## **Supporting Information**

# Synthesis, Spectroscopy, and Electrochemistry of Manganese(I) and Rhenium(I) Quinoline Oximes

Danh X. Ngo, Wesley W. Kramer, Brendon J. McNicholas, Harry B. Gray\*, Bradley J. Brennan\*

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena,

CA 91125, USA.

\* <u>hbgray@caltech.edu</u>

\* <u>bradley.brennan@gmail.com</u>

| Experimental Data for XRD                                                                                  | <b>S2</b>     |
|------------------------------------------------------------------------------------------------------------|---------------|
| Figure S1. UV-Visible spectra of ligands                                                                   | S2            |
| Table S1. Summary of Complex UV-Visible Spectra                                                            | <b>S</b> 3    |
| Figures S2-S12. <sup>1</sup> H NMR Spectra                                                                 | S4-S14        |
| Figures S13-S17. <sup>19</sup> F NMR Spectra                                                               | S15-S19       |
| Figures S18-S33. IR Spectra                                                                                | S20-S35       |
| Figure S34. Scan Rate CV Spectra for Re-4im                                                                | S36           |
| Figures S35-38. N <sub>2</sub> , CO <sub>2</sub> , CO <sub>2</sub> + Acid CVs for Re-4im, Mn-5, Re-5, Re-6 | <b>S37-40</b> |
| Figure S39. GS Calibration Curve for Bulk Electrolysis                                                     | S41           |
| Table S2. Bulk Electrolysis Data Summary                                                                   | S42           |
| Table S3. DFT-Calculated Orbital Energies and Compositions                                                 | S43           |
| Figures S40-41. DFT-Calculated Orbitals for Re-4im, Re-5, Re-6                                             | S44-45        |
| Tables S4-S9. Calculated and Experimental Bond Lengths and Angles                                          | S46-S54       |
| Re-4im Elemental Analysis                                                                                  | S55           |

**X-Ray Diffraction.** Crystals were grown by slow diffusion of pentane into concentrated solutions of the complexes dissolved in THF. Low-temperature diffraction data ( $\phi$ -and  $\omega$ -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Mo  $K_{\alpha}$  radiation ( $\lambda = 0.71073$  Å) from an I $\mu$ S micro-source. The structure was solved by direct methods using SHELXS and refined against  $F^2$  on all data by full-matrix least squares with SHELXL-2014 using established refinement techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups).



Figure S1. UV-Visible spectra of ligands in MeCN. Spectra normalized at the highest value.

| Molecule     | $\lambda_{\text{peak}}$ | <b>Extinction Coefficient</b> |
|--------------|-------------------------|-------------------------------|
|              | (nm)                    | $(M^{-1} cm^{-1})$            |
|              | 421                     | 4900                          |
| Re-4im       | 302                     | 9400                          |
|              | 217                     | 40500                         |
|              | 388                     | 3400                          |
| Mn-5         | 295                     | 7600                          |
|              | 217                     | 42900                         |
|              | 382                     | 4300                          |
| Re-5         | 296                     | 7500                          |
|              | 242                     | 16200                         |
|              | 458                     | 2900                          |
|              | 322                     | 6400                          |
| <b>MIN-0</b> | 300                     | 7100                          |
|              | 256                     | 22500                         |
|              | 412                     | 4900                          |
| D            | 332                     | 7200                          |
| Ке-б         | 256                     | 20700                         |
|              | 205                     | 36600                         |

 Table S1. Summary of UV-Visible spectra.

\_\_\_\_

#### <sup>1</sup>H NMR spectroscopy



**Figure S2.** <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of Compound **1**. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.96 (dd, *J* = 4.1, 1.8 Hz, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 8.13 (t, *J* = 8.1 Hz, 1H), 7.83 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.61 (dd, *J* = 8.1, 7.3 Hz, 1H), 7.40 (dd, *J* = 8.3, 4.1 Hz, 1H), 6.81 (q, *J* = 6.6 Hz, 1H), 0.12 (s, 9H).



**Figure S3.** <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of Compound **2**. δ 9.01 (s, 1H), 8.87 (dd, *J* = 4.3, 1.8 Hz, 1H), 8.29 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.91 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.70 (ddt, *J* = 7.1, 1.6, 0.8 Hz, 1H), 7.62 (dd, *J* = 8.2, 7.1 Hz, 1H), 7.52 (dd, *J* = 8.3, 4.3 Hz, 1H), 5.49 (q, *J* = 7.8 Hz, 1H).



**Figure S4.** <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) spectrum (top) and <sup>1</sup>H NMR (300 MHz, CD<sub>3</sub>OD) spectrum (bottom) of Compound **3**. CD<sub>3</sub>CN:  $\delta$  (ketone) 8.99 (dd, J = 4.2, 1.7 Hz, 1H), 8.45 (d, J = 1.8 Hz, 1H), 8.44 (d, J = 1.7 Hz, 1H), 8.26 (dd, J = 8.2, 1.4 Hz, 1H), 8.03 (dd, J = 7.1, 1.4 Hz, 1H), 7.78 (d, J = 7.1 Hz, 1H).  $\delta$  (hydrated ketone) 8.92 (dd, J = 4.3, 1.8 Hz, 1H), 8.49 (dd, J = 8.4, 1.8 Hz, 1H), 8.47 (s, 2H), 8.20 (d, J = 7.4 Hz, 1H), 8.10 (dd, J = 8.3, 1.4 Hz, 1H), 7.75 (dd, J = 8.2, 7.4 Hz, 1H), 7.65 (dd, J = 8.4, 4.3 Hz, 1H). CD<sub>3</sub>OD:  $\delta$  8.90 (dd, J = 4.4, 1.7 Hz, 1H), 8.51 (dd, J = 8.4, 1.8 Hz, 1H), 8.11 (dd, J = 8.3, 1.4 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.74 (t, J = 7.8 Hz, 1H), 7.64 (dd, J = 8.4, 4.3 Hz, 1H), 5.49 (s, 1H).



