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Adaptive optics without borders:
performance evaluation in the infinite aperture limit

Brent L. Ellerbroek

AURA New Initiatives Office, 950 N. Cherry Ave., Tucson AZ, 85719

ABSTRACT

The limit case of an infinite aperture adaptive optics (AO) system eliminates the modeling complications associ-
ated with aperture edge effects, and thereby enables the application of simplified methods for system performance
evaluation in the spatial frequency domain. We review prior work in this field and describe a new approach that
enables a wider range of error sources and AO options to be evaluated with a reduced number of approxima-
tions. These errors and AO options include: Fitting error and spatial aliasing for a Shack-Hartmann wavefront
sensor (WFS) and one particular deformable mirror influence function; WFS noise; servo lag for a continuous
temporal filter function; anisoplanatism in either a single evaluation direction or averaged over an extended
field of view; piston removal within a finite aperture; minimum variance and modal wavefront reconstruction
algorithms; and multi-conjugate AO. Laser guidestars, however, are excluded. A wide range of classical results
for the independent effects of individual error sources can be immediately derived from this integrated model.
Performance estimates for more complex problems involving the full range of first-order AO error sources are in
good agreement with the results produced by more detailed Monte Carlo simulations.

Keywords: Adaptive optics modeling and simulation

1. INTRODUCTION

Adaptive optical (AO) instrumentation continues to play a highly prominent role in the emerging plans for the
next generation of ground based astronomical telescopes.1, 2 It is likely that the range of AO concepts proposed
for these telescopes will continue to grow in terms of variety, complexity, and dimensionality. In the last several
years, good to excellent progress has been made in developing efficient algorithms and simulations for detailed
modeling of these concepts.3–7 However, even the most efficient algorithms and fastest available processors are
severely challenged by AO systems with 104 to 105 degrees of freedom, and each individual simulation may take
many hours, or even days, of computer time. Exploring a broad range of potential system options is not practical
with this approach, and there remains a need for simpler methods that are fast, general, and still reasonably
accurate.

A wide range of useful formulas for efficiently (albeit approximately) evaluating the impact of the individ-
ual error sources in an AO system have already been developed using spatial frequency domain techniques.
Examples include models for anisoplanatism,8 servo lag,9, 10 wavefront sensor (WFS) spatial aliasing,11 and
tomographic wavefront reconstruction in multi-conjugate AO (MCAO).12, 13 These results exploit the fact that
the fundamental optical and control processes to be considered–wavefront propagation, sensing, reconstruction,
and correction–are well modeled as spatial filtering operations. Many important AO error sources may con-
sequently be evaluated singly in terms of simple scaling laws or somewhat more complex functions of a single
parameter. To date, however, less progress has been made in developing methods for efficiently evaluating the
combined, and partially correlated, impact of multiple AO error sources. The usual approach is to incoherently
sum or convolve the contributions of the individual terms,14, 15 which generally yields a (possibly pessimistic)
lower bound on performance.

In this paper, we describe a more integrated approach to spatial frequency domain modeling that correctly
captures many of the interactions and correlations between the most fundamental error sources in an AO system.
Our starting point is a standard linear systems model that treats the optical and control processes in AO as linear
operators acting on abstract vector spaces of turbulence screens, phase profiles, WFS measurements, and DM
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actuator commands. Virtually all formulas for classical wavefront reconstruction algorithms and their expected
performance are expressed in terms of these operators and the second-order statistics of turbulence screens and
WFS measurement noise. All of these quantities are diagonal with respect to spatial frequency in the Fourier
domain, and it follows that reconstruction algorithms may be derived and evaluated one Fourier component
at a time. With the aid of this decoupling, even the very high order AO systems presently under study for
future extremely large telescopes may be optimized and evaluated in a matter of minutes on a desktop personal
computer.

This simplicity and efficiency comes at the expense of neglecting the boundary conditions and aperture
edge effects that cannot be represented via shift-invariant spatial filters. On account of this approximation,
this technique should be viewed primarily as a method for obtaining fast and reasonably accurate performance
estimates during (for example) the initial stages of developing system requirements. Without treating aperture
edge effects, it cannot be used to generate the reconstruction matrix for an actual AO system. Considered as
an analysis tool, however, it models many of the phenomena and options that define the landscape of classical
wavefront reconstructor theory. These features include: Integrated treatment of five fundamental AO error
sources (DM fitting error, WFS spatial aliasing, additive WFS measurement noise, anisoplanatism, and servo
lag); multi-guidestar AO and MCAO; least squares, minimum variance, and closed-loop minimum variance
wavefront reconstruction; zonal and modal wavefront control; and models for the AO-compensated point spread
function (PSF) as a function of wavelength and evaluation direction. All of the standard formulations for these
concepts are transferred faithfully to the spatial frequency domain, apart from neglecting aperture edge effects.

