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ABSTRACT

The largest source of noise in exoplanet and brown dwarf photometric time series made with Spitzer/IRAC is the
coupling between intra-pixel gain variations and spacecraft pointing fluctuations. Observers typically correct for
this systematic in science data by deriving an instrumental noise model simultaneously with the astrophysical
light curve and removing the noise model. Such techniques for self-calibrating Spitzer photometric datasets have
been extremely successful, and in many cases enabled near-photon-limited precision on exoplanet transit and
eclipse depths. Self-calibration, however, can suffer from certain limitations: (1) temporal astrophysical signals
can become aliased as part of the instrument model; (2) for some techniques adequate model estimation often
requires a high degree of intra-pixel positional redundancy (multiple samples with nearby centroids) over long
time spans; (3) many techniques do not account for sporadic high frequency telescope vibrations that smear
out the point spread function. We have begun to build independent general-purpose intra-pixel systematics
removal algorithms using three machine learning techniques: K-Nearest Neighbors (with kernel regression),
Random Decision Forests, and Artificial Neural Networks. These methods remove many of the limitations of
self-calibration: (1) they operate on a dedicated calibration database of approximately one million measurements
per IRAC waveband (3.6 and 4.5 microns) of non-variable stars, and thus are independent of the time series
science data to be corrected; (2) the database covers a large area of the ”Sweet Spot, so the methods do not
require positional redundancy in the science data; (3) machine learning techniques in general allow for flexibility
in training with multiple, sometimes unorthodox, variables, including those that trace PSF smear. We focus in
this report on the K-Nearest Neighbors with Kernel Regression technique. (Additional communications are in
preparation describing Decision Forests and Neural Networks.)

Keywords: Spitzer, calibration, algorithms, intra-pixel sensitivity, precision photometry, exoplanets, machine
learning, k-nearest neighbors

1. INTRODUCTION

The largest source of noise in exoplanet and brown dwarf photometric time series made with the InfraRed Array
Camera (IRAC)1 on board the Spitzer Space Telescope2 is the coupling between intra-pixel gain variations and
spacecraft pointing fluctuations. Observers typically correct for this systematic in science data by deriving an
instrumental noise model simultaneously with the astrophysical light curve and removing the noise model. Such
techniques for self-calibrating Spitzer photometric datasets have been extremely successful, and in many cases
enabled near-photon-limited precision on exoplanet transit and eclipse depths.3 Self-calibration, however, can
suffer from certain limitations: (1) temporal astrophysical signals can become aliased as part of the instrument
model; (2) for some techniques adequate model estimation often requires a high degree of intra-pixel positional
redundancy (multiple samples with nearby centroids) over long time spans; (3) many techniques do not account
for sporadic high frequency telescope vibrations that smear out the point spread function.

We have begun to build independent general-purpose intra-pixel systematics removal algorithms using three
machine learning techniques: K-Nearest Neighbors with Kernel Regression (KNN-KR), Random Decision Forests,
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and Artificial Neural Networks. These methods remove many of the limitations of self-calibration: (1) they
operate on a dedicated calibration database of approximately one million measurements per IRAC waveband
(3.6 and 4.5 µm) of non-variable stars, and thus are independent of the time series science data to be corrected;
(2) the database covers a large area of the “Sweet Spots” on the IRAC cameras, so the methods do not require
positional redundancy in the science data; (3) machine learning techniques in general allow for flexibility in
training with multiple, sometimes unorthodox, variables, including those that trace PSF smear.

Machine Learning (ML) is a branch of computer science and artificial intelligence that attempts to teach
computers to learn like humans do, by generalizing from data. The goal is to derive a map from input to
output data, without an explicit model. In this report, we focus on one of the simplest forms of ML, K-Nearest
Neighbors with Kernel Regression. (Additional communications are in preparation describing Random Decision
Forests and Neural Networks.) This technique has already been used successfully for self-calibration of exoplanet
lightcurves.4,5 Using the technique to “learn” systematics from our independent calibration dataset has also
been tried with varying degrees of success. The first version, using a much smaller sample than described here,
used KNN-KR to create a table of corrections as a function of subpixel location,6 which could be interpolated
to the position of interest. This method had insufficient resolution to follow all variations in pixel sensitivity. A
second version, which interrogated the calibration dataset in real time to estimate the pixel response from the
nearest neighbors of a measurement, was better at following variations in sensitivity,7 but was not as good as
self-calibration using the same technique.3,8

As stated above, it is desirable to have a systematics removal method that is independent of the measurements
being corrected, chiefly because of the problem of knowing how well a method has separated systematics from
astrophysics. One approach to measuring the quality of separation is to simulate data with real systematics, as
in the 2015 Spitzer Exoplanet Data Challenge, whose results were described in Ref. 3. But any such method
is limited by the fidelity of the simulations. We still believe that the best approach should be to measure any
static, non-evolving systematics independently of time series lightcurves.

Here we introduce a third approach to KNN-KR, which updates the technique so that it attempts to reach a
better representation of the intrapixel systematics using a calibration dataset. We first describe the calibration
datasets, followed by an overview of the KNN-KR algorithm and a description of how we derive kernel-based
estimates from a dataset. We use the technique of Ref. 9 to develop “Steering” Kernels that morph to the
data. We visualize the intra-pixel gain map as a function of x and y pixel centroid position, and cross-validate
the algorithm on a portion of the dataset removed from consideration, testing the accuracy and precision of
KNN-KR in predicting the fluxes of the test subset.

2. PIXEL MAPPING DATASETS

Over approximately 5 years, we have accumulated a set of pixel mapping measurements of two stars: KF09T1
(TYC 4212-1074-1) in IRAC Channel 1 (3.6µm; 1421280 measurements) and BD+67 1044 (NPM1+67.0536;
874950 measurements) in IRAC Channel 2 (4.5µm). We define x and y pixel centroid of a point source in terms
of the first moment of the brightness image:

xcen =

∑
i,j(f − BG)i,j i∑
i,j(f − BG)i,j

; (1)

ycen =

∑
i,j(f − BG)i,j j∑
i,j(f − BG)i,j

. (2)

Here, i and j are the integer pixel numbers in the x and y directions, fi,j is the brightness of pixel ij, and BG
is the average background measured outside the region being summed over. Typically the moment sum is taken
over a small number of pixels surrounding the point source.

Figure 1 displays the centroids for our pixel mapping (pmap) datasets, centered on pixel (15,15) of the IRAC
Ch 1 and Ch 2 subarray apertures. Most of the measurements were obtained by a target pre-acquisition technique
called “Peak-Up” which uses a separate camera on board Spitzer, the Pointing Calibration & Reference Sensor
(PCRS)10 to refine the pointing to the target before observing with IRAC. We have defined a “Sweet Spot”
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Figure 1. Pixel x and y centroids (subarray coordinates) for the calibration datasets, color coded by observing epoch.
Contours of constant occupation number (see text) are indicated on the plots. Red squares label the “Sweet Spot” regions
within which PCRS Peak-Up is used to place all time series observations. (Left) Channel 1 (3.6µm) measurements of
KF09T1. (Right) Channel 2 (4.5µm) measurements of BD+67 1044.

region on each pixel, towards which the PCRS Peak-up is more than 90% successful at placing a point source
(provided self-Peak-up is used).6,11 The Spitzer Science Center recommends that all observers interested in
precision time series use the PCRS to acquire their targets and put them on the Sweet Spots.

Each data point on Fig. 1 represents a unique stellar image taken with an IRAC array. In addition to the
centroid, as shown in the Figure, we also measure the photometric flux in an aperture, F , the measured FWHM
size of the star in the x and y directions, xFWHM and yFWHM, and other quantities that we do not discuss here.
The flux as a function of time gives the light curve of time series measurements. For these calibration datasets,
where the targets are non-variable stars (flat light curve), any variations in F can be taken to be either random
noise or instrument systematics. In principle, all features of the dataset can be examined for relationships with
F and used to build a predictive model of the systematics given by a score determined from the feature set. This
is the province of Machine Learning algorithms.

3. THE KNN-KR ALGORITHM

3.1 Overall method

We follow the kernel regression prescription of Ref. 9. Given a dataset of P measurements of a function {fi}
along with D additional data features represented by the coordinate vectors {xi}, construct a model of F (x)
such that at point x not in the dataset:

1. The function is Taylor expanded in the local region about x, with the dataset {fi} being used to solve for
the first norder derivatives of the function via χ2 minimization (the zeroth derivative being an estimate of
the actual function at x);

2. The fit is localized by weighting each data point by a set of kernel values {K(xi − x)}, which fall off with
“distance” from the new point x;

3. The fit is localized further by considering only a subset of kNN “nearest” neighbors to x in any computations
over the dataset.
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We refer to “distance” and “nearest” in quotes above because these terms do not always correspond to the
Euclidean distance,

dE =
√

(xi − x)T (xi − x), (3)

but can often incorporate a warping of the coordinate space via a (D ×D) covariance matrix, C:

dM =
√

(xi − x)T C−1/2 (xi − x), (4)

also known as the Mahalanobis distance.12 Takeda et al. describe a method for deriving a set of local “steering”
kernels from the dataset,9 which relies on the pre-computation of covariance matrices at points spanning the
coordinate space. The goal here is to maximize the contribution to a given estimate from points that are both
local in coordinates (Euclidean distance), and have the most similar fluxes.

3.2 Steering kernels

For our purposes a kernel is a peaked function that usually falls to zero when its argument is large. There are
many possible kernels than can optimize different metrics.13,14 In our analysis, however, we use Gaussian kernel
functions, because they are easy to compute and familiar to most scientists and engineers:

K(xi − x) =

√
det(Ci)

(2πh2µ2
i )D/2

exp

[
− (xi − x)T C−1/2 (xi − x)

2h2µ2
i

]
. (5)

Here h is an optional global smoothing parameter, often taken to be unity in our analysis, D is the number
of dimensions of x, and µi is the local “bandwidth” at x, which we take to be the standard deviation in the
Euclidean coordinate distances of the kNN neighbors in the calibration dataset from the point of interest, x. This
definition of µi has the effect of widening the kernel when the kNN neighbors are spread out and narrowing the
kernel when they are close together.

The shape and orientation of Gaussian steering kernels are governed by the covariance matrix, C, the com-
putation of which is done iteratively using the following procedure:

1. Define a grid of values for x, covering the range over which we expect the coordinates to vary, with sufficient
resolution.

2. Calculate the function F (x) at each grid point using circular Gaussian kernels (C = Identity Matrix).
Repeat Nsmooth times to obtain a smooth, minimally noisy version of F .

3. Calculate the first derivative of Fsmooth at each grid point using the Taylor expansion least squares fit,
applied to the gridded values of F (not the source dataset).

4. Build a Jacobian matrix at each grid point, consisting of the computed derivatives of the flux as a function of
each coordinate, for ksmooth nearest grid neighbors. This yields information on the orientation of structures
in the data.

5. Following the principles outlined in Ref. 9, estimate C from a singular value decomposition of the Jacobian
matrix.

Selected kernels derived from the pixel mapping datasets are shown in Fig. 2. The matrix C (together with
the local bandwidth µ) was computed for 100×100 grid points across the pixel, but not all kernels are shown for
clarity. In machine learning parlance, this stage of the process is where we use the data (xi,F (xi)) to “teach”
the computer how to more accurately map inputs (x) to outputs (F (x)). Reference to Fig. 3 shows that the
kernels are indeed oriented along structures in the data.
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Figure 2. Steering kernels based on analysis of the pixel mapping datasets for Channel 1 (3.6µm) (Left) and Channel 2
(4.5µm) (Right). Contours of occupation number 20 (see text) are indicated on the plots. Kernels are not shown outside
this contour. Red squares label the “Sweet Spot” regions within which PCRS Peak-Up is used to place all time series
observations.

3.3 Kernel regression estimates

A kernel regression estimate of F is derived at the point x using the following procedure:

1. Find the kNN nearest neighbors to x in the calibration dataset, using the Euclidean distance.

2. Find the nearest grid point to x in the 100× 100 table.

3. Use the values of C and µ at the chosen grid point to estimate the kernel values for the kNN neighbors (Eq.
5).

4. Use the matrix equations given in Ref. 9 to compute the regression value of F (x).

We can estimate the density at x as the sum over the kNN kernel estimates at x. For the tabulated kernels
that span the range of the dataset, we also compute an occupation number, that is the density normalized in such
a way that the sum over all tabulated kernels equals the total number of points in the dataset. The occupation
number is thus the approximate number of data points contributing to kernel estimates at the grid point. As in
Ref. 6 we find that the most reliable kernel estimates result when occupation is greater than 20. In locations
where the density falls to lower values, kernels are sampled less isotropically and result in spurious estimates.
Contours of occupation number are shown in Figs. 1 and 2.

To visualize the sensitivity, we compute F (x) on our 100 × 100 grid and show the results in Fig. 3. To
normalize these maps we divided kernel-predicted fluxes by the average aperture flux of each star over the entire
pixel. As mentioned above, we compute sensitivity only for grid points where occupation > 20. For grid points
with lower occupation, the maps show discontinuities in sensitivity, which appear “noisy.”

4. CROSS-VALIDATION

The quality of an estimator can be assessed when the value being estimated is already known. The easiest way to
obtain a set of known values is by extracting it from the calibration dataset itself. For the pixel mapping datasets
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Figure 3. Relative photometric sensitivity as a function of centroid location, based on analysis of the pixel mapping
datasets for Channel 1 (3.6µm) (Left) and Channel 2 (4.5µm) (Right). White regions indicate missing data (occupation
number < 20). Red squares label the “Sweet Spot” regions within which PCRS Peak-Up is used to place all time series
observations.

of each warm IRAC channel, we removed 30,000 measurements randomly but uniformly spaced across each pixel.
These “test” samples were not used to compute the kernels. We used the remaining “training” samples to build
the kernels and, via KNN-KR estimation, to predict the values of F (xtest) (dependent variables) for the set of
{x}test coordinates (independent variables). This process is depicted as a flow chart in Fig. 4.

One useful statistic for evaluating the quality of a regression estimator is the coefficient of determination
(also known as R2), which measures the degree to which the estimates account for the variance in the dataset.
Given a set of measurements of a function, {ftest} at coordinates {xtest}, and a corresponding set of regression

Training 
Set

Test
Set

Model �uxes at 
test set (x,y)

Errors

Figure 4. Schematic of cross-validation technique. The calibration data are split into “training” and “test” subsets. The
training set is used to estimate the model flux F (xtest) at the set of {x}test values. The true fluxes of the test set are
then used to compute errors.
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Figure 5. Coefficient of determination (R2) statistic for cross-validation dataset, for Channel 1 (3.6µm) (Left) and
Channel 2 (4.5µm) (Right). This measures the amount of variance in the dataset σ2(ftest) that is accounted for by the
KR-KNN prediction σ2[ftest − F (xtest)]. Colored lines depict different choices for the number of neighbors used, kNN.
Results are shown for a range of values of the aperture photometry radius, raper.

estimates, {F (xtest)},

R2 = 1−
∑

[ftest − F (xtest)]
2∑

(ftest − ftest)2
. (6)

We show the values of R2 for the cross-validation datasets as a function of both aperture photometry radius,
raper and the number of neighbors in the kernel regression, kNN. The regression does a better job of capturing
the variance in the data (higher R2) for smaller raper, but kNN does not affect R2 noticeably.
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Figure 6. Mean absolute error (MAE) for cross-validation dataset, for Channel 1 (3.6µm) (Left) and Channel 2 (4.5µm)
(Right). The MAE has been normalized by the expected mean absolute deviation from 0 (MAD) of a Poisson random
variable with the same number of electron counts as the observations. As in Fig. 5, colored lines depict different choices
for the number of neighbors used, kNN, and the ordinate spans a range of values of the aperture photometry radius, raper.
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Figure 7. Root mean squared error (RMSE) for cross-validation dataset, for Channel 1 (3.6µm) (Left) and Channel 2
(4.5µm) (Right), which is more susceptible to outliers than MAE. The RMSE has been normalized by the expected root
mean squared deviation from 0 (RMSD) of a Poisson random variable with the same number of electron counts as the
observations. As in Fig. 5, colored lines depict different choices for the number of neighbors used, kNN, and the ordinate
spans a range of values of the aperture photometry radius, raper.

Although R2 can often be a good indicator of regression quality, and especially (as in this case) allows us to
constrain control parameters (such as raper), it has some flaws. Firstly, even a perfect fit can have a low value
of R2 if the noise in the data is high. Moreover, R2 measures the correlation between variables, not how well a
model captures the dependence of one set of variables on another, which is the ultimate goal of any regression.

A better indication of goodness of fit is the mean absolute error (MAE),

MAE =

∑
|ftest − F (xtest)|

Ntest
, (7)

which estimates the overall accuracy (including precision and bias) of an estimate. In Fig. 6 we plot MAE for
the same range of kNN and raper as in Fig. 5. Both IRAC Channels show relatively well-behaved MAE curves,
with positive concavity and a single minimum near raper = 1.25 − 1.5 px and kNN & 1000. The plots shown in
Fig. 6 are normalized to the mean absolute deviation of a Poisson random variable with the same number of
electron counts as each observation, thus giving a sense of how close to the photon noise floor the residuals are.
For Ch 1, the MAE minimum occurs about 25% above the noise floor and the Ch 2 MAE minimum occurs about
11% above the floor. In other words, if we correct the data for systematics (divide the data by F (xtest)), photon
noise accounts for 80% (Ch 1) and 90% (Ch 2) of the scatter in the resulting values.

A third statistic is root mean square error (RMSE),

RMSE =

√∑
[ftest − F (xtest)]

2

Ntest
. (8)

Due to the fact that errors are squared, this metric is weighted more heavily towards data with larger errors
than MAE, and so can reveal problems with possible outliers. Indeed, the minimum RMSE of both datasets is
only slightly larger than the minimum MAE (26% above the photon limit in Ch 1; 12% above the photon limit
in Ch 2), indicating that there are outliers but that they are not a significant component of the dataset. The
overall conclusion, that raper = 1.25− 1.5 px and kNN & 1000 minimizes the errors, is the same as derived from
the MAE plots.
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5. CONCLUSIONS

We have demonstrated a new version of the K-nearest neighbors Kernel Regression (KNN-KR) machine learning
technique for systematics removal in post-cryogenic Spitzer/IRAC photometry that makes use of an independent
calibration dataset that does not require self-calibration and maintains near photon-limited performance on
a cross-validation “test” dataset. For this demonstration we confined our systematics estimation to a function
solely of the two-dimensional vector x = (x, y) pixel centroid. The method is extensible to additional dimensions,
and in a future work we plan to incorporate the apparent stellar size (xFWHM, yFWHM), which has been found
to trace the systematics, even at times when the centroid does not.15
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