**Figure S5.** <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) spectrum of Compound **4**. δ 10.16 (br s, 0.6H), 8.95 (m, 1H), 8.39 (ddt, *J* = 8.4, 1.8, 0.5 Hz, 1H), 8.14 – 8.10 (m, 1H), 7.85 – 7.73 (m, 0.4H), 7.73 – 7.66 (m, 1.6H), 7.60 (m, 1H).



**Figure S6.** <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) spectrum of **Re-4im**. δ 9.69 (dd, *J* = 5.2, 1.7 Hz, 1H), 8.72 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.49 – 8.41 (m, 2H), 7.91 (t, *J* = 7.9 Hz, 1H), 7.70 (dd, *J* = 8.2, 5.2 Hz, 1H), 5.96 (t, *J* = 53.2 Hz, 1H).



**Figure S7.** <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) spectrum of Compound **5**. δ 10.66 (br s, 1H), 9.60 (d, *J* = 3.2 Hz, 1H), 8.31 (d, *J* = 8.6 Hz, 1H), 8.31 (s, 1H), 8.07 (dq, *J* = 8.5, 0.9 Hz, 1H), 7.99 (d, *J* = 8.6 Hz, 1H), 7.98 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.81 (ddd, *J* = 8.4, 6.9, 1.5 Hz, 1H), 7.66 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H).



**Figure S8.** <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) spectrum of **Mn-5**. δ 8.86 (d, *J* = 8.9 Hz, 1H), 8.74 (s, 1H), 8.60 (d, *J* = 8.2 Hz, 1H), 8.17 – 8.11 (m, 1H), 8.08 (ddd, *J* = 8.6, 6.9, 1.5 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.85 (t, *J* = 7.5 Hz, 1H).



**Figure S9.** <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) spectrum of **Re-5**. δ 10.66 (br s, 1H), 9.07 (s, 1H), 8.72 (d, *J* = 5.8 Hz, 1H), 8.71 (d, *J* = 6.7 Hz, 1H), 8.17 (dd, *J* = 8.2, 1.5 Hz, 1H), 8.10 (ddd, *J* = 8.7, 6.9, 1.5 Hz, 1H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.89 (ddd, *J* = 8.1, 6.9, 1.0 Hz, 1H).



**Figure S10.** <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) spectrum of Compound **6**. δ 9.34 (s, 1H), 9.19 (s, 1H), 8.98 (dd, *J* = 4.2, 1.8 Hz, 1H), 8.36 (dd, *J* = 8.3, 1.8 Hz, 1H), 8.25 (dd, *J* = 7.3, 1.4 Hz, 1H), 8.03 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.67 (t, *J* = 7.7 Hz, 1H), 7.58 (dd, *J* = 8.3, 4.1 Hz, 1H).



**Figure S11.** <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of Compound **Mn-6**. δ 9.78 (s, 1H), 8.83 (s, 1H), 8.59 (s, 1H), 8.38 (s, 1H), 8.05 (d, *J* = 7.4 Hz, 1H), 7.88 (s, 1H), 7.77 (s, 1H), 7.64 (s, 1H).



**Figure S12.** <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) spectrum of Compound **Re-6**. δ 9.67 (dd, *J* = 5.2, 1.7 Hz, 1H), 9.43 (s, 1H), 8.71 (dd, *J* = 8.4, 1.4 Hz, 1H), 8.70 (d, *J* = 0.6 Hz, 1H), 8.31 (dd, *J* = 8.4, 1.4 Hz, 1H), 8.10 (ddd, *J* = 7.3, 1.6, 0.6 Hz, 1H), 7.86 (dd, *J* = 8.2, 7.2 Hz, 1H), 7.69 (dd, *J* = 8.3, 5.3 Hz, 1H).

## <sup>19</sup>F NMR spectroscopy



**Figure S13.** <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) spectrum of Compound 1.  $\delta$  -77.57 (d, J = 6.5 Hz).



**Figure S14.** <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) spectrum of Compound **2**.  $\delta$  -77.86 (d, *J* = 7.8 Hz).



Figure S15. <sup>19</sup>F NMR (282 MHz, CD<sub>3</sub>OD) spectrum of Compound 3.  $\delta$  -86.25.



**Figure S16.** <sup>19</sup>F NMR (282 MHz, CD<sub>3</sub>CN) spectrum of Compound **4**. δ -65.23 (33%), -67.57 (67%).



Figure S17. <sup>19</sup>F NMR (282 MHz, CD<sub>3</sub>CN) spectrum of **Re-4im**.  $\delta$  -65.56.



Figure S18. IR (ATR) spectrum of Compound 1.



Figure S19. IR (ATR) spectrum of Compound 2.



Figure S20. IR (ATR) spectrum of Compound 3.



Figure S21. IR (ATR) spectrum of Compound 4.



Figure S22. IR (ATR) spectrum of Compound Re-4im.  $\nu$ /cm<sup>-1</sup>: 3205 br, 3140 sh ( $\nu$ <sub>N-H</sub>).