The remainder of this paper sketches the elements of this method and presents a range of sample numerical
results. Section 2 reviews some of the basic elements of the standard AO linear systems model that is the starting
point for this work. Section 3 summarizes the usual representations for some of the operators and statistical
processes comprising this model, and confirms that they may all be expressed as spatial filters or δ-correlated
power spectra. Section 4 validates one of the analytical results obtained using the new model against classical
formulas for the effect of WFS measurement noise in a conventional, single-conjugate AO system. Section 5
applies the model to study the interaction of multiple error sources in an 8-meter class MCAO system. The
agreement with both classical scaling laws and detailed simulations ranges from good to exact in both of these
test cases.

2. LINEAR SYSTEMS MODELS

The present work is based upon a set of standard, well known results for describing and optimizing AO perfor-
mance using classical linear systems techniques.16–20 They are applicable to AO architectures using either single
or multiple wavefront sensors (WFS’s) and deformable mirrors (DM’s) for turbulence compensation across either
a narrow or wide field-of-view (FOV). It is convenient to group these results into three categories of increasing
sophistication related to (i) fitting DM actuator commands to a known turbulence profile, (ii) reconstructing
turbulence profiles from noisy and incomplete WFS measurements, and (iii) evaluating the dynamical response
of a classical, closed-loop AO system to time-varying turbulence and WFS measurement noise. Space limitations
prevent us from presenting all of this material, but the following paragraphs review wavefront fitting in detail
and provide a very brief summary of results on wavefront reconstruction and control.

2.1. Wavefront Fitting
Given a linear (geometrical optics) model for wavefront propagation, the residual phase profile φ obtained by an
AO system when a set of DM actuator commands a are applied to correct for the turbulence profile x can be
described by an equation of the form

φ = φ(a) = Hxx − Haa, (1)

where the matrices Hx and Ha are the influence matrices that describe the the impact of x and a upon the
output wavefront φ(a). The quantities x, a, and φ are vectors described in terms of arbitrary basis functions,
and in the general case represent (i) multiple 2-dimensional turbulence screens in a distributed, 3-dimensional
atmosphere, (ii) actuator commands for multiple DM’s that are optically conjugate to distinct ranges in the
atmosphere, and (iii) multiple 2-dimensional phase profiles propagated from distinct science objects distributed
over an extended FOV.
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The aperture- and field-averaged variance of φ(a) is a standard metric for the residual phase error. The
general form of σ2(a) = var[φ(a)] is the expression

σ2(a) = φT (a)Wφφ(a), (2)

where the symmetric, semi-positive-definite weighting matrix Wφ is determined by (i) any cross-coupling between
the components of φ(a) due to the choice of basis set, and (ii) for a wide FOV AO system, the relative importance
attached to the different science objects.

Evaluating the variance σ2(a) for either the optimal choice of a or various suboptimal choices is a recurring
problem in adaptive optics. ¿From the above equations it follows that σ2(a) is quadratic in a, so the optimum
solution may be determined using standard least-squares methods. The result is described by the equations

a∗ ≡ arg min
a

σ2(a) = W−1
a Caxx, (3)

σ2(a∗) = xT
[
Wx − CT

axW−1
a Cax

]
x, (4)

σ2(a) = σ2(a∗) + (a∗ − a)T Wa(a∗ − a), (5)

where we have introduced the variables Wa = HT
a WφHa, Cax = HT

a WφHx, and Wx = HT
x WφHx to simplify

notation. The turbulence profile x is a random quantity, so the time-averaged value of σ2(a) is also of interest for
many applications. The usual notation, 〈. . .〉, will be used to denote ensemble averages over random quantities
including turbulence profiles, WFS measurement noise, and (in some cases) the variability of the wind. The
expected values of σ2(a∗) and σ2(a) can be determined from Eq.’s (4) and (5) with the result16

〈
σ2(a∗)

〉
= tr

[
Wx

〈
xxT

〉] − tr
[
W−1

a Cax

〈
xxT

〉
CT

ax

]
, (6)

〈
σ2(a)

〉
=

〈
σ2(a∗)

〉
+ tr

[
Wa

〈
(a∗ − a)(a∗ − a)T

〉]
. (7)

Here tr(M) denotes the trace (or sum of the diagonal elements) of a square matrix M .

