
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

JWST mirror and actuator
performance at cryo-vacuum

Erin M. Wolf, Benjamin B. Gallagher, J. Scott  Knight,
Taylor S Chonis, Joseph F. Sullivan, et al.

Erin M. Wolf, Benjamin B. Gallagher, J. Scott  Knight, Taylor S Chonis, Joseph
F. Sullivan, Koby Z. Smith, Andrew  Rudeen, Kevin  Babcock, Bruce  Hardy,
Allison  Barto, Eric  Coppock, Clinton R. Davis, "JWST mirror and actuator
performance at cryo-vacuum," Proc. SPIE 10698, Space Telescopes and
Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 1069808 (6 July
2018); doi: 10.1117/12.2312872

Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12/5/2018  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

JWST Mirror and Actuator Performance at Cryo-Vacuum 
Erin M. Wolf*a, Ben B. Gallagherb, J. Scott Knighta, Taylor S. Chonisa, Joseph F. Sullivana, 

Koby Z. Smitha, Andrew Rudeena, Kevin Babcock a, Bruce Hardy a, Allison Barto a, Eric 
Coppocka, Clinton R. Davisc 

 
 

aBall Aerospace, 1600 Commerce Street, Boulder, CO, USA 80301 
bThirty Meter Telescope, 100 West Walnut Street, Suite 300, Pasadena, CA, USA 91124 

c Genesis Engineering Solutions, 4501 Boston Way, Lanham, MD 20706 
 

 
ABSTRACT 

 
The James Webb Space Telescope (JWST) telescope’s Secondary Mirror Assembly (SMA) and eighteen Primary 
Mirror Segment Assemblies (PMSAs) are each actively controlled in rigid body position via six hexapod actuators.  
Each of the PMSAs additionally has a radius of curvature actuator.  The mirrors are stowed to the mirror support 
structure to survive the launch environment and then must be deployed 12.5 mm to reach the nominally deployed 
position before the Wavefront Sensing & Control (WFSC) alignment and phasing process begins.  JWST requires 
testing of the full optical system in a Cryogenic Vacuum (CV) environment before launch.  The cryo vacuum test 
campaign was executed in Chamber A at the Johnson Space Center (JSC) in Houston Texas.  The test campaign 
consisted of an ambient vacuum test, a cooldown test, a cryo stable test at 65 Kelvin, a warmup test, and finally a 
second ambient vacuum test.  Part of that test campaign was the functional and performance testing of the hexapod 
actuators on the flight mirrors.  This paper will describe the testing that was performed on all 132 hexapod and 
radius of curvature actuators.  The test campaign first tests actuators individually then tested how the actuators 
perform in the hexapod system.  Telemetry from flight sensors on the actuators and measurements from external 
metrology devices such as interferometers, photogrammetry systems and image analysis was used to demonstrate 
the performance of the JWST actuators.  The mirror move commanding process was exercised extensively during 
the JSC CV test and many examples of accurately commanded moves occurred.  The PMSA and SMA actuators 
performed extremely well during the JSC CV test, and we have demonstrated that the actuators are fully functional 
both at ambient and cryo temperatures and that the mirrors will go to their commanded positions with the accuracy 
needed to phase and align the telescope. 
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1. INTRODUCTION 

The James Webb Space Telescope (JWST) is a deployable, 6.5 m infrared astronomical observatory that will 
operate at cryogenic temperatures in an orbit about the second Lagrange point.  JWST will study first light, 
assembly of galaxies, the birth of stars, proto-planetary systems, and the origins of life.1 

Due to its large size, the observatory must be folded and stowed to fit within the volume constraints of the fairing of 
an Ariane 5 launch vehicle.  Once on orbit, the observatory (including various optical elements within the Optical 
Telescope Element (OTE) must deploy from its stowed state and the telescope be optically aligned.  The OTE 
consists of the segmented, deployable Primary Mirror (PM), the deployable Secondary Mirror(SM), and a fixed 
Tertiary Mirror (TM), housed along with a flat Fine Steering Mirror (FSM) inside the Aft Optical Subsystem (AOS).  
The stowed and deployed states of the observatory are illustrated in Fig. 1, along with an exploded view of the OTE 
in which the major components and subsystems are identified for reference. The mirrors are stowed to the mirror 
support structure to survive the launch environment and then must be deployed 12.5 mm to reach the nominally 
deployed position before the Wavefront Sensing & Control (WFS&C) alignment and phasing process begins.  
Managing2,3 the uncertainty in the deployed position of the OTE optical elements, accommodating on-orbit 
alignment risk, and maintaining the precise alignment of the optics throughout the mission lifetime requires an 
active optical system with nanometer-level precision and stability for wavefront control.  

Webb’s primary mirror consists of 18 hexagonal, semi-rigid, light-weighted beryllium mirror segments. The PM 
segment assemblies (PMSAs) consist of the mirror substrate, a cryogenic hexapod system that provides six degrees-
of-freedom adjustment, and a seventh actuator that allows adjustment of the segment’s radius of curvature (RoC). 
These segment-level degrees of freedom allow the segmented PM the flexibility to deploy 12.5mm out of the launch 
constraints, align each segment assembly to the global PM, and phase to act as a monolithic optic. The SM assembly 
(SMA) consists of a light-weighted beryllium mirror with a cryogenic hexapod system for six degree-of-freedom 
rigid-body adjustment (the SMA has no RoC adjustment).  In total between the PMSAs and the SMA, there are 132 
actuator mechanisms that are used to achieve and maintain the optical alignment of the OTE.  In addition to the 
PMSAs and SMA, the aft-optics subsystem (AOS) contains the light-weighted beryllium TM assembly and the FSM 
in a beryllium optical bench.  These components comprise the OTE.  The OTE was assembled in the Space Systems 
Development Integration Facility (SSDIF) at the Goddard Space Flight Center (GSFC), and integrated with the 
Integrated Science Instrument Module (ISIM). ISIM consists of a composite optical bench that supports Webb’s 
Science Instruments (SIs).  The OTE + ISIM combination (referred to as OTIS) results in the full optical payload of 
the Webb Observatory4 
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Figure 1. An exploded view of the OTIS with the various subsystems and components within the OTE identified4 

1.1 Test Campaign 

The OTIS test campaign began with ambient functional testing of the mirror actuators before and after acoustic and 
vibration environmental testing.  This included actuator fine stage characterization tests4, and center of curvature 
tests5.  JWST requires testing of the full optical system in a cryogenic vacuum environment before launch, this next 
phase of environmental testing occurred at the Johnson Space Center (JSC) in the historic Chamber A.   
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Figure 2.  JWST in Chamber A for OTIS CV Test 

The OTIS Cryo-Vacuum (OTIS CV) test campaign consisted of an ambient vacuum functional test, deployment of 
all the mirror segments 12.5mm out of the launch restraints to the nominally deployed position at both ambient 
vacuum and during the cooldown phase, a cryo stable test where the average PMSA temperature was 41K, a 
warmup test, and finally a second ambient vacuum test.   

The System Functional Test (SFT) campaign first tested actuators individually, then tested how the actuators 
perform in the hexapod system.  Telemetry from flight position sensors on the actuators and measurements from 
external metrology devices such as interferometers, photogrammetry systems and ISIM image analysis was used to 
demonstrate the performance of the JWST actuators. 

During OTIS CV, the functionality of the mirror move commanding process was also exercised to demonstrate the 
WFSC process, using the flight data acquisition scripts and flight wavefront analysis software6. 

Motor resolver phase measurements were collected at ambient and cryo temperatures, which will be used for flight 
model correlation.  The pullout current of all of the PMSA and SMA motors was assessed at cryo temperatures.  
Finally, the fine stages of the SMA Hexapod, the PMSA ROC, and select PMSA Hexapod actuators were 
characterized.  Figure 2 depicts a timeline of actuator tests during the OTIS CV campaign.  
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2.4 Deployment & Stowing Tests 

2.4.1 Deployments During Cooldown  

One of the goals of the OTIS CV test was to demonstrate mirror deployment during Cooldown, in a transient 
thermal environment.  On orbit the current commissioning timeline begins mirror deployments before the OTE is 
thermally stable, although a much smaller temperature change is expected during flight deployments.  The 12 outer 
mirror segments were deployed 12.5mm at ambient vacuum to allow for phasing measurements to begin as early as 
possible in the timeline.  The inner 6 mirror segments were successfully deployed from their stowed launch restraint 
position to the nominal deployed position during cooldown from approximately 200K to 135K.  
 

Figure 9.  Cooldown Deployment Temperatures of a single mirror segments’ 6 hexapod actuators. 

 
2.4.2 Single Sided LVDTs  

Each actuator’s LVDT is made of up of two coils which the ADU electronics normally use in a differential form to 
provide temperature-independent position data.  When a move is commanded the MCS calculates the expected 
actuator length from the coarse step count (CSC) of the motor.  An algorithm then converts this length into the 
expected LVDT reading using a calibrated set of coefficients.  If the LVDT reading in telemetry matches the 
predicted value to within a calibrated tolerance, the commanded move is confirmed.  

On two separate PM Segments, one of the two coils on an LVDT is faulty, so a method to read those LVDT 
positions with only one coil was developed and tested at OTIS CV and used to confirm mirror moves in this Single 
Sided Operation Mode.  This alternative method entails generating a temperature dependent set of coefficients for 
predicting the signal from the active coil, and configuring the Mirror Control Software (MCS) to use both the bad 
LVDT and its bipod ‘mate’ in single-sided mode.  The reason for also configuring the bipod mate to single-sided 
mode is that the MCS performs a bi-pod difference check to guard against excessive flexure stress, and operating 
both legs of a bipod in the same ‘single sided’ mode provides a valid bipod check. 

The chart below shows the comparison for a set of actuators, one of which has a faulty coil, but both of which are 
operated in single sided mode.  During cooldown, the performance of the Single Sided linear variable differential 
transformer (LVDT) was successfully demonstrated 
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Figure 11.  Radius of Curvature Fine Stage Count Errors measured during OTIS CV with COCOA, compared to the WFSC 

required limits. 

 
2.6 Mirror Phasing & Wavefront Demonstration 

The OTIS CV test was the first and only opportunity during ground development and testing to demonstrate the 
ability to phase the Primary Mirror using the actuators on each segment to create a monolithic phased PM7.  In 
addition to demonstrating the ability to phase the PM, using optical feedback from the COCOA, the team was also 
able to demonstrate the mirror moves & imaging sequences planned for on orbit commissioning during the 
wavefront sensing & control phase.  Flight scripts produced from the Astronomer’s Planning Tool (APT) were 
executed to exercise the command and data paths to move mirrors and perform analysis with the Wavefront 
Analysis Software (WAS)6. 

 

3.   RESULTS 
3.1 Limited Life 
Gearmotor life qualification testing was based on a definition of the gearmotors’ 1x life that is budgeted throughout 
the testing and mission science life of the telescope.  Every motor revolution is tracked and accounted for against 
this budget.  There are separate budget allocations for ambient purged, ambient vacuum, ambient humid, and cryo 
(<100K) environments.  
The plots below show the motor revolutions performed during OTIS System level testing, which includes the 
ambient humid testing performed before and after OTIS level vibration test at the GSFC SSDIF and the Center of 
Curvature test at the GSFC SSDIF, as well as all the testing performed at JSC during the OTIS CV campaign.  All 
motor usage is well below the budgeted allocation for this OTIS system level testing phase, in each environment.  
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