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Supplementary Materials and Methods 

 

Main instrumentation 

The particle concentration and number size distribution in the chamber were measured with 

several independent instruments. The particle size magnifier (PSM(41), Airmodus Ltd.), 

together with a condensation particle counter (CPC) was used to determine the number 

concentrations of the smallest particles. The PSM uses diethylene glycol as working fluid 

and achieves supersaturated conditions by turbulently mixing heated saturated air with the 

sample flow. Particle growth takes place in a cooled growth tube, and in the external CPC, 

which is also used to count the particles. Since the saturation ratio can be quickly adjusted 

by altering the flow rate of the saturated air, the cut-off diameter of the PSM can be varied. 

In this study two PSMs were operated with fixed cut-off sizes and one in scanning mode, 

which allows determining the particle concentration at several different cut-off sizes (1.7 nm 

used in this study), as well as the number size distributions between about 1 and 3 nm(42). 

The instruments were calibrated before the campaign using size-selected tungsten oxide 

particles. Additionally, a conventional butanol ultra-fine CPC (TSI 3776) with a cut-off size 

of ca. 2.5 nm was used. 

 

The size distribution of particles between 1.7 and 8 nm was measured with a newly 

developed instrument, the DMA-train(43). It consists of six differential mobility analyzers 

(DMAs) and six CPCs operated in parallel at fixed sizes. This provides high time-resolution 

and allows exploitation of the full counting statistics at all six sizes. Thereby high sensitivity 

to low particle concentrations is obtained. For larger particles we used a commercial nano-

SMPS (TSI 3938) together with a water-CPC (TSI 3788), and a home-built SMPS, 

consisting of a TSI X-ray source, a long DMA and a CPC (TSI 3010). The full size 

distribution produced by combining the different measurements from different instruments 

thus spanned a range from about 1 to 500 nm. 

 

The ion concentration and size distribution were measured using a neutral cluster and air ion 

spectrometer (NAIS(44), Airel Ltd.). It simultaneously determines the number size 

distribution of positive and negative ions in the range of 0.75–45 nm mobility diameter with 

two cylindrical mobility spectrometers in parallel, one for each polarity. Additionally, a 

corona charger is periodically switched on to charge the aerosol for the detection of the total 

particle size distribution in the size range of 2–45 nm. 



 

Concentrations of sulfuric acid and highly oxygenated molecules (HOMs) were measured 

with a nitrate-ion based chemical ionization atmospheric pressure interface time-of-flight 

mass spectrometer (CI-APi-TOF(34, 45)). The nitrate ions are produced by exposing HNO3
 

containing sheath flow to an x-ray source. After charging in a drift tube, the sample enters 

the APi where it gets focused and the pressure is gradually reduced to ca. 10-6 mbar. 

Subsequently, the sample is guided to the TOF region, where the molecules are separated 

according to their mass-to-charge ratio and detected by a microchannel plate detector. 

Similar instruments without the chemical charging unit (APi-TOF(46)) were used in 

negative and/or positive mode to detect and identify negative and positive ions and charged 

clusters. 

 

To quantify sulfuric acid and HOMs, we conducted a calibration and applied corrections 

similar to our previous work(15, 32). Briefly, in separate experiments the OH concentration 

in the chamber was determined using 1,3,5-trimethylbenzene in CLOUD10 and 1,2,4-

trimethylbenzene in CLOUD11. Sulfuric acid production rates were calculated based on the 

OH and SO2 concentration in the chamber. Then, the concentration of sulfuric acid in the 

chamber could be determined using the production rate and losses, including wall loss and 

condensation loss to aerosol particles. Additional corrections including the instrument 

transmission correction(47), as well as corrections for sampling losses for HOMs were 

applied. The overall uncertainty in the sulfuric acid and HOMs concentrations is estimated 

to be ca. 40%. The raw data were analyzed with the MATLAB toftools package(46). The 

elemental composition of each peak was identified using high-resolution peak fitting, based 

on which we further categorized the HOMs into four different groups: non-nitrate HOM 

monomer (C4-10HxOy), non-nitrate dimer (C11-20HxOy), organonitrate monomer (C4-

10HxOyN1-2), and organonitrate dimer (C11-20HxOyN1-2). The CI-APi-TOF mainly detects 

highly oxygenated compounds, with y≥4 for monomers and y≥6 for dimers.  