2.2. Wavefront Estimation

The best-fit actuator command vector a∗ is generally not known a priori, but instead must be reconstructed
(i.e., estimated) from a noisy and incomplete WFS measurement vector. We consider first the simpler (and
generally unrealistic) case where the measurement depends upon the turbulence disturbance x but not the DM
actuator command vector a. Assuming geometrical optics and an ideal, linear WFS, this so-called “open-loop”
measurement s0 is described by the formula

s0 = Gxx + n, (8)

where Gx is the turbulence-to-WFS influence matrix and n is an additive noise term that is assumed to be sta-
tistically independent of x. In analogy with φ, the measurement s0 may include components recorded by several
different sensors observing distinct guidestars distributed over the FOV. We will assume that reconstruction
algorithm is a linear operator, and can therefore be represented by a matrix multiply of the form

a = Rs0. (9)

The matrix R should be selected so that the reconstructed set of DM commands a is a good approximation to
the best-fit value a∗. This criteria may be quantified in terms of

〈
σ2(Rs0)

〉
, the expected variance of the residual

phase error. Eq. (7) may be used to compute this quantity, once the covariance matrix
〈
(a∗ − a) (a∗ − a)T

〉
=

〈
(a∗ − Rs0) (a∗ − Rs0)

T
〉

has been determined. Using the commutative properties of 〈. . .〉 together with Eq.’s
(8) and (3), we obtain

〈
(a∗ − Rs0) (a∗ − Rs0)

T
〉

=
〈
a∗aT

∗
〉 − R

〈
s0a

T
∗
〉 − 〈

a∗sT
0

〉
RT + R

〈
s0s

T
0

〉
RT , (10)

where the covariance matrices involving a∗ and s0 may be expressed in terms of the statistics of x and n using
Eq.’s (3) and (8).
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It is frequently of interest to optimize the reconstruction algorithm, if only to provide a bound on the
performance of any possible approach. The so-called “minimum variance reconstructor” is given by the expression

R∗ ≡ arg min
R

〈
σ2(Rs0)

〉
=

〈
a∗sT

0

〉 〈
s0s

T
0

〉−1
. (11)

It is possible to proceed further and develop concise formulas for (i) the minimized phase variance
〈
σ2(R∗s0)

〉

and (ii) the incremental error incurred by using a suboptimal value of R instead of R∗.

2.3. Wavefront Control
The formulation of the wavefront reconstruction problem outlined above is oversimplified for several important
reasons. The large majority of operational and planned AO systems employ wavefront sensors with limited linear
dynamic ranges, and therefore place the WFS following the deformable mirror so that only the (smaller) residual
wavefront errors are sensed. The output of the wavefront reconstruction algorithm computed at each cycle of
the control loop is used to update the prior set of DM actuator commands, with a temporal filter applied to
reduce the effects of measurement noise and provide more stable control. The dynamics of the system may be
represented by the formulas

s(t) = s0(t) − Gaa(t), (12)

a(t) =
∫ ∞

0

dτ f(τ)[Rs(t − τ)]. (13)

Here t and τ are time variables, s(t) is the closed-loop WFS measurement after correction by the DM actuator
command a(t), Ga is the DM-to-WFS influence matrix, and f(τ) is the (scalar-valued) function used to filter
the output of the wavefront reconstruction operator before it is applied to the DM. Eq. (12) and (13) describe a
classical control architecture as implemented in many currently operational AO systems, as distinct from some
of the more innovative approaches now being studied via analysis and simulation.

The explicit dependence of a(t) upon s(t) may be determined using Fourier transform techniques. In the
general case, the relationship is described by a matrix-valued filter, making it computationally difficult to evaluate
and (especially) to optimize the performance of the AO control loop. These difficulties may be avoided by
restricting attention to values of R that satisfy the condition RGa = I, i.e., wavefront reconstructors that are
left pseudo-inverses of the DM-to-WFS influence matrix. In this special case the temporal dynamics of the AO
system are defined by the expression

a(t) = Rsf (t) = R [Gxxf (t) + nf (t)] , (14)

where sf (t), xf (t), and nf (t) are temporally filtered versions of the quatities s0(t), x(t), and n(t) that have been
convolved with the closed-loop impulse response function fIR(t) corresponding to the servo filter function f(t).

Performance evaluation and optimization can now proceed much as in the case of open-loop wavefront re-
construction considered above. The expected residual phase variance

〈
σ2(Rsf )

〉
is evaluated using Eq. (7) with

a = Rsf . The covariance matrix
〈
(a∗ − Rsf ) (a∗ − Rsf )T

〉
is computed using the equivalent of Eq. (10) with sf

substituted for each appearance of the open-loop measurement s0. The covariance matrices
〈
sfsT

f

〉
and

〈
a∗sT

f

〉

are in turn evaluated in terms of the statistics of xf , x, and nf .

For numerical computations, of course, the covariances involving the temporally filtered turbulence profiles
xf may be more difficult to evaluate than the statistics of the instantaneous profiles x. The of validity of the
result also depends strongly upon constraint RGa = I, a condition which holds for the standard least squares

reconstructors RLS = (GT
a Ga)−1GT

a and RWLS =
(
GT

a

〈
nnT

〉−1
Ga

)−1

GT
a

〈
nnT

〉−1 actually used in many AO
systems. It does generally not hold for the minimum variance reconstructor R∗ defined by Eq. (11), but is
is possible to determine the reconstructor Rc that optimizes closed-loop performance subject to the condition
RGa = I. The result is the expression19

Rc ≡ arg min
{〈

σ2(Rsf )
〉

: RGa = I
}

= R∗ − (I − R∗Ga)
(
GT

a

〈
sfsT

f

〉−1
Ga

)−1

GT
a

〈
sfsT

f

〉−1
. (15)
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2.4. Servo Filter Optimization; Modal and Zonal Control

Further optimization of the residual closed-loop phase variance
〈
σ2(Rsf )

〉
is accomplished by tuning the temporal

filter f(t). This is essentially a matter of balancing the magnitudes of the reconstruction errors due to (i)
the noise nf remaining after filtering and (ii) the latency and loss of fidelity in the filtered turbulence profile
xf . The value of

〈
σ2(Rsf )

〉
is definitely a nonlinear function of the choice of filter f , but for classical AO

control loops f is defined by just one or several servo parameters. The prescription f(t) = 2πfc for all t ≥ 0,
for example, defines a 1-parameter family of type I control laws with the corresponding closed-loop impulse
functions fIR(t) = 2πfc exp(−2πfct). Minimizing

〈
σ2(Rsf )

〉
over a parameterized family of temporal filters

may be accomplished by applying a standard iterative algorithm for optimizing nonlinear functions, for example
Newton’s method or steepest descent.21

A basic limitation of this approach (and the AO control loop model formulated in subsection 2.3 above) is
that all the components, or modes, of the phase disturbance must be corrected using a common value for f .
In many cases, better results may be achieved by recognizing that each of these components is characterized
by a distinct temporal power spectrum, and that the AO control algorithm can be tuned accordingly. Modal
control22 and regularized zonal control23 are two standard approaches, although space limitations prevent us
from formulating them here.

3. SPATIAL FREQUENCY DOMAIN REPRESENTATIONS

The general results outlined above cannot actually be applied to a particular modeling problem until numerical
values or analytical expressions are available for all of the terms describing the AO system and the observing
scenario. These terms are the (i) wavefront propagation, sensing, and correcting operators, (ii) the phase variance
metric Wφ and the related matrices Wa, Wx, and Cax, and (iii) the covariance matrices describing the second-
order statistics of atmospheric turbulence and WFS measurement noise. We briefly summarize spatial frequency
domain formulas for these quantities in the following subsections, using the usual geometrical optics models as
starting points. All of these matrix- or operator-valued expressions are diagonal with respect to spatial frequency,
so that AO performance may be evaluated or optimized by using the results developed in Section 2 by solving
many small problems individually for each Fourier component.

3.1. Wavefront propagation, sensing, and correction

The abstract vectors x, φ, a, and s must now be defined more explicitly. In the spatial domain, the turbulence
vector x becomes a series of screens x(r; j), where r is a two-dimensional coordinate in the plane orthogonal
to the line-of-sight, and screen number j is at range hj from the telescope. The phase vector φ becomes the
function φ(r; θ), where r represents coordinates in the telescope aperture plane and θ is a (continuous or discrete)
parameter indicating the direction of a science object. The DM actuator command vector a is replaced by arrays
of commands a(∆km; k), where ∆k is the inter-actuator spacing on DM number k (imaged onto the telescope
aperture plane), m = (mx,my) is a two-dimensional index ranging over the grid of actuators, and DM number k
is optically conjugate to a range h′

k from the telescope. Similarly, the WFS measurement vector s becomes the
two-dimensional function s(∆n; l), where ∆ is the width of a sub-aperture in the aperture plane, n = (nx, ny) is
a two-dimensional index ranging over the grid of sub-apertures, and WFS number l observes guidestar number
l in direction ϑl through the atmospheric turbulence layers and deformable mirrors. We note that (i) the sub-
aperture width ∆ is identical for all guidestars, (ii) all guidestars are at infinite range, and that (iii) all wavefront
sensor pupils are conjugate to the telescope aperture plane.

