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Key Points: 

 Before the evolution of oxygenic photosynthesis, electron donor limitation led to rates 

of biological productivity approximately 1000-fold lower than today. 

 Abiotic fixed nitrogen fluxes exceeded the demands of the early biosphere, delaying the 

need for biological nitrogen fixation. 

 The small size and weak biogeochemical cycling of the early biosphere may temper 

expectations for life on worlds without photosynthesis. 
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Abstract: 

To evaluate productivity on the early Earth before the advent of oxygenic photosynthesis, we 

integrated estimates of net primary production by early anaerobic metabolisms as limited by 

geological fluxes of key electron donor compounds, phosphate, and fixed nitrogen. These 

calculations show that productivity was limited by fluxes of electron donor compounds to rates 

that were orders of magnitude lower than today. Results suggest that ferrous iron provided a 

minor fuel for net primary productivity compared to molecular hydrogen. Fluxes of fixed 

nitrogen and phosphate were in excess of demands by the electron donor limited biosphere, 

even without biological nitrogen fixation. This suggests that until life learned to use water as an 

electron donor for photosynthesis, the size and productivity of the biosphere were constrained 

by the geological supply of electron donors, and there may not have been much ecological 

pressure to evolve biological nitrogen fixation. Moreover, extremely low productivity in the 

absence of oxygenic photosynthesis has implications for the potential scale of biospheres on icy 

worlds such as Enceladus and Europa, where photosynthesis is not possible and life would be 

unable to escape electron donor limitation. 

 

Plain Language Summary 

Life on Earth today is fueled by oxygenic photosynthesis—the process performed by plants, 

algae, and Cyanobacteria that takes water, light, and carbon dioxide and produces sugar and 

oxygen. The raw materials for this process are abundant, so productivity is limited by nutrients 

such as phosphorous and fixed nitrogen. Oxygenic photosynthesis evolved midway through 

Earth history, and it has long been unclear how productive the biosphere was earlier in time. 

Here, we considered the compounds necessary for early metabolisms that may have fueled life 

on the early Earth—including iron and hydrogen compounds that fuel earlier “anoxygenic” 

photosynthesis. We determined that it was these “electron donor” compounds such as ferrous 
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iron and molecular hydrogen that were most limiting on the early Earth, and that the slow 

geological supply of these compounds resulted in a biosphere that was 1000-fold less 

productive than it is today. The innovation of using water as an electron donor allowed 

oxygenic photosynthesis to dominate primary production and made the Earth as productive as it 

is today. This impacts how productive we can expect life on other planets to be, and 

assumptions about when certain biochemical processes like those involving the cycling of 

nitrogen evolved. 

 

Keywords: Methanogenesis, Anoxygenic Photosynthesis, Great Oxygenation Event, 

Archean Eon, Hydrogenotrophy, Photoferrotrophy 

 

1 Introduction: 

The rise of oxygen, or Great Oxygenation Event (GOE), marked the irreversible 

accumulation of dioxygen (O2) in Earth’s atmosphere ~2.3 billion years ago (Ga), and was 

ultimately driven by the evolution of oxygenic photosynthesis within the Cyanobacteria 

(Fischer et al. 2016). While the antiquity of oxygenic photosynthesis by Cyanobacteria 

remains a matter of significant debate (Rosing and Frei 2004, Johnson et al. 2013a, Johnson 

et al. 2013b, Crowe et al. 2013, Planavsky et al. 2014, Lyons et al. 2014, Fischer et al. 2016, 

Ward et al. 2016, Shih et al. 2017a), dioxygen is constrained to extremely low concentrations 

earlier in Earth history (Farquhar et al. 2000, Johnson et al. 2013a, Johnson et al. 2014), but 

rapidly accumulated to significant concentrations at the GOE (Goldblatt et al. 2006, Bekker 

and Holland 2012, Ward et al. 2016, Luo et al. 2016).  