**Figure S23.** IR (MeCN) spectrum of Compound **Re-4im**.  $v/cm^{-1}$ : [2025, 1922, 1904 ( $v_{C=0}$ )].



Figure S24. IR (ATR) spectrum of compound 5.  $v/cm^{-1}$ : 3168 ( $v_{O-H}$ ).



**Figure S25.** IR (ATR) spectrum of **Mn-5**.  $v/cm^{-1}$ : 3376 ( $v_{0-H}$ ).



**Figure S26.** IR (MeCN) spectrum of Compound **Mn-5**. *v*/cm<sup>-1</sup>: [2031, 1933, 1899 (*v*<sub>C≡O</sub>)].



**Figure S27.** IR (ATR) spectrum of **Re-5**. *v*/cm<sup>-1</sup>: 3280 (*v*<sub>0.H</sub>).



**Figure S28.** IR (MeCN) spectrum of Compound **Re-5**.  $v/cm^{-1}$ : [2029, 1930, 1910 ( $v_{C=O}$ )].



Figure S29. IR (ATR) spectrum of compound 6.  $v/cm^{-1}$ : 3170 ( $v_{\text{O-H}}$ ).



**Figure S30.** IR (ATR) spectrum of **Mn-6**. *v*/cm<sup>-1</sup>: 3107 (*v*<sub>0-H</sub>).



**Figure S31.** IR (MeCN) spectrum of Compound **Mn-6**. *v*/cm<sup>-1</sup>: [2032, 1943, 1927 (*v*<sub>C≡O</sub>)].



**Figure S32.** IR (ATR) spectrum of **Re-6**. *v*/cm<sup>-1</sup>: 3095 (*v*<sub>0.H</sub>).



**Figure S33.** IR (MeCN) spectrum of Compound **Re-6**.  $v/cm^{-1}$ : [2028, 1923, 1904 ( $v_{C=O}$ )].

#### Electrochemistry



Figure S34. Cyclic voltammograms of **Re-4im** at different scan rates (top), with a graph of  $i_p$  vs.  $v^{1/2}$  (bottom) under N<sub>2</sub>. Calculated lines of best fit are shown in red. Experiments performed in acetonitrile containing 100 mM TBAPF<sub>6</sub> as supporting electrolyte.



Figure S35. Cyclic voltammograms of **Re-4im**. Experiment performed at 100 mV/s in acetonitrile containing 100 mM TBAPF<sub>6</sub> as supporting electrolyte under N<sub>2</sub> (black), CO<sub>2</sub> (red), and under CO<sub>2</sub> with added TFE (blue).



Figure S36. Cyclic voltammograms of Mn-5. Experiment performed at 100 mV/s in acetonitrile containing 100 mM TBAPF<sub>6</sub> as supporting electrolyte under  $N_2$  (black), CO<sub>2</sub> (red), and under CO<sub>2</sub> with added TFE (blue).



Figure S37. Cyclic voltammograms of Re-5. Experiment performed at 500 mV/s in acetonitrile containing 100 mM TBAPF<sub>6</sub> as supporting electrolyte under  $N_2$  (black), CO<sub>2</sub> (red), and under CO<sub>2</sub> with added TFE (blue).



Figure S38. Cyclic voltammograms of **Re-6**. Experiment performed at 100 mV/s in acetonitrile containing 100 mM TBAPF<sub>6</sub> as supporting electrolyte under  $N_2$  (black), CO<sub>2</sub> (red), and under CO<sub>2</sub> with added methanol (blue).



Figure S39. GC Calibration Curve.

Table S2. Bulk Electrolysis Data Summary.

| Experimental Charge Passed           | 0.179 C                     |
|--------------------------------------|-----------------------------|
| Theoretical CO from Charge Passed    | 9.28 x 10 <sup>-7</sup> mol |
| Theoretical CO from complete         | 6 x 10⁻⁵ mol                |
| decomposition of complex in solution |                             |
| Experimental CO Produced             | 7.20 x 10 <sup>-6</sup> mol |
| Faradaic Efficiency                  | 776%                        |

#### Calculation of Theoretical CO from Charge Passed if FE = 100%:

 $\frac{0.179 C}{[2 \ electrons \ per \ CO \ formed] * 96485 \frac{C}{mol \ CO}} = 9.28 * 10^{-7} \ mol \ CO$ 

#### **Calculation of Theoretical CO from Complete Decomposition of Complex:**

 $\frac{3 \text{ moles of CO}}{1 \text{ mole of complex}} * \frac{1 \text{ mole of complex}}{391.059 \text{ g complex}} * 0.008 \text{ g complex} = 6 * 10^{-5} \text{ mol C}$ 

#### **Calculation of Experimental CO Produced:**

From Calibration Curve:  $Peak \ Area = 414.4 = 2343.26 * [Volume of \ CO \ in \ mL]$   $[Volume \ of \ CO \ in \ mL] = 0.177 \ mL$ Conversion from mL to moles:  $[Volume \ of \ CO \ in \ mL] * \frac{1.14 \ g \ CO}{1000 \ mL \ CO} * \frac{1 \ mol \ CO}{28.01 \ g \ CO} = 7.198 * 10^{-6} \ mol \ CO$ 

#### **Calculation of Faradaic Efficiency:**

Moles of CO measured

Moles of CO formed if all charge passed went towards forming CO =  $\frac{Charge \text{ passed to form CO measured with 2 electrons for each CO}}{CO}$ 

Charge experimentally passed

= 776%

| Orbital Energies |                              |         |        | Orbital Composition |                 |      |      |
|------------------|------------------------------|---------|--------|---------------------|-----------------|------|------|
| Complex          | ΔE <sub>HOMO-LUMO</sub> (eV) | Orbital | E (eV) | М                   | quinoline halid |      | CO   |
|                  |                              | LUMO+1  | -2.29  | 3.0                 | 89.9            | 0.1  | 3.6  |
| Re-4im           |                              | LUMO    | -3.29  | 3.3                 | 88.2            | 1.0  | 4.1  |
|                  | 2.88                         | НОМО    | -6.17  | 35.7                | 8.3             | 28.9 | 25.3 |
|                  |                              | HOMO-1  | -6.20  | 36.6                | 4.9             | 31.2 | 25.2 |
|                  |                              | HOMO-2  | -6.75  | 53.0                | 7.6             | 3.4  | 34.9 |
|                  |                              | LUMO+1  | -1.72  | 2.1                 | 92.9            | 0.1  | 2.1  |
|                  |                              | LUMO    | -2.83  | 1.4                 | 93.5            | 1.2  | 1.4  |
| Mn-6             | 3.30                         | НОМО    | -6.13  | 26.4                | 1.4             | 61.4 | 9.6  |
|                  |                              | HOMO-1  | -6.14  | 27.5                | 5.4             | 56.7 | 8.7  |
|                  |                              | HOMO-2  | -6.76  | 26.3                | 32.3            | 27.0 | 11.0 |
|                  | 3.19                         | LUMO+1  | -1.95  | 2.8                 | 90              | 0.1  | 4.0  |
|                  |                              | LUMO    | -3.00  | 1.7                 | 92.6            | 0.7  | 2.5  |
| Re-6             |                              | НОМО    | -6.19  | 33.5                | 10.3            | 29.8 | 24.5 |
|                  |                              | HOMO-1  | -6.20  | 36.8                | 2.5             | 33.5 | 26.1 |
|                  |                              | HOMO-2  | -6.84  | 47.4                | 12.5            | 6.0  | 31.5 |
|                  |                              | LUMO+1  | -1.73  | 0.7                 | 95.4            | 0.5  | 1.0  |
|                  |                              | LUMO    | -2.96  | 3.0                 | 89.8            | 2.8  | 2.5  |
| Mn-5             | 3.29                         | НОМО    | -6.25  | 28.8                | 1.1             | 58.2 | 10.4 |
|                  |                              | HOMO-1  | -6.32  | 27.2                | 4.2             | 58.5 | 8.4  |
|                  |                              | HOMO-2  | -7.05  | 30.3                | 25.0            | 30.0 | 12.8 |
|                  |                              | LUMO+1  | -1.89  | 0.7                 | 95.8            | 0.1  | 1.0  |
|                  |                              | LUMO    | -3.19  | 3.7                 | 87.2            | 1.4  | 4.9  |
| Re-5             | 3.06                         | НОМО    | -6.25  | 37.4                | 2.7             | 31.9 | 26.6 |
|                  |                              | HOMO-1  | -6.38  | 33.5                | 7.2             | 34.8 | 22.5 |
|                  |                              | HOMO-2  | -7.07  | 55.9                | 4.6             | 0.8  | 36.8 |

**Table S3.** DFT-calculated orbital energies and compositions for Mn(I) and Re(I) quinoline oximes/imines.



Figure S40. DFT-calculated orbitals for Re-4im.



Figure S41. DFT-calculated orbitals for Re-5 and Re-6.

|        |        | Mn-5 Bond | Mn-5 Bond Lengths (Å) |        | d Lengths (Å) |
|--------|--------|-----------|-----------------------|--------|---------------|
| Atom 1 | Atom 2 | Exp.      | Calc.                 | Exp.   | Calc.         |
| Mn1    | Br1    | 2.52253   | 2.5097                | 2.5391 | 2.5093        |
| Mn1    | N1     | 2.02218   | 1.9956                | 2.0261 | 2.0105        |
| Mn1    | N2     | 2.1001    | 2.1373                | 2.0882 | 2.1331        |
| Mn1    | C11    | 1.7991    | 1.7873                | 1.8182 | 1.7875        |
| Mn1    | C12    | 1.8181    | 1.7905                | 1.8062 | 1.8097        |
| Mn1    | C13    | 1.8171    | 1.813                 | 1.7922 | 1.7878        |
| N1     | 01     | 0.842     | 0.9646                | 1.3952 | 1.3704        |
| N1     | C1     | 1.3741    | 1.3526                | 1.2743 | 1.2728        |
| 01     | H10    | 1.2812    | 1.277                 | 0.852  | 0.9639        |
| C1     | H1     | 0.950     | 1.0844                | 0.950  | 1.0871        |
| C1     | C2     | 1.4532    | 1.4386                | 1.4493 | 1.4404        |
| C2     | C3     | 1.4082    | 1.4069                | 1.3823 | 1.3818        |
| C2     | C10    | 1.3421    | 1.3308                | 1.4312 | 1.4253        |
| C3     | H3     | 0.9498    | 1.0828                | 0.950  | 1.0842        |
| C3     | C4     | 1.3642    | 1.3599                | 1.3963 | 1.3970        |
| C4     | H4     | 0.950     | 1.0844                | 0.949  | 1.0829        |
| C4     | C5     | 1.4101    | 1.4067                | 1.363  | 1.3649        |
| C5     | H5     | 1.4172    | 1.4098                | 0.949  | 1.0843        |
| C5     | C6     | 1.4242    | 1.4261                | 1.414  | 1.4113        |
| C6     | C7     | 0.949     | 1.0849                | 1.413  | 1.4067        |
| C6     | C10    | 1.3671    | 1.3658                | 1.420  | 1.4240        |
| C7     | H7     | 0.950     | 1.0829                | 0.950  | 1.0842        |
| C7     | C8     | 1.4102    | 1.4059                | 1.357  | 1.3624        |
| C8     | H8     | 0.950     | 1.0832                | 0.950  | 1.0818        |
| C8     | C9     | 1.3722    | 1.3681                | 1.389  | 1.3975        |
| C9     | H9     | 0.949     | 1.0785                | 0.950  | 1.0813        |
| C9     | N2     | 1.4151    | 1.4091                | 1.334  | 1.3213        |
| N2     | C10    | 1.3772    | 1.3658                | 1.377  | 1.3646        |
| C11    | 011    | 1.1502    | 1.1445                | 1.137  | 1.1438        |
| C12    | 012    | 1.1452    | 1.1438                | 1.142  | 1.1404        |
| C13    | 013    | 1.1471    | 1.1392                | 1.148  | 1.1452        |

Table S4. Calculated and Experimental Bond Lengths for Mn-5 and Mn-6.

|        |        |        | Mn-5 Bond Angles (°) |       | Mn-6 Bor | nd Angles (°) |
|--------|--------|--------|----------------------|-------|----------|---------------|
| Atom 1 | Atom 2 | Atom 3 | Exp.                 | Calc. | Exp.     | Calc.         |
| Br1    | Mn1    | N1     | 87.063               | 87.2  | 88.655   | 87.9          |
| Br1    | Mn1    | N2     | 86.413               | 87.5  | 87.744   | 87.72         |
| Br1    | Mn1    | C12    | 175.8                | 174   | 85.057   | 87.23         |
| Br1    | Mn1    | C13    | 85.844               | 87.8  | 87.347   | 83.69         |
| Br1    | Mn1    | C14    | 85.144               | 81.3  | 176.717  | 177           |
| N1     | Mn1    | N2     | 77.364               | 77    | 85.806   | 87.07         |
| N1     | Mn1    | C12    | 95.995               | 98.3  | 95.288   | 93            |
| N1     | Mn1    | C13    | 96.665               | 93.2  | 175.718  | 171.5         |
| N1     | Mn1    | C14    | 171.58               | 168   | 94.368   | 94.09         |
| N2     | Mn1    | C12    | 97.065               | 92.3  | 172.698  | 174.9         |
| N2     | Mn1    | C13    | 170.45               | 169   | 92.538   | 94            |
| N2     | Mn1    | C14    | 98.925               | 101   | 93.808   | 90.15         |
| C12    | Mn1    | C13    | 90.936               | 93.3  | 85.889   | 85.18         |
| C12    | Mn1    | C14    | 91.976               | 93.2  | 93.31    | 94.89         |
| C13    | Mn1    | C14    | 85.986               | 87.8  | 89.699   | 94.38         |
| H10    | 01     | N1     | 1061                 | 105   | 121.51   | 120.3         |
| Mn1    | N1     | 01     | 128.95               | 128   | 127.71   | 129           |
| Mn1    | N1     | C1     | 117.19               | 118   | 110.52   | 110.6         |
| 01     | N1     | C1     | 113.31               | 114   | 106.2    | 104.6         |
| N1     | C1     | H1     | 122.2                | 121   | 117.5    | 117           |
| N1     | C1     | C2     | 115.51               | 116   | 124.92   | 125.9         |
| H1     | C1     | C2     | 122.2                | 123   | 117.5    | 117.1         |
| C1     | C2     | C3     | 120.81               | 120   | 117.22   | 115           |
| C1     | C2     | N2     | 115.11               | 116   | 124.02   | 125.4         |
| C3     | C2     | N2     | 124.11               | 124   | 118.72   | 119.3         |
| C2     | C3     | H3     | 120.7                | 119   | 118.7    | 118.2         |
| C2     | C3     | C4     | 118.61               | 119   | 122.62   | 122.6         |
| H3     | C3     | C4     | 120.7                | 122   | 118.7    | 119.2         |
| C3     | C4     | H4     | 120.2                | 121   | 120.3    | 119.7         |
| C3     | C4     | C5     | 119.51               | 119   | 119.52   | 119.2         |
| H4     | C4     | C5     | 120.2                | 119   | 120.3    | 121.1         |
| C4     | C5     | C6     | 121.91               | 121   | 119.8    | 121.1         |
| C4     | C5     | C10    | 118.71               | 119   | 120.42   | 120.5         |
| C6     | C5     | C10    | 119.41               | 120   | 119.8    | 118.4         |
| C5     | C6     | H6     | 119.7                | 119   | 121.12   | 120.4         |
| C5     | C6     | C7     | 120.51               | 121   | 120.42   | 120.7         |

Table S5. Calculated and Experimental Bond Angles for Mn-5 and Mn-6.