The coordinates r, n, and m are unbounded by any finite aperture, a key assumption that allows the processes
of wavefront propagation, sensing, and correction to be represented as spatial filtering operations. The spatial
Fourier transform of x(r; j) with respect to r will be denoted as x̂(κ; j), and similarly for the remaining functions.
The transforms of a(∆km; k) and s(∆n; l) are periodic on square cells of width 1/∆k and 1/∆, respectively, since
the DM actuator commands and WFS measurements are discrete functions of m and n.

We now describe the spatial- and frequency domain representations of the wavefront operators introduced in
Section 2 above, beginning with the turbulence-to-phase propagation operator Hx. Using the usual geometrical
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optics model, the effect of turbulence upon a plane wavefront propagating from a science object in direction θ is
described by

φ(r; θ) =
∑

j

x(r + hjθ; j), (16)

since turbulence screen number j is located at range hj . Applying the Fourier shift theorem yields the result

φ̂(κ, θ) =
∑

j

exp(2πihjθ · κ)x̂(κ; j). (17)

The coefficients of the operator Hx are just the complex exponentials appearing in the above equation, and it is
clear that this is a sum of spatial filtering operations applied to each turbulence layer.

The remaining sensing and correcting processes Gx, Hx, and Ha are compositions of multiple operators. All
three of these quantities can be expressed as products of (i) a term describing the propagation of a wavefront
through a series of screens (either turbulence layers or deformable mirror surfaces), together with either (ii) an
operator H that transforms the DM actuator command vectors a(∆km; k) into the corresponding set of DM
surface profiles α(r; k), and/or (iii) an operator G that converts a guidestar wavefront ϕ(r; l) at the entrance
pupil of a wavefront sensor into the resulting WFS measurement vector s(∆n; l). More specifically, we have
Gx = GG′

x, Ha = H ′
aH, and Ga = GG′

aH, where the primed versions of the three operators are analogous to
Hx above, although the ranges to the layers and the directions of the wavefront propagations will generally be
different.

It remains to formulate H and G and confirm that they are spatial filtering operations. The operator H
is based on the usual model that represents the DM figure α(r; k) as a linear superposition of the individual
actuator influence functions, namely

α(r; k) =
∑

m

a(∆km; k)hk(r − ∆km), (18)

where the index m = (mx,my) varies over all pairs of actuator indices, and hk(r) is the common influence
function for all of the actuators on DM number k. If we restrict ourselves to the special case hk(x, y) =
[sin(π∆kx)/(π∆kx)][sin(π∆ky)/(π∆ky)], the spatial Fourier transform of α may be written as

α̂(κ; k) =
{

â(κ; k) if max{|κx|, |κy|} < 1/(2∆k),
0 otherwise, (19)

and for this influence function the operator H is just a low-pass spatial filter.
The last quantity to be considered is the operator G mapping guidestar wavefronts ϕ(r; l) into WFS mea-

surements s(∆n; l). Using the standard linear model for a wavefront gradient sensor, the measurement s may be
written in the form

s(∆m; l) = ∆−2

∫
d2r∇ϕ(r; l)w(r − ∆m) + n(∆m; l), (20)

where the two-dimensional integer index m varies over all sub-aperture locations, the function n represents the
electronic noise in the measurement due to photon statistics, detector read noise, and background photons, and
the “sub-aperture influence function” w(r) is equal to unity for r within a square sub-aperture of width ∆, and
is zero otherwise. Applying the convolution and differentiation theorems yields the result

ŝ(κ, l) = 2πi
∑

m

(κ + ∆−1m)ϕ̂(κ + ∆−1m; l)ŵ∗(κ + ∆−1m) + n̂(κ; l)

= 2πiκϕ̂(κ; l)ŵ∗(κ) +



2πi
∑

m �=0

(κ + ∆−1m)ϕ̂(κ + ∆−1m; l)ŵ∗(κ + ∆−1m) + n̂(κ; l)



 . (21)

¿From this last expression, it is clear that the wavefront sensing operator G is not purely a spatial filter. However,
it behaves as a spatial filter on the component of ϕ̂ defined within the passband max{|κx|, |κy|} < 1/(2∆), with
the term inside square brackets acting as a type of independent measurement noise. This measurement error is
the sum of the WFS electronic noise proper, plus “aliasing” terms due to the higher frequency components of
the phase profile ϕ.
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3.2. Phase variance metric
We define a special case of the phase variance metric Wφ introduced in Section 2 above by the formula

φT Wφψ =
∫

dθ WΩ(θ)
∫

dκ
[
1 − |ŴA(κ)|2

]
φ̂∗(κ; θ)ψ̂(κ; θ). (22)

Here φ(r, θ) and ψ(r, θ) are any two phase profiles in the telescope aperture plane for each direction θ within a
field-of-view (FOV) Ω, WΩ is a non-negative FOV-weighting function normalized such that

∫
dθ WΩ(θ) = 1, and

WA is a non-negative telescope aperture function that has been similarly normalized to unity. Typical values
for WΩ include disks, squares, sums of discrete δ-functions, and perhaps Gaussian profiles. The most common
choice of WA is a disk of diameter D, in which case

ŴA(κ) = 2J1(πDκ)/(πDκ), (23)

where J1 is a Bessel function of the first kind.

This choice of phase metric is diagonal with respect to spatial frequency by definition. It has been chosen
because it may be shown that if φ̂(κ; θ) is a random phase profile which is δ-correlated with respect to κ, then

〈
φT Wφφ

〉
=

∫
dθ WΩ(θ)

〈∫
dr WA(r)

[
φ(r; θ) −

∫
dr′ WA(r′)φ(r′; θ)

]2
〉

(24)

In other words, the expected value of the metric is simply the expected value of the field- and aperture-averaged,
piston-removed variance of φ. We note that this result only holds for expected values, not for the individual
realizations of the phase profile.

3.3. Turbulence and noise statistics
The atmospheric turbulence spectrum x̂(κ; j) is δ-correlated with respect to κ and the layer index j. For a Von
Karman power spectrum, its variance may be written in the form

〈|x̂(κ; j)|2〉 = cxr
5/3
0 C2

n(hj)Ψ(κ)/
∑

k

C2
n(k), (25)

where cx = 2.29 × 10−2 on account of the factors of 2π appearing in our choice of convention for the Fourier
transform, r0 is the turbulence-induced effective coherence diameter, C2

n(hj) is the (discretized) refractive index

structure constant for the atmospheric layer at range hj , and Ψ(κ) =
(
κ2 + L−2

0

)−11/6
is the Von Karman

spectrum with an outer scale of L0.

The WFS measurement noise n(∆m; l) is statistically independent for distinct guidestars, sub-aperture loca-
tions, and (x− or y−) components. The noise variance is identical for all measurements from a given guidestar,
with a value denoted as σ2

n(l) for guidestar number l. We recall that the variable n denotes only the electronic
component of the WFS measurement noise, and that the total noise includes a contribution from spatial aliasing
according to Eq. (21) above. This additional noise source will be partially correlated between sub-apertures and
guidestars according to the statistics of the turbulence x̂ and the specific wavefront sensing geometry.

According to section 2.3, we also require formulas for the second-order statistics of xf , and nf to evaluate
the dynamic performance of a closed-loop AO system. Here xf and nf are obtained by convolving x and n
with the the servo impulse response function fIR corresponding to the servo filter function f . A Fourier domain
representation for the filtered turbulence profile xf can be derived by assuming that x evolves according to the
Taylor hypothesis,

x(r; j, t) = x(r − tvj ; j, 0), (26)

where vj is the wind velocity of atmospheric layer number j. Using the shift theorem and the definition of the
impulse response function fIR, it may be shown that x̂f (κ; j, t) may be expressed as

x̂f (κ; j, t) = exp(2πitvj · κ)

[
f̂(vj · κ)

1 + f̂(vj · κ)

]

x̂(κ; j, 0), (27)
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The expected values of xfxT
f and xxT

f may now be computed using this result, Eq. (25) for the statistics of
the instantaneous profile x, and the values of the wind velocities vj . For example, with a known windspeed, an
unknown and uniformly distributed wind direction, and the type I servo filter describe in Section 2.4 above we
obtain

〈|x̂f (κ; j)|2〉 =
〈
x̂(κ; j)x̂∗

f (κ; j)
〉

=

〈|x̂(κ; j)|2〉

(1 + |vjκ/fc|2)1/2
. (28)

Finally, the second-order statistics of the temporally filtered noise nf is easily computed from the definition of
the impulse response function fIR and the assumption that the noise is temporally uncorrelated.

4. COMPARISONS AGAINST CLASSICAL SCALING LAWS FOR NGS AO

The expressions for operators, performance metrics, and covariance matrices derived above may now be combined
with the linear systems models discussed in Section 2 to evaluate the performance of a variety of AO systems
concepts. In the general case these evaluations must be performed numerically, but for classical natural guide
star (NGS) AO systems it is possible to derive simplified formulas for the individual impacts of a variety of AO
error sources considered separately. These error sources include (i) DM fitting error, (ii) WFS spatial aliasing,
(iii) WFS measurement noise, (iv) anisoplanatism, and (v) servo lag. In this section we, briefly summarize the
case of WFS measurement noise, where the deviation between the results of frequency domain model and more
detailed Monte Carlo simulations that model aperture edge effects is the greatest.

The so-called “noise gain” of the wavefront reconstruction algorithm is computed by neglecting atmospheric
turbulence and evaluating the ratio between the mean-square reconstructed phase error and the mean-square
WFS measurement noise. Using Eq.’s (7) and (10) with the results of Section 3, the noise gain for the classical
least-squares reconstructor may be written in the form

〈
σ2(RLSs0)

〉

σ2
n

=
1

4π2

∫ 1/2

−1/2

∫ 1/2

−1/2

dκ

κ2

{

1 −
[
2J1(πκD/∆)

(πκD/∆)

]2
}

1
[sinc(πκx)sinc(πκy)]2

. (29)

The reconstructor noise gain is a function of the order of correction D/∆, where ∆ is equal to both the width
of the subaperture and the DM interactuator spacing.

Fig. 1 plots the values obtained from Eq. (29), together with the curve fit 0.150 + 0.083 log[(π/4)(D/∆)2].
The logarithmic dependence upon the order of the AO system arises from the term κ−2 appearing in the
integrand in Eq. (29). This functional form matches a variety of results obtained by more detailed analyses in
the spatial domain,19 although the numerical value is too small by a factor of about 17 per cent in the limit of
very large D/∆. We attribute this optimism to the fact that the spatial frequency domain model utilizes WFS
measurements on a grid of sub-aperture locations that extends outside of the physical boundary of the evaluation
aperture. Measurements from these phantom sub-apertures reduce the effect of WFS measurement noise on the
reconstruction of low-order phase distortions.

5. COMPARISONS AGAINST MONTE CARLO SIMULATIONS

We have tested the accuracy of the frequency domain model for more complex AO configurations by evaluating
8-meter class multi-conjugate AO (MCAO) and ground-layer AO (GLAO) systems, and comparing the results
obtained against Monte Carlo simulation codes that have been previously described.3, 24 The basic models for
wavefront propagation, sensing, and correction used in these simulations are essentially as described in Section 3
above, so that these comparisons highlight the impact of neglecting aperture edge effects in the spatial frequency
domain model. The level of agreement obtained ranges from good to excellent in all cases considered to date.
Sample results for MCAO are described in the following paragraphs.

This sample case is based very loosely upon the MCAO design now being fabricated for the 8-meter Gemini
South telescope at Cerro Pachon, Chile.25 The simulated atmospheric profile included 6 layers at altitudes
of 0, 2, 4, 8, 12, and 16 kilometers, with relative C2

n(h) strengths of 0.6, 0.2, 0.05, 0.05, 0.07, and 0.03. The
strengths of the layers were scaled to obtain an effective coherence diameter r0 of 0.15 meters at a wavelength of
0.5µm, with an isoplanatic angle θ0 of 2.41 arc seconds. The six layers had velocities of 5, 7, 10, 15, 25, and 15
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Figure 1. Wavefront reconstruction noise gain for NGS AO
This figure plots the noise gain coefficient (computed according to Eq. (29) above) for a least squares wavefront recon-
struction algorithm as a function of the order of the AO system. The dashed line plots the value of a simplified scaling
law that provides a good fit the numerical results.

m/sec, yielding a Greenwood frequency fg of 25 Hz. The outer scale L0 was equal to infinity for all turbulence
layers. The Monte Carlo simulations used periodic turbulence screens with 20482 points, a grid spacing of 1/32
meters, and a width of 64 meters. The impact of the pseudo inner- and outer-scales induced by these sampling
parameters has not been investigated.

The telescope aperture diameter was 8m, with no central obscuration. MCAO performance was opti-
mized and evaluated over a one arc minute square, sampled discretely at the nine points with coordinates
([−30, 0, 30], [−30, 0, 30])

�
sec (arc seconds) in the spatial domain simulation. Five natural guide star were lo-

cated in the directions (0, 0) and (±30,±30)
�
sec, with a WFS sub-aperture width of 0.5m. Partially illuminated

edge sub-apertures were retained in the WFS measurement vector for the Monte Carlo simulation. Three de-
formable mirrors were located at conjugate ranges of 0, 5, and 10 kilometers, with inter-actuator spacings of
0.5, 0.5, and 1.0 m. The Monte Carlo simulation used a linear spline influence function, in contrast with the
sin(π∆x)/(π∆x) influence function introduced in Section 3 above.

AO system performance was evaluated with a minimum variance wavefront reconstruction algorithm. Closed-
loop performance was evaluated for a 12 Hz control bandwidth, and the impact of WFS measurement noise was
evaluate for a sub-aperture noise equivalent angle of 0.01

�
sec per Hz1/2. For the Monte Carlo simulation, the

WFS sampling rate was 800 Hz, and DM commands were updated using a simple integrator with 3dB error
rejection at 12 Hz.

The performance predictions computed by the two models were compared by successively simulating problems
of increasing complexity that incrementally added one or two error sources at a time. The problems considered
were: (i) DM fitting and WFS spatial aliasing for a 8-meter class NGS AO system with a 0.5 meter sub-aperture
and actuator pitch; (ii) the increased phase variance due to tomographic wavefront reconstruction and wide FOV
wavefront compensation in a NGS MCAO system with no WFS measurement noise or servo lag; (iii) the servo
lag error for a 12 Hz control bandwidth; and (iv) the error due to WFS noise for a noise equivalent angle (NEA)
of 0.01

�
sec /Hz1/2. An “error budget” for these four terms was created by differencing (in quadrature) successive

performance estimates from each of the models. The parameters for this test case were selected so that roughly
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Table 1. Comparison of frequency domain performance estimates vs. the results of Monte Carlo simulations for a sample
NGS MCAO system. The values are RMS wavefront errors in units of nm. See the text for descriptions of the AO system,
the turbulence profile, and further definition of the error terms.

Model Frequency Domain Monte Carlo
Fitting error 110.4 115.4
Tomography 89.7 92.5
Servo lag 89.8 88.4
WFS noise 83.7 94.4
Overall 188.9 196.5

Table 2. Comparison of Strehl ratio estimates in J and K bands. These results correspond to the field-averaged RMS
wavefront errors summarized in table 1. See the text for descriptions of the MCAO system and turbulence profile.

Band Model Center Edge Corner
J Frequency Domain 0.474 0.371 0.327

Monte Carlo 0.442 0.357 0.337
K Frequency Domain 0.786 0.726 0.696

Monte Carlo 0.768 0.716 0.703

equal contributions were obtained from each of the four error sources.

Table 1 summarizes the RMS wavefront error budgets computed using the two approaches. The overall
performance estimates differ by about 4 per cent, with the individual terms in the error budget differing by
from 2 to 10 per cent. The largest discrepancy occurs for WFS measurement noise; this is evidently the most
significant error made by neglecting aperture edge effects in the spatial frequency domain model. The differences
for the remaining terms range from 2 to 4 per cent.

Table 2 lists the long-exposure Strehl ratios computed via analysis and Monte Carlo simulation in the J and
K spectral bands at the center, edge, and corner of the 1 arc minute square FOV. The agreement is again good
to a few per cent (relative), and the analytical results provide a good estimate of the variations in performance
across the field-of-view. Finally, Fig. 2 is a (log-stretch) plot of the J and K band PSFs computed at the corner
of the FOV using the two techniques. It may be seen that (i) the diameters of the seeing-limited halos are in
agreement, (ii) the diameters of the central cores are in agreement, and (iii) the shape and size of the radial
asymmetries may be in agreement, althought more simulation trials will be required to confirm or reject this
preliminary assertion. [We hope to have these simulations completed in time for the proceedings.]
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Figure 2. PSF estimates at the corner of the MCAO field-of-view
This figure is a log stretch of the J and K band point spread functions computed via frequency domain analysis and
Monte Carlo simulation for the MCAO system and atmospheric turbulence parameters described in the text. The images
are Nyquist sampled with a width equal to 64 diffraction-limited blur diameters. The simulated PSFs are averages of 500
instantaneous values collected at a sampling rate of 800 Hz.
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