 While the biosphere underwent a substantial transition to take advantage of the 

energetic and biosynthetic opportunities afforded by this new photosynthetic source of 

dioxygen (e.g. Raymond and Segrè 2006), another significant impact of oxygenic 
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photosynthesis was the ability for autotrophic organisms to make use of an essentially 

unlimited electron donor. The fixation of inorganic carbon into biomass fundamentally 

involves the reduction of CO2 into organic forms via the transfer of electrons from an 

electron donor. The electron donor for oxygenic photosynthesis—water—is available in 

effectively unlimited supply, and so rates of primary productivity across Earth surface 

environments today are constrained by factors such as the availability of nutrients like fixed 

nitrogen and phosphorous (Tyrrel 1999). Before the evolution of oxygenic photosynthesis—

whenever this metabolism evolved, whether it was near the GOE or much deeper in Archean 

time—biology would have been restricted to more limited electron donor compounds, 

including molecular hydrogen, ferrous iron, and reduced sulfur compounds (e.g. Kharecha et 

al. 2005, Canfield et al. 2006). These electron donors are ultimately sourced by geological 

processes such as volcanic outgassing and water/rock interactions at hydrothermal vents, and 

are created at far lower rates and present in environments at much lower abundances than 

water. This raises the possibility that electron donors—rather than nutrients like phosphate 

and fixed nitrogen—could have limited or co-limited rates of primary productivity on the 

early Earth, before the evolution of oxygenic photosynthesis.  

 Here, we considered the absolute contributions that electron donor compounds may 

have made to fuel primary productivity prior to oxygenic photosynthesis and compared these 

rates to those available from fluxes of nitrogen and phosphorous in order to determine the 

limiting factors and resulting productivity at this time.  

 

2 What limited productivity of the early biosphere? 

To determine the ultimate limiting factor for pre-oxygen productivity, one can compare 

the fluxes of nutrients to the Archean oceans, and the idealized rates of productivity they could 

have supported. We assumed that average cellular biomass follows Redfield Ratios of 106 C: 
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16 N: 1 P; while individual organisms can and do deviate substantially from these ratios, this 

appears to be a reasonable description of average elemental composition of ecosystem biomass 

(Weber and Deutsch 2010, Deutsch and Weber 2011). Furthermore, when cells deviate 

substantially from the Redfield Ratio (e.g. by members of the Cyanobacteria in the Sargasso 

Sea replacing membrane phospholipids with sulfolipids, raising their C: P value), this appears 

to be a derived trait (Van Mooy et al. 2006) that will only lower their overall nutrient demand, 

making the Redfield Ratio a conservative estimate of the amount of primary production given a 

certain amount of available nutrient. One can equate a supply of electron donors to fixation of 

organic carbon by assuming an average redox state of organic carbon similar to that of modern 

marine organisms of around -1 (Anderson 1995), therefore requiring 5 moles of electrons to fix 

one mole of CO2 to one mole of biomass C. One can therefore make the relative availability of 

nutrients and electron donors directly comparable by equating both to potential production of 

organic carbon.  

Below, we assembled the best available estimates for the fluxes of essential nutrients to 

the pre-oxygen biosphere, focusing on phosphate, fixed nitrogen, and the electron donor 

compounds molecular hydrogen and ferrous iron (Table 1). Estimates of the availability and 

fluxes of these compounds during Archean time are in many cases not well constrained and 

depend on poorly understood characteristics of the early Earth system such as atmospheric 

composition. Available constraints facilitate only order of magnitude estimates, and so this 

should be considered the level of accuracy for the results that follow.  

Traditional measures of productivity (i.e. Gross Primary Productivity and Net Primary 

Productivity, GPP and NPP) are defined in terms of amount of organic carbon fixed by 

autotrophs per year (e.g. Field et al. 1998); these measures inherently incorporate productivity 

driven by recycled nutrients derived from the remineralization of organic matter. Nutrients can 

be preferentially remineralized from organic carbon (i.e. the C:P and C:N values of organic 
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matter increase as it is degraded, e.g. Clark et al. 1998, Berner 2006), allowing the recycling of 

these nutrients to fuel additional productivity (Thomas et al. 1999). The same is not true of 

electron donors—the respiration of organic matter yields stoichiometric amounts of electron 

donor compounds, and so remineralization and recycling can increase the apparent NPP of a 

system but not the total biomass carrying capacity (i.e. size of standing pool of organic carbon 

in the biosphere at a given time). As a result, it is useful to approach early Earth productivity in 

terms of a related but distinct value, NPPe, electron-equivalent Net Primary Productivity, 

defined here as a measure of the number of electrons entering the biosphere from inorganic 

sources per year. This is equivalent to gross primary production (the total number of moles of 

organic carbon fixed per year) minus the amount of organic carbon fixed using recycled 

electron donors. Because the recycling of electron donor compounds is stoichiometrically 

coupled to the remineralization of organic carbon, the total number of electrons available to the 

biosphere does not increase and this process is incapable of increasing the total biomass 

carrying capacity of the biosphere. This is in contrast to recycling of nutrients such as nitrogen 

and phosphorous, which are often preferentially remineralized without stochiometric 

remineralization of associated organic carbon, allowing recycled nutrients to contribute to net 

primary production (e.g. Thomas et al. 1999, Chen 2003). NPPe is therefore proportional to the 

carrying capacity of the biosphere in terms of amount of organic carbon that can accumulate at 

a given time. 