 

Ammonia (NH3) concentrations were measured with a quadrupole chemical ionization mass 

spectrometer (CIMS) equipped with an APi inlet(48). Positively charged water clusters 

((H2O)n∙H3O+) were used for the detection of ammonia(49). The primary ions are formed by 

ionizing humidified synthetic air through a corona discharge at ambient pressure(50). 

Neutral ammonia molecules in the sample air interact with the ionized water clusters 

forming (H2O)nNH4
+, which are mainly detected as NH4

+ since most of the water molecules 



evaporate in the collision-dissociation cell of the CIMS. The instrument was calibrated 

before and after the experiments for the relevant range of NH3; the calibration curves 

indicated an excellent linearity and a low detection limit of around 20 pptv. The instrumental 

background was found to be approximately 100 pptv. The measurements have an estimated 

overall uncertainty of a factor of two because different inlet systems had to be used between 

the instrument calibration and the sampling from the CLOUD chamber. For some of the 

early experiments in CLOUD10 the CIMS was not available, therefore different methods 

had to be used for deriving the ammonia mixing ratios. Recently, it was reported that 

ammonia can also be detected in the negative ion mode using (HNO3)nNO3
– primary 

ions(51). The observed NH3(HNO3)1,2NO3
– clusters were used to quantify the ammonia 

concentrations with the CI-APi-TOF from a cross calibration with the CIMS when both 

instruments were measuring in parallel during later experiments. However, when only very 

small amounts of ammonia were added to the CLOUD chamber, the sensitivity of the CI-

APi-TOF method was not high enough. Therefore, for those experiments, the mixing ratio 

was estimated based on the flow of ammonia into the chamber and an experimentally 

determined wall loss life time(21). The overall scale uncertainty of these methods is 

bracketed by a factor 2.5 towards lower values and a factor of 4 towards higher values. In 

CLOUD11, NH3 concentrations were measured with a high-resolution time-of-flight mass 

spectrometer (H-TOF) using protonated water clusters, and the values at high NH3 

concentration were cross-checked against a commercial PICARRO NH3 analyzer. The 

estimated uncertainty due to the calibration methods is ca. ± 50%. 

 

The concentrations of monoterpenes and other volatile organic compounds were measured 

with a newly developed version of the proton transfer reaction time-of-flight mass 

spectrometer (PTR-TOF-MS; model: PTR3(52)). The PTR3 has a new inlet using center-

sampling through a critical orifice reducing wall losses of low volatility compounds. In 

addition, the new ionization chamber allows a 30-fold longer reaction time and a 40-fold 

pressure increase compared to standard PTR-TOF-MS instruments. Coupled to the latest 

quadrupole-interfaced Long-ToF mass analyzer (TOFWERK), sensitivities of up to 20 000 

cps/ppbv at a mass resolution of 8000 m/Δm were achieved.  

Gas monitors were used to measure the concentration of sulfur dioxide (SO2, Thermo Fisher 

Scientific, Inc. 42i-TLE), ozone (O3, Thermo Environmental Instruments TEI 49C) and 

water (dew point mirror from EdgeTech). Nitric oxide (NO) concentrations were determined 



from a commercially available NO monitor (ECO PHYSICS, model: CLD 780 TR) with a 

chemi-luminescence detector. The detection limit was ca. 3 pptv with an integrating time of 

60 s. During CLOUD10, the amount of nitrogen dioxide (NO2) was measured with a cavity 

attenuated phase shift nitrogen dioxide monitor (CAPS NO2, Aerodyne Research Inc.) at the 

bottom of the chamber (close to the gas inlet ports). During CLOUD11, additionally a cavity 

enhanced differential optical absorption spectroscopy (CE-DOAS) instrument was deployed 

at the level of the sampling ports. The concentrations measured at these two locations 

generally agreed within 20% for different NO2 injection rates and UV-light settings, which 

can be interpreted as an upper limit for the chamber inhomogeneity. The baseline of the 

instruments was monitored periodically by flushing them with synthetic air.  

 

Determining nucleation and growth rates 

The nucleation rates (J) were calculated from the time derivative of the total particle 

concentration and corrected for the particle losses in the chamber using the full size 

distribution 

 

𝐽 =
𝑑𝑁

𝑑𝑡
+ 𝑆𝑑𝑖𝑙 + 𝑆𝑤𝑎𝑙𝑙 + 𝑆𝑐𝑜𝑎𝑔 (cm-3 s-1)                                        (1) 

 

where N is the particle number concentration above a certain cut-off size (dp) to which the 

nucleation rate is calculated. The dilution correction Sdil arises from the fact that the chamber 

is constantly flushed with synthetic air to account for the instruments’ sample flows 

 

𝑆𝑑𝑖𝑙 = 𝑁 · 𝑘𝑑𝑖𝑙  (cm-3 s-1),                                             (2) 

 

where kdil = 1.437 · 10-4 s-1 for CLOUD 10 and 1.58· 10-4 s-1 for CLOUD11.   

Diffusional losses to the chamber walls (Swall) were determined empirically by observing the 

decay of the sulfuric acid monomer concentration in the chamber. The wall loss rate is 

inversely proportional to the particle size 

 

𝑘𝑤𝑎𝑙𝑙(𝑑𝑝
′ , 𝑇) = 2.116 · 10−3 · (

𝑇

𝑇𝑟𝑒𝑓
)

0.875

· (
𝑑𝑝,𝑟𝑒𝑓

𝑑𝑝
′ )          (s-1)                       (3) 

 

where dp
’ is the mobility diameter of the particle, dp,ref is the mobility diameter of the sulfuric 

acid monomer (= 0.82 nm), Tref = 278 K, and T is the actual chamber temperature. Thus the 



total wall loss for particles larger than dp is 

 

𝑆𝑤𝑎𝑙𝑙(𝑑𝑝, 𝑇) = ∑ 𝑁(𝑑𝑝
′ ) · 𝑘𝑤𝑎𝑙𝑙(𝑑𝑝

′ , 𝑇)
𝑑𝑝,𝑚𝑎𝑥

′

𝑑𝑝
′ =𝑑𝑝

 (cm-3 s-1)                           (4) 

 

Coagulation losses to the surface of larger aerosol particles (Scoag) were calculated from the 

measured number size distribution of particles present in the chamber  

 

𝑆𝑐𝑜𝑎𝑔(𝑑𝑝,𝑘) = ∑ ∑ 𝛿𝑖,𝑗 ∙ 𝐾(𝑑𝑝,𝑖 , 𝑑𝑝,𝑗) ∙ 𝑁𝑖 ∙ 𝑁𝑗
𝑑𝑝,𝑚𝑎𝑥

𝑑𝑝,𝑗=𝑑𝑝,𝑖

𝑑𝑝,𝑚𝑎𝑥

𝑑𝑝,𝑖=𝑑𝑝,𝑘
 (cm-3 s-1)                 (5) 

 

where K(dp,i,dp,j) is the coagulation coefficient for particles of size dp,i and dp,j, Ni and Nj are 

the number densities of particles in a size bins i and j, and δi,j = 0.5, if i = j and δi,j = 1, if i ≠ 

j.  

 

The nucleation rates at 1.7 nm (J1.7) were calculated from the scanning PSM and verified 

against the values calculated from the two other PSMs and the butanol CPC at fixed cut-off 

sizes. It should be noted that there is an uncertainty of about 0.5 nm in the cut-off size of the 

particle counters due to the effect of composition and charge on the detection efficiency(53). 

To account for this, we verified the cut-off size of the PSM for each chemical system in the 

chamber by comparing the concentration and rising time of the PSM at different saturator 

flow rates against the different size bins of the NAIS, which has been shown to be very 

accurate in determining the ion mobility(54). The J value given for each experiment is the 

median value after reaching stable conditions. The uncertainty in the nucleation rates (given 

as error bars in the figures) was calculated with error propagation method, taking into 

account both the systematic and statistical errors and run-to-run repeatability. The 

systematic errors include errors on concentration measurement (10%), dilution (10%), and 

wall loss (20%). The statistical errors include uncertainty on dN/dt and coagulation sink, 

which varied from run to run depending on the stability of the measurement conditions. The 

run-to-run repeatability of J in CLOUD under nominally identical conditions is ca. 30%. 

  

The growth rates were calculated using the appearance time method(31, 42) from the 

scanning PSM (1-3 nm), the DMA-train (2-3 nm and 3-8 nm) and the nano-SMPS (7-25 

nm). The error in GR was estimated from the 95% confidence intervals for the (dp, time) –

fits, which were used to determine the GRs. The appearance times from the different 



instruments were also checked for consistency in the overlapping size regions. While the 

appearance time method is simple to apply for different instruments, and provides a useful 

estimation of particle growth, it should be kept in mind that the growth rates especially in 

the smallest size ranges are difficult to define, and different methods might differ from each 

other depending non-linearly on the environmental conditions(55, 56).  

  



 

Supplementary figures 

 

Fig. S1. The effect of different additional vapors on the NPF rates (J2.5). All points have 

similar monoterpene (530-590 pptv) and ozone (40 ppbv) mixing ratios. The leftmost points 

were measured with only monoterpenes added to the chamber, and each step to the right 

represents addition of one more component to the system. Solid arrows describe the addition 

of ca. 1 ppbv SO2 (resulting in an H2SO4 concentration of 1-2·107 cm-3), dashed arrows the 

addition of ca. 0.7 ppbv NOx and dotted arrows the addition of ca. 180 pptv NH3. Circles are 

experiments at neutral (N) and diamonds at GCR conditions. Colors of the symbols indicate 

the measured monoterpene mixing ratio. See Fig. 1 for the formation rate of 1.7 nm 

particles. 

 



 

Fig. S2. The effect of different additional vapors on the biogenic nucleation rate (J1.7) 

at different NOx concentrations. All points have a similar monoterpene mixing ratio (500-

590 pptv). The leftmost points were measured with only monoterpenes added to the 

chamber, and each step to the right represents the addition of one more component to the 

system. The solid arrows describe the addition of NOx (~ 0.7, 2 or 5 ppbv), the dashed 

arrows the addition of ~1 ppbv SO2 (resulting in an H2SO4 concentration of 1-2∙107 cm-3) 

and dotted arrows the addition of ~180 pptv NH3. Circles are experiments at neutral and 

diamonds at GCR conditions. The color of the symbol indicates the measured NOx 

concentration. 

 



 

Fig. S3. Nucleation rates (J1.7) as a function of the MT to NOx ratio (MT/NOx). All 

experiments were performed without added NH3 at a constant NO/NO2 ratio of ca. 0.6%. 

The color indicates the sulfuric acid concentration. The blue points (lowest H2SO4) were 

measured without SO2 added to the chamber (pure biogenic nucleation). The dashed line 

gives the maximum rate from ion-induced nucleation, based on the ion pair production rate 

in CLOUD under GCR conditions14. 

 

 



 

Fig. S4. Nucleation rates (J1.7) as a function of NH3 mixing ratio. Open circles refer to 

neutral experiments, closed diamonds to GCR experiments, and the color refers to the 

H2SO4 concentration. All points were measured at 278 K and 38% RH with constant MT 

(ca. 250 pptv) and NOx (ca. 2 ppbv) mixing ratios. Due to the unavailability of the CIMS to 

measure NH3 in this set of experiments, the lowest NH3 values (<200 pptv) were estimated 

from the NH3 flow to the chamber, while the values larger than 200 pptv were derived from 

the CI-APi-TOF (see Materials and Methods). 

 

 



 

Fig. S5. Modeled versus measured nucleation rates. (A, D, G) modelled nucleation rates 

using equation (1), (B, E, H) modelled nucleation rates using equation (1) with [MT/NOx] in 

place of [HOMdi] and (C, F, I) modelled nucleation rates using an earlier CLOUD 

parametrization(11) without NH3 dependency, assuming [BioOxOrg]=[HOM]. The data 

were colored either by the NH3 (A-C), H2SO4 (D-F) or non-nitrate HOM dimer (G-I) 

concentration. Only neutral experiments are presented for clarity. R is Pearson’s correlation 

coefficient between log10(Jmeasured) and log10(Jmodelled). 

  



 

Fig. S6. Modeled versus measured GRs. The modelled growth rates were calculated using 

equation (4) separately for 4 different size ranges (A-D). The data points are colored by the 

non-nitrate HOM dimer concentration. It can be seen from the values of the free parameters 

k1-k3 that the importance of sulfuric acid decreases and the importance of organics increases 

towards larger sizes. For particles larger than 7 nm a different set of organics should 

probably be considered, as the correlation coefficient R between measured and modelled 

GRs starts to decrease. GR in the size range 1.5-2.5 nm was determined from the PSM, 1.9-

3.5 nm and 3.5-7 nm from the DMA-train and >7 nm from the nano-SMPS (see Materials 

and Methods). R is Pearson’s correlation coefficient between log10(GRmeasured) and 

log10(GRmodelled). 



 

Fig. S7. Positive ions and ion clusters detected during multicomponent NPF in the 

CLOUD chamber. The mass defect shows the difference between nominal and exact mass 

of the ions detected with the positive APi-TOF during experiments with ca. 600/1200 pptv 

MT, 1-2∙107 cm-3 of H2SO4, 1 ppbv of NOx (ca. 70 pptv of NO) and 200 pptv of NH3 in the 

chamber. Colored symbols are identified ions (see legend) and open symbols are 

unidentified ions. The symbol size corresponds to the relative signal intensity on a 

logarithmic scale. 

  



 

 

Fig. S8. Global annual mean concentrations of vapors involved in NPF. The colors 

indicate the mixing ratios in pptv, at approximately 500 m above the surface (cloud base 

level), from the TOMCAT chemical transport model32 with the embedded GLOMAP 

aerosol model33. (A) shows sulfuric acid, (B) ammonia and (C) the gas `SecOrg’, which is a 

proxy for low volatility organic vapors produced from monoterpenes. The spatial 

distribution of SecOrg matches approximately the distribution of biogenic HOMs in the 

atmosphere. Panel (D) shows the overlap of the vapor concentrations, following the 

functional form of eq. (1).  

 



Table S1. Pearson’s correlation coefficient (R) between J1.7 and the concentration of 

different precursors in the chamber. The data set from CLOUD10 was divided into 

experiments with and without NH3, and into neutral (N) and GCR conditions. R is the 

correlation coefficient, and p its statistical significance level (0.05 means a 5% chance of 

getting the given correlation by chance). Coefficients higher than 0.75 are colored red. The 

NaN values are due to missing ammonia measurements during the first part of the 

experiment, when no NH3 was added. 

 

Correlation coefficient with J1.7 No NH3 GCR 

 

No NH3 N 

 

NH3 GCR 

 

NH3 N 

 Nr of data points 41 

 

28 

 

30 

 

40 

 

 

R p R p R p R p 

H2SO4 -0.06 0.69 0.04 0.85 0.22 0.24 0.14 0.38 

MT 0.60 <0.01 0.79 <0.01 0.02 0.90 0.03 0.84 

NOx -0.50 <0.01 -0.07 0.74 0.03 0.88 0.05 0.76 

MT/NOx 0.81 <0.01 0.46 0.02 0.00 0.98 0.00 0.98 

HOM monomers 0.08 0.61 0.61 <0.01 -0.10 0.60 0.02 0.89 

HOM dimers 0.86 <0.01 0.82 <0.01 -0.10 0.61 -0.02 0.89 

Non-nitrate HOM monomers 0.63 <0.01 0.82 <0.01 -0.09 0.65 0.03 0.86 

Nitrate HOM monomers -0.42 0.01 0.01 0.94 -0.07 0.73 0.01 0.97 

Non-nitrate HOM dimers 0.97 <0.01 0.83 <0.01 -0.04 0.84 0.00 1.00 

Nitrate HOM dimers -0.34 0.03 -0.10 0.63 -0.28 0.13 -0.08 0.63 

Total HOMs 0.17 0.28 0.65 <0.01 -0.11 0.58 0.02 0.92 

Total non-nitrate HOMs 0.72 <0.01 0.85 <0.01 -0.08 0.68 0.02 0.88 

Total nitrate HOMs -0.42 0.01 0.00 0.99 -0.09 0.65 0.00 0.99 

H2SO4 * HOMdi 0.45 <0.01 0.44 0.02 0.12 0.54 0.12 0.45 

H2SO4 * HOMdi * NH3 NaN NaN NaN NaN 0.82 <0.01 0.89 <0.01 
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