and the thermody-
namic perturbation theory rather than the weighted density
approximations. Apparently, the subtle difference leads to
opposite predictions of the phase behavior of the confined ionic
fluids.

The surface voltage at which the discontinuity of differ-
ential capacitance occurs can be regarded as the “critical”
voltage, ψ∗c . Beyond this voltage, the slit pore is filled with
an ionic fluid in the liquid-like state. Figure 7(b) shows the
dependence of the critical voltage as a function of the pore
size when the ion density is approaching that for the satu-
rated liquid in the bulk. ψ∗c disappears for H∗> 4.5, suggesting
that the first-order phase transition occurs only in small pores.
Interestingly, the critical voltage first increases slightly with
the pore size and falls abruptly beyond a certain pore width.
The non-monotonic behavior reflects not only a competi-
tion of electrostatic correlations and excluded-volume interac-
tions but also the confinement effects on the vapor-liquid-like
transitions.
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IV. CONCLUSION

To conclude, we have investigated the phase behavior
of ionic fluids in the micropores of carbon electrodes using
the restricted primitive model (RPM). By constructing a new
version of the classical density functional theory (DFT) that
accounts for electrostatic correlations and associating between
oppositely charged ions, we demonstrate that capillary evap-
oration may take place in the micropores of carbon when
the pore size is comparable to the ion diameter of nonaque-
ous electrolytes and that application of a surface electrical
potential promotes wetting transition. In the latter case, the
theoretical results contradict earlier DFT predictions but are
consistent with recent Monte Carlo simulation, suggesting
that the DFT performance is sensitive to the formulation of
the free-energy functional, in particular, for phase-equilibrium
calculations.

In stark contrast to conventional understandings of the
accessibility of micropores to ionic fluids, capillary evapora-
tion is determined by the pore geometry as well as ion-ion and
ion-surface interactions underlying the phase behavior of the
entire ionic system. Because capillary evaporation may result
in a drastic reduction in the capacitance, the pore size effects
on the performance of carbon electrodes depend on the tem-
perature, the ionic density, as well as the surface electrical
potential. According to our theoretical calculations, wetting
transition is most likely due to the liquid-liquid phase separa-
tion of an organic electrolyte in small pores. Vapor-liquid-like
coexistence is less likely for room temperature ionic liquids
because the liquid density is typically remote from that corre-
sponding to the coexistence point. The sharp difference may
help explain discrepancies observed in experiments on the pore
effects on the performance of various carbon electrodes for
capacitive energy storage.

RPM is clearly oversimplified to quantitatively represent
the properties of real ionic liquids or organic electrolytes.
Nevertheless, it is our hope that this work would usher in a
new direction of theoretical investigation of electrolytes in
a porous electrode beyond electric double layer models that
have been of central interest in electrochemistry for centuries.
To highlight the essential features of the capillary evapora-
tion induced by ion-ion correlation and confinement, we have
implicitly assumed in this work that the dielectric constant
of the electrode is the same as that of the electrolyte solu-
tion. In experiment, the dielectric constant of the electrode and
that of the solution are generally different and this dielectric
discontinuity may also play a significant role in determining
the surface structure, as suggested by recent theoretical and
simulation work.18,53–55 A systematic study on all of these
effects, however, is still lacking and will be pursued in future
work.
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APPENDIX: SUPPLEMENTAL MATERIAL

Here we present detail expressions for different contri-
butions to the excess Helmholtz energy functional and the
corresponding equations for the local excess chemical poten-
tial of ions for the model ionic system (RPM) considered in
this work.

1. Hard sphere term

The excess free energy due to the hard-sphere repulsion
is represented by43,44

βFex
hs [ρi(r)] =

∫
drΦhs[nα(r)], (A1)

where the reduced excess Helmholtz energy density Φhs is a
function of the weighted averages of the density distribution
functions ρi(r),

nα(r) =
∑

i

nα,i(r) =
∑

i

∫
drρi(r′)ω

(α)
i (r − r′). (A2)

The weight functionsω(α)
i in Eq. (A2) characterize the geom-

etry of each hard sphere: the volume, the surface area, and
the mean radius of curvature. The detailed expression for the
weighted densities, nα(r), α = 0, 1, 2, 3, V 1, V 2, can be found
in our previous publications or in Rosenfeld’s original work.43

The final expression for the excess Helmholtz energy density
is given by

Φ
hs = −n0 ln(1 − n3) +

n1n2 − nV1nV2

1 − n3
+ (n3

2 − 3n2nV2nV2)

×



n3 + (1 − n3)2 ln(1 − n3)

36πn2
3(1 − n3)2


. (A3)

In the bulk limit, the two vector weighted densities nV1 and
nV2 vanish andΦhs becomes identical to that from the Boublik-
Mansoori-Carnahan-Starling-Lelandc (BMCSL) equation of
state.56

The functional derivative of excess Helmholtz free energy
due to the hard-sphere yields the excess chemical potential
µex

hs,i given by

βµex
hs,i(r) =

δ βFex
hs

δρi(r)
=

∑
α

∫
dr′

∂Φex
hs

∂nα(r′)
ω(α)

i (r′ − r). (A4)

2. Direct coulomb term

The Helmholtz energy due to the direct Coulomb potential
is given by

βFex
C [ρi(r)] =

lB
2

∑
i,j

∫∫
drdr′

ZiZj ρi(r)ρj(r′)

|r − r′ |
. (A5)

The excess chemical potential due to direct coulomb interac-
tion µex

C,i(r) is often calculated from the local mean electrostatic
potential ψ(r) by Eqs. (10) and (11). To be noted is that the
excess chemical potential in bulk vanishes because of charge
neutrality in bulk electrolyte solution.
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3. Electrostatic correlation term

For the electrostatic correlation term, we followed the
work of Gillespie and co-workers,45 in which the position-
dependent reference fluid densities (RFD) are introduced to
define a “smoothed,” nonuniform fluid as the reference state
instead of the bulk fluid. By using this method, the local charge
neutrality is satisfied everywhere and the density profile is in
good agreement with the simulation results for the fluid near
a uncharged or low-charged wall,57

βFex
el [ρi(r)] ≈ βFex

el [ρref
i (r)] −

∑
i

∫
c(1),el

i ∆ρi(r)dr

−
1
2

∑
i,j

∫∫
c(2),el

i,j ∆ρi(r)∆ρj(r′)drdr′, (A6)

where ρref
i (r) is the ionic density profiles of a locally defined

reference fluid and∆ρi(r) = ρi(r)− ρref
i (r). c(1),el

i and c(2),el
ij are

the first- and second-order DCFs, respectively. The detailed
expression for ρref

i (r) can be found in the original publica-
tion.45 Because local charge neutrality is everywhere satis-
fied in the reference system, c(1),el

i and c(2),el
ij can also be

calculated from MSA for a bulk electrolyte.38 The excess
chemical potential due to electrostatic correlations is given
by

βµel
i (r) ≈ βµel

i [ρref
i (r)] −

∑
j

∫
dr′c(2),el

i,j ∆ρj(r′). (A7)

4. Ion association term

The Helmholtz energy due to association between oppo-
sitely charged ions is formulated at the level of the first-order
thermodynamic perturbation (TPT1) theory,46

βFex
as [ρi(r)] =

∫
drΦas[nα(r)], (A8)

where Φas[nα(r)] is given by

Φ
as(nα) =

∑
i

n0,iζi

[
ln α(i)(r) −

α(i)(r)
2

+
1
2

]
. (A9)

Similar to that for association in uniform systems, α(i)(r) is
the degree of dissociation of species i at position r, and it is
obtained from

α(i)(r) =
1

1 + n0jζjα(j)(r)∆ij(r)
, (A10)

where ∆ij(r) is the association constant between cations and
anions, ∆ij(r) = K0 × Kγ.

There is a certain kind of arbitrariness in defining the ion
pair and hence the association constant K0. Among several
definitions of the ion-association constant, the one introduced
by Ebling yields the correct second ionic-virial coefficient.58

However, this approach does not produce good values for the
critical temperature and the critical density of the RPM. As
discussed in Ref. 47, we choose K0 in the form proposed by
Olaussen and Stell,59

K0 ≈ 96πσ3
∞∑

m=2

(T ∗)−2m

(2m)!(2m − 3)
. (A11)

Kγ is calculated from the simple interpolation scheme

Kγ = y+−(σ), (A12)

where y+−(σ) is the contact anion-cation cavity correlation
function evaluated at α = 1, the reference ionic fluid without
association. As a result, y+−(σ) is given by

y+−(σ) =


1
1 − n3

+
n2σ+σ−(1 − nV2nV2/n2

2)

4σ+−(1 − n3)2



× exp

(
−
Γ2a+a−

4π2lBσ+−

)
exp

(
lBZ+Z−
σ+−

)
. (A13)

Similar to the thermodynamic perturbation theory for bulk
solutions,60,61 parameters Γ and ak can be estimated by
following a simple iterative procedure,

Γ
2 = πlB

∑
i

n0i

(1 + Γσi)2


Zi −

πPnσ
2
i

2(1 − n3)



2

, (A14)

ai =

2πlB
(
Zi −

πPnσ
2
i

2(1−n3)

)
Γ(1 + Γσi)

, (A15)

with

Pn =
∑

i

2n1iZi

1 + Γσi
/


1 +

3
(1 − n3)

∑
i

n3i

1 + Γσi


. (A16)

The functional derivative of excess Helmholtz free energy
due to the ion association yields the excess chemical potential
µex

as(r) given by

βµex
as,i(r) =

δ βFex
as

δρi(r)
=

∑
α

∫
dr′

∂Φex
as

∂nα(r′)
ω(α)

i (r′ − r). (A17)
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