Unlike some definitions of NPP, NPPe ignores internal recycling of electron donor 

compounds (e.g. re-release of ferrous iron from photosynthetically derived ferric-iron phases by 

dissimilatory iron reducing heterotrophic microbes). In modern environments, where >99% of 

carbon fixation is driven by oxygenic photosynthesis (Raven 2008) and electron donors are 

therefore unlimited, NPPe is readily equated to NPP (by multiplying carbon fluxes by the 

average oxidation state of organic carbon). As water isn’t limiting to autotrophy, 
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remineralization of organic carbon and release of metabolic water does not increase rates of 

primary productivity (though preferential remineralization of organic matter can release 

nutrients to stimulate additional productivity). Before the evolution of oxygenic photosynthesis, 

it is valuable to consider that NPPe would have been significantly lower than NPP, as 

remineralization of organic matter and recycling can at best only result in stoichiometric 

recycling of electrons back to organic matter (though under anoxic conditions a large fraction 

of electrons are lost from the biosphere during remineralization via release of biogenic methane 

to the atmosphere, e.g. Crowe et al. 2011, Ward et al. 2016). NPPe therefore provides a helpful 

measure for tracking the biomass carrying capacity of the biosphere, as it is not inflated by 

stoichiometrically coupled remineralization and recycling. 

 

2.1 Major electron donors 

It is thought that the early, pre-oxygen biosphere was fueled by anaerobic autotrophic 

metabolisms such as methanogenesis and anoxygenic photosynthesis. As these metabolisms 

cannot utilize water as an electron donor, they rely on other electron donor compounds as 

sources of reducing power for carbon fixation such as molecular hydrogen (for 

hydrogenotrophic methanogenesis or anoxygenic photosynthesis) or reduced iron or sulfur 

species (for anoxygenic photosynthesis). A potential limit to the productivity of the early 

biosphere is therefore based on the availability of these electron donor compounds. In order to 

estimate the rates of primary production that these metabolisms could support, previous studies 

have employed steady state estimates of the concentrations of these electron donors (e.g. 

dissolved iron content of Archean seawater, and atmospheric hydrogen concentrations with 

models of upwelling or diffusive flux into the photic zone) (e.g. Kharecha et al. 2005, Canfield 

et al. 2006). These models assumed steady state concentrations balanced by biological 

oxidation, recycling, and geological supply. These steady states are stable only so long as the 
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geological supply of electron donors is sufficient to balance their biological consumption, but 

break down as biological productivity outpaces geological rates of supply, lowering potential 

rates of productivity no matter the steady state concentration or internal recycling of electron 

donor compounds. These previous estimates serve as upper-bound estimates of NPP or GPP, 

rather than NPPe, incorporating recycling fluxes that increase the apparent amount of carbon 

that has been fixed over a time period without actually shifting the carrying capacity of the 

Earth as a whole, as this recycling-driven productivity flux is stoichiometrically balanced by 

remineralization. Here, we focused on the number of electrons delivered from the solid Earth to 

the biosphere, and the resulting net amount of biomass (here considered as moles of organic 

carbon) that can be produced per year. We therefore used the flux of electron donors like 

ferrous iron and molecular hydrogen to the oceans/atmosphere, as estimated by geological 

processes like hydrothermal alteration of crust and volcanic outgassing, without assumption of 

particular steady state concentrations.   

As discussed above, our estimates of NPPe ignore recycling of electron donors by 

design. The remineralization of organic carbon coupled to anaerobic respiration or fermentation 

processes, followed by fixation of organic carbon and consumption of recycled electron donors, 

stoichiometrically cancel. As a result, recycling in anoxic ecosystems can impact the growth 

rate of primary producers and gross primary production, but not shift the total biomass that the 

ecosystem can support at a particular time, as electron balance must be maintained. This is in 

contrast to oxygenic photosynthesis, in which preferential remineralization of nutrient-rich 

biomass can fertilize additional primary production without complete remineralization of 

preexisting biomass. Nutrient-rich components of organic matter are preferentially 

remineralized (resulting in degraded and buried organic matter with progressively higher C:N 

and C:P ratios than for fresh biomass, Clark et al. 1998, Berner 2006), resulting in recycling of 
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nutrients that can fuel further productivity. As a result, nutrients can be recycled to boost NPPe 

while electron donors cannot.  