| H6  | C6  | C7  | 119.7  | 121 | 118.52 | 118.9 |
|-----|-----|-----|--------|-----|--------|-------|
| C6  | C7  | H7  | 120    | 120 | 120.3  | 119.3 |
| C6  | C7  | C8  | 119.91 | 119 | 119.32 | 119.1 |
| H7  | C7  | C8  | 120    | 120 | 120.4  | 121.6 |
| C7  | C8  | H8  | 119.5  | 120 | 120.7  | 122.3 |
| C7  | C8  | C9  | 121.01 | 121 | 118.72 | 118.4 |
| H8  | C8  | C9  | 119.5  | 119 | 120.7  | 119.3 |
| C8  | C9  | H9  | 119.8  | 120 | 117.5  | 118.7 |
| C8  | C9  | C10 | 120.31 | 121 | 125.02 | 124.8 |
| H9  | C9  | C10 | 119.9  | 119 | 117.5  | 116.5 |
| C5  | C10 | C9  | 118.51 | 118 | 117.81 | 116.1 |
| C5  | C10 | N2  | 121.11 | 121 | 123.61 | 125.7 |
| C9  | C10 | N2  | 120.31 | 121 | 116.82 | 117.9 |
| Mn1 | N2  | C2  | 111.8  | 111 | 118.12 | 117.6 |
| Mn1 | N2  | C10 | 129.76 | 131 | 120.82 | 121.6 |
| C2  | N2  | C10 | 117.41 | 118 | 121.12 | 120.8 |
| Mn1 | C12 | 02  | 176.31 | 177 | 174.52 | 178.6 |
| Mn1 | C13 | 03  | 175.61 | 178 | 178.42 | 176.6 |
| Mn1 | C14 | 04  | 175.71 | 176 | 176.42 | 178   |
|     |     |     |        |     |        |       |

|        |        | Re-5 Bond L | engths (Å) | Re-6 Bond L | engths (Å) |
|--------|--------|-------------|------------|-------------|------------|
| Atom 1 | Atom 2 | Exp.        | Calc.      | Exp.        | Calc.      |
| Cl1    | Re1    | 2.47796     | 2.444      | 2.48285     | 2.447      |
| Re1    | N1     | 2.1581      | 2.127      | 2.1452      | 2.139      |
| Re1    | N2     | 2.2142      | 2.249      | 2.2171      | 2.243      |
| Re1    | C12    | 1.9033      | 1.911      | 1.9052      | 1.907      |
| Re1    | C13    | 1.9253      | 1.902      | 1.9201      | 1.905      |
| Re1    | C14    | 1.9282      | 1.928      | 1.9252      | 1.921      |
| 01     | H10    | 0.852       | 0.966      | 0.842       | 0.966      |
| 01     | N1     | 1.3743      | 1.353      | 1.3942      | 1.370      |
| N1     | C1     | 1.2813      | 1.278      | 1.2822      | 1.275      |
| C1     | H1     | 0.950       | 1.084      | 0.950       | 1.087      |
| C1     | C2     | 1.4583      | 1.441      | 1.4542      | 1.445      |
| C2     | C3     | 1.4073      | 1.406      | 1.3362      | 1.322      |
| C2     | N2     | 1.3412      | 1.333      | 1.3802      | 1.366      |
| C3     | H3     | 0.950       | 1.082      | 0.950       | 1.081      |
| C3     | C4     | 1.3703      | 1.361      | 1.4012      | 1.395      |
| C4     | H4     | 0.949       | 1.084      | 0.950       | 1.082      |
| C4     | C5     | 1.4093      | 1.407      | 1.3663      | 1.363      |
| C5     | C6     | 1.4193      | 1.409      | 0.950       | 1.084      |
| C5     | C10    | 1.4273      | 1.424      | 1.4123      | 1.406      |
| C6     | H6     | 0.950       | 1.084      | 1.4223      | 1.411      |
| C6     | C7     | 1.3633      | 1.366      | 1.4242      | 1.423      |
| C7     | H7     | 0.950       | 1.083      | 0.950       | 1.084      |
| C7     | C8     | 1.4044      | 1.406      | 1.3633      | 1.364      |
| C8     | H8     | 0.950       | 1.084      | 0.951       | 1.083      |
| C8     | C9     | 1.3753      | 1.368      | 1.4092      | 1.397      |
| C9     | H9     | 0.950       | 1.079      | 0.950       | 1.084      |
| C9     | C10    | 1.4053      | 1.408      | 1.3882      | 1.382      |
| C10    | N2     | 1.3813      | 1.366      | 1.4312      | 1.428      |
| C12    | 02     | 1.1603      | 1.151      | 1.1562      | 1.153      |
| C13    | 03     | 1.1483      | 1.150      | 1.1492      | 1.149      |
| C14    | 04     | 1.1483      | 1.144      | 1.1513      | 1.146      |

Table S6. Calculated and Experimental Bond Lengths for Re-5 and Re-6.

|        |        |        | <b>Re-5</b> Bond Angles (°) |       | Re-6 Bor | d Angles (°) |
|--------|--------|--------|-----------------------------|-------|----------|--------------|
| Atom 1 | Atom 2 | Atom 3 | Exp.                        | Calc. | Exp.     | Calc.        |
| Cl1    | Re1    | N1     | 83.635                      | 83.72 | 85.624   | 87.063       |
| Cl1    | Re1    | N2     | 82.955                      | 82.62 | 83.234   | 86.413       |
| Cl1    | Re1    | C12    | 178.83                      | 176.9 | 178.89   | 175.8        |
| Cl1    | Re1    | C13    | 89.427                      | 93.85 | 89.955   | 85.844       |
| Cl1    | Re1    | C14    | 89.457                      | 89.52 | 90.825   | 85.144       |
| N1     | Re1    | N2     | 73.547                      | 73.44 | 83.055   | 77.364       |
| N1     | Re1    | C12    | 96.929                      | 96.06 | 93.706   | 95.995       |
| N1     | Re1    | C13    | 98.798                      | 95.78 | 94.567   | 96.665       |
| N1     | Re1    | C14    | 171.29                      | 173.1 | 176.05   | 171.58       |
| N2     | Re1    | C12    | 98.219                      | 94.31 | 95.816   | 97.065       |
| N2     | Re1    | C13    | 169.69                      | 168.9 | 172.93   | 170.45       |
| N2     | Re1    | C14    | 100.42                      | 104.1 | 94.856   | 98.925       |
| C12    | Re1    | C13    | 89.51                       | 89.29 | 90.987   | 90.936       |
| C12    | Re1    | C14    | 90.11                       | 90.6  | 89.847   | 91.976       |
| C13    | Re1    | C14    | 86.41                       | 86.27 | 87.147   | 85.986       |
| H10    | 01     | N1     | 1102                        | 104.7 | 1072     | 1061         |
| Re1    | N1     | 01     | 128.11                      | 126.1 | 121.41   | 128.95       |
| Re1    | N1     | C1     | 117.71                      | 119   | 127.51   | 117.19       |
| 01     | N1     | C1     | 113.62                      | 114.5 | 110.81   | 113.31       |
| N1     | C1     | H1     | 121.8                       | 121.1 | 117.2    | 122.2        |
| N1     | C1     | C2     | 116.32                      | 116.7 | 125.62   | 115.51       |
| H1     | C1     | C2     | 121.8                       | 122.2 | 117.2    | 122.2        |
| C1     | C2     | C3     | 119.92                      | 119.5 | 116.51   | 120.81       |
| C1     | C2     | N2     | 116.02                      | 116.9 | 124.11   | 115.11       |
| C3     | C2     | N2     | 124.12                      | 123.6 | 117.81   | 124.11       |
| C2     | C3     | H3     | 120.7                       | 119.1 | 117.7    | 120.7        |
| C2     | C3     | C4     | 118.52                      | 119.1 | 124.62   | 118.61       |
| H3     | C3     | C4     | 120.8                       | 121.8 | 117.7    | 120.7        |
| C3     | C4     | H4     | 120.2                       | 121.1 | 120.8    | 120.2        |
| C3     | C4     | C5     | 119.72                      | 119.3 | 118.32   | 119.51       |
| H4     | C4     | C5     | 120.2                       | 119.5 | 120.8    | 120.2        |
| C4     | C5     | C6     | 122.22                      | 121.7 | 120.4    | 121.91       |
| C4     | C5     | C10    | 118.72                      | 118.6 | 119.32   | 118.71       |
| C6     | C5     | C10    | 119.12                      | 119.7 | 120.3    | 119.41       |
| C5     | C6     | H6     | 119.6                       | 118.5 | 120.52   | 119.7        |
| C5     | C6     | C7     | 120.72                      | 120.7 | 119.22   | 120.51       |
| H6     | C6     | C7     | 119.7                       | 120.9 | 120.22   | 119.7        |

Table S7. Calculated and Experimental Bond Angles for Re-5 and Re-6.

| C6  | C7  | H7  | 120.1  | 120.4 | 119.8  | 120    |
|-----|-----|-----|--------|-------|--------|--------|
| C6  | C7  | C8  | 119.82 | 119.7 | 120.52 | 119.91 |
| H7  | C7  | C8  | 120.1  | 119.9 | 119.7  | 120    |
| C7  | C8  | H8  | 119.5  | 119.7 | 120.3  | 119.5  |
| C7  | C8  | C9  | 121.22 | 121   | 119.52 | 121.01 |
| H8  | C8  | C9  | 119.4  | 119.3 | 120.2  | 119.5  |
| C8  | C9  | H9  | 119.8  | 120.4 | 118.8  | 119.8  |
| C8  | C9  | C10 | 120.32 | 120.7 | 122.32 | 120.31 |
| H9  | C9  | C10 | 119.9  | 118.9 | 118.9  | 119.9  |
| C5  | C10 | C9  | 118.72 | 118.2 | 115.11 | 118.51 |
| C5  | C10 | N2  | 120.82 | 121.2 | 125.82 | 121.11 |
| C9  | C10 | N2  | 120.42 | 120.6 | 118.82 | 120.31 |
| Re1 | N2  | C2  | 113.01 | 112.5 | 120.22 | 111.8  |
| Re1 | N2  | C10 | 128.11 | 129.1 | 121.42 | 129.76 |
| C2  | N2  | C10 | 117.72 | 118.1 | 118.42 | 117.41 |
| Re1 | C12 | 02  | 177.22 | 179.1 | 178.72 | 176.31 |
| Re1 | C13 | 03  | 177.42 | 177.7 | 177.02 | 175.61 |
| Re1 | C14 | 04  | 178.32 | 177.8 | 179.52 | 175.71 |
|     |     |     |        |       |        |        |

|        |        | <b>Re-4im</b> Bond Lengths (Å) |       |  |
|--------|--------|--------------------------------|-------|--|
| Atom 1 | Atom 2 | Exp.                           | Calc. |  |
| Cl1    | Re1    | 2.47666                        | 2.451 |  |
| Re1    | N1     | 2.1232                         | 2.101 |  |
| Re1    | N2     | 2.2162                         | 2.236 |  |
| Re1    | C12    | 1.9152                         | 1.907 |  |
| Re1    | C13    | 1.9112                         | 1.907 |  |
| Re1    | C14    | 1.9232                         | 1.928 |  |
| N1     | H1N    | 0.872                          | 1.015 |  |
| N1     | C1     | 1.2812                         | 1.277 |  |
| C1     | C11    | 1.5393                         | 1.535 |  |
| C1     | C9     | 1.4692                         | 1.461 |  |
| C11    | F1     | 1.3393                         | 1.336 |  |
| C11    | F2     | 1.3343                         | 1.333 |  |
| C11    | F3     | 1.3352                         | 1.336 |  |
| C2     | H2     | 0.949                          | 1.082 |  |
| C2     | C3     | 1.4022                         | 1.394 |  |
| C2     | N2     | 1.3382                         | 1.323 |  |
| C3     | H3     | 0.950                          | 1.082 |  |
| C3     | C4     | 1.3612                         | 1.362 |  |
| C4     | H4     | 0.950                          | 1.084 |  |
| C4     | C5     | 1.4123                         | 1.406 |  |
| C5     | C6     | 1.4132                         | 1.410 |  |
| C5     | C10    | 1.4282                         | 1.424 |  |
| C6     | H6     | 0.950                          | 1.084 |  |
| C6     | C7     | 1.3593                         | 1.362 |  |
| C7     | H7     | 0.950                          | 1.083 |  |
| C7     | C8     | 1.4002                         | 1.397 |  |
| C8     | H8     | 0.950                          | 1.080 |  |
| C8     | C9     | 1.3872                         | 1.384 |  |
| C9     | C10    | 1.4443                         | 1.436 |  |
| C10    | N2     | 1.3832                         | 1.365 |  |
| C12    | 02     | 1.1483                         | 1.153 |  |
| C13    | 03     | 1.1572                         | 1.147 |  |
| C14    | 04     | 1.1533                         | 1.146 |  |

Table S8. Calculated and Experimental Bond Lengths for Re-4im.

|        |        |        | Re-4im Bond | Angles (°) |
|--------|--------|--------|-------------|------------|
| Atom 1 | Atom 2 | Atom 3 | Exp.        | Calc.      |
| Cl1    | Re1    | N1     | 85.015      | 84.8       |
| Cl1    | Re1    | N2     | 83.994      | 82.3       |
| Cl1    | Re1    | C12    | 174.56      | 176        |
| Cl1    | Re1    | C13    | 94.806      | 94         |
| Cl1    | Re1    | C14    | 91.676      | 91.3       |
| N1     | Re1    | N2     | 82.966      | 82.1       |
| N1     | Re1    | C12    | 94.758      | 93.8       |
| N1     | Re1    | C13    | 92.708      | 94.3       |
| N1     | Re1    | C14    | 176.45      | 176        |
| N2     | Re1    | C12    | 90.587      | 94.2       |
| N2     | Re1    | C13    | 175.59      | 175        |
| N2     | Re1    | C14    | 97.977      | 96         |
| C12    | Re1    | C13    | 90.649      | 89.4       |
| C12    | Re1    | C14    | 88.689      | 90         |
| C13    | Re1    | C14    | 86.318      | 87.4       |
| Re1    | N1     | H1N    | 1151        | 116        |
| Re1    | N1     | C1     | 131.51      | 131        |
| H1N    | N1     | C1     | 1131        | 113        |
| N1     | C1     | C11    | 116.02      | 116        |
| N1     | C1     | C9     | 125.52      | 125        |
| C11    | C1     | C9     | 118.52      | 119        |
| C1     | C11    | F1     | 111.32      | 112        |
| C1     | C11    | F2     | 112.52      | 112        |
| C1     | C11    | F3     | 110.92      | 111        |
| F1     | C11    | F2     | 107.92      | 108        |
| F1     | C11    | F3     | 107.22      | 107        |
| F2     | C11    | F3     | 106.82      | 107        |
| H2     | C2     | C3     | 117.7       | 120        |
| H2     | C2     | N2     | 117.7       | 116        |
| C3     | C2     | N2     | 124.62      | 125        |
| C2     | C3     | H3     | 121         | 120        |
| C2     | C3     | C4     | 118.12      | 118        |
| H3     | C3     | C4     | 121         | 122        |
| C3     | C4     | H4     | 120.1       | 122        |
| C3     | C4     | C5     | 119.82      | 119        |
| H4     | C4     | C5     | 120.1       | 119        |
| C4     | C5     | C6     | 119.92      | 120        |

Table S9. Calculated and Experimental Bond Angles for Re-4im.

| C4  | C5  | C10 | 119.52 | 119 |
|-----|-----|-----|--------|-----|
| C6  | C5  | C10 | 120.62 | 121 |
| C5  | C6  | H6  | 119.6  | 119 |
| C5  | C6  | C7  | 120.92 | 120 |
| H6  | C6  | C7  | 119.6  | 121 |
| C6  | C7  | H7  | 120.4  | 121 |
| C6  | C7  | C8  | 119.12 | 119 |
| H7  | C7  | C8  | 120.5  | 120 |
| C7  | C8  | H8  | 118.5  | 117 |
| C7  | C8  | C9  | 123.12 | 123 |
| H8  | C8  | C9  | 118.4  | 120 |
| C1  | C9  | C8  | 117.82 | 118 |
| C1  | C9  | C10 | 123.62 | 123 |
| C8  | C9  | C10 | 118.32 | 118 |
| C5  | C10 | C9  | 117.62 | 118 |
| C5  | C10 | N2  | 119.52 | 120 |
| C9  | C10 | N2  | 122.92 | 123 |
| Re1 | N2  | C2  | 114.21 | 115 |
| Re1 | N2  | C10 | 127.11 | 125 |
| C2  | N2  | C10 | 118.32 | 119 |
| Re1 | C12 | 02  | 176.72 | 179 |
| Re1 | C13 | 03  | 179.52 | 179 |
| Re1 | C14 | 04  | 178.02 | 180 |

### **Re-4im Elemental Analysis.**

Anal. Found: C, 27.74; H, 1.53; N, 5.38. Calcd: C, 31.73; H, 1.33; N, 5.29.