Ferrous iron (Fe
2+

) is ultimately supplied from weathering and alteration of rocks, and 

so its supply to the biosphere is tied to the production and weathering of new crust. Fluxes of 

reduced iron from production and weathering of oceanic crust were derived from Lécuyer and 

Ricard (1999). It is assumed that the Fe
2+

/Fe
3+

 ratio of new crustal material has been constant 

since accretion, following mantle redox (Canil 1997, Williams et al. 2012).  Hydrothermal 

fluxes were derived from Elderfield and Schultz (1996). It is possible that hydrothermal fluxes 

may have been different than today, but even the sign of this difference remains uncertain: it 

has been argued that Archean hydrothermal fluxes may have been up to ten times higher than 

modern based on Des Marais (2000), but it is also possible that Archean hydrothermal fluxes 

were lower than today associated with sluggish tectonic rates (e.g., Korenaga 2006). 

Consequently we used modern hydrothermal fluxes to approximate those on the Archean Earth.  

Molecular hydrogen is supplied to the fluid Earth by a variety of sources, including 

volcanism and water-rock interactions in the oceans and continental subsurface. Fluxes of 

volcanic gases including H2 have been estimated by Holland (2002) and the contribution of 

various pathways of continental and oceanic water/rock interactions to H2 fluxes have been 

collected by Sherwood Lollar et al. (2014) and were summarized in Table 1.  Additional fluxes 

of H2 may have been provided by other geological processes, such as magnetite authigenesis as 

has recently proposed for Mars (Tosca et al. 2018); however, the magnitude of these potential 

fluxes are not constrained for the early Earth, and so they are not included in our estimates here.  

The fluxes of ferrous iron and molecular hydrogen to the Archean biosphere were 

estimated here to be of the same order (~1.5-6x10
12 

moles/year). If fluxes of both of these 

compounds are stoichiometrically oxidized to drive organic carbon fixation via anoxygenic 

photosynthesis, the contribution of hydrogen to productivity will be double that of iron as the 
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oxidation of H2 to H
+
 provides two electrons to the one from Fe

2+
 to Fe

3+
. Therefore even in the 

most productive scenario presented here (Scenario 1, Table 2) hydrogen will fuel several times 

more productivity than iron.  

 

2.2 Phosphate 

Phosphate is a necessary component of all cells, and its availability is dependent on 

geological supply rather than biological fixation, and is therefore commonly taken to be the 

primary limiting nutrient for marine primary productivity over long timescales (Van Cappellen 

and Ingall 1996, Tyrrel 1999, Planavsky et al. 2010, Laakso and Schrag 2014, Reinhard et al. 

2017). The availability of phosphate in seawater over time has been challenging to constrain; 

proxy records are complicated (e.g. Planavsky et al. 2010, Reinhard et al. 2017) and the 

concentrations of marine phosphate reflect the interplay of a wide range of geological, 

hydrological, biological, and other factors. We therefore examined a variety of influences on 

phosphate supply, recycling, and burial in order to make conservative estimates of the net 

availability of phosphate to the pre-oxygen biosphere. 

The ultimate source of bio-available phosphate is chemical weathering of phosphate-

bearing minerals in rocks. The extent of chemical weathering that occurred on the Archean 

Earth—and therefore the delivery of phosphate to the oceans—is evident through the extensive 

development of carbonate platforms at a similar cadence to modern carbonate-bearing basins 

(Grotzinger and James 2000); this requires similar fluxes of dissolved inorganic carbon and 

alkalinity, and thus chemical weathering products to the oceans (Higgins et al. 2009). It has 

even been suggested that weathering of phosphate during Archean time was more efficient due 

to the increased solubility of apatite in rain and river water made more acidic by elevated 

atmospheric pCO2 (Hao et al. 2017). 
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While chemical weathering of continental crust is the primary mechanism for oceanic 

phosphate delivery today, weathering and alteration of seafloor basalts—such as at 

hydrothermal vents—may have been significant on the early Earth. Basalt typically contains 

much higher phosphorous concentrations than average continental crust (up to ~8000 ppm 

versus 700 ppm, Taylor et al. 1995, Horton 2015), and so has the potential to be a major 

phosphate source to the oceans. Hydrothermal vents in modern ocean basins are thought to be a 

net sink of phosphate (e.g. Elderfield and Schultz 1996) as a result of the sorption of phosphate 

to metal oxides that precipitate as metal-rich hydrothermal fluids interact with oxygenated 

seawater (Wheat et al. 1996). Before the oxygenation of the oceans led to extensive water 

column metal oxidation, hydrothermal systems may have instead served as a major source of 

phosphate to the oceans. 

Since even the sign of difference in phosphate weathering between the Archean and 

modern Earth is unclear, a reasonable estimate is to use weathering-based phosphate delivery to 

the oceans from modern riverine input, around 7x10
10

 moles P/year (Tyrrel 1999) (Table 1). 

This estimate is approximate over a range of a few-fold, due to uncertainties in the lithology of 

the early crust and weathering rates, but is a reasonable starting estimate, particularly given that 

in the modern oceans most productivity is supported not by new delivery of phosphate, but by 

recycling. Biology has developed multiple strategies for maximizing uptake and recycling of 

this vital nutrient, and as a result the relationship between phosphate input and primary 

productivity in the modern ocean suggests that phosphorous is recycled on the order of 500 

times between input to the ocean and burial (Tyrrel 1999). Whether this extent of efficient 

recycling occurred on the early Earth remains an open question, but it is reasonable to suspect 

that some recycling did occur. We therefore added an additional estimate for phosphate 

delivery to the photic zone to yield an estimate for comparison, via upwelling of nutrient-rich 

bottom waters in a manner analogous to the modern ocean using estimates of deep-water 
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phosphate concentrations (from phosphate concentrations in marine sedimentary rocks like 

banded iron formations) and typical rates of vertical mixing (eddy diffusivity) in marine basins. 

Assuming deep-water phosphate concentrations were about 10% of modern values due to 

sorption of phosphate onto iron oxides (Bjerrum and Canfield 2002), along with a typical linear 

vertical mixing rate of ~3 m/year (Broecker and Peng 1982), delivery of recycled bottom water 

phosphate to the surface ocean would be on the order of 4x10
10

 moles P/year (Table 1). This is 

a conservative estimate, as high silica concentrations in the Archean oceans may have hindered 

binding of phosphate to iron oxides (Konhauser et al. 2007). It is also possible that Archean 

iron formations were primarily deposited as ferrous-rich silicate phases (Rasmussen et al. 2015, 

Rasmussen et al. 2016), lowering the predicted abundance of iron oxides in the environment, 

and thus their potential for limiting phosphate availability (Supplemental Information); it was 

also hypothesized that modulation of deep water phosphate concentrations by the solubility of 

ferrous phosphate compounds such as vivianite may have occurred (Derry 2015). 

 

2.3 Fixed nitrogen 

 Nitrogen is a critical element for all known life, where it is used in essential 

biomolecules such as amino and nucleic acids. However, most nitrogen on Earth is found as 

relatively unreactive N2 in the atmosphere, and must be fixed to more bioavailable forms before 

it can be incorporated into biomass. In modern environments, fixed nitrogen is supplied 

primarily by diazotrophs using the nitrogenase enzyme complex (e.g. Canfield et al. 2010). The 

antiquity of nitrogenase—and biological nitrogen fixation more broadly—is contested, with 

estimates ranging from its presence in the last universal common ancestor of all organisms, to a 

much later evolution closer in time to the GOE (e.g. Weiss et al. 2016, Boyd et al. 2011). 

Despite some efforts to develop a Precambrian nitrogen isotope record, little consensus has 

been reached about the nature of the Archean nitrogen cycle (e.g. Garvin et al. 2009, Zerkle et 
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al. 2017), and even the N2 content of the Archean atmosphere is poorly constrained (e.g. Som et 

al. 2016, Zerkle and Mikhail 2017). It is therefore challenging to assign with certainty the 

nature of the early nitrogen cycle, though some process or processes must have been 

responsible for supplying fixed nitrogen to the early biosphere. With the above caveats 

regarding knowledge of the early biological nitrogen cycle, a conservative bound for the 

nitrogen supply to the early biosphere is via estimates of abiotic mechanisms that are thought to 

have occurred at this time. Abiotic nitrogen fixation occurs through a variety of processes, 

including the fixation of N2 into reduced forms via high temperature and reducing conditions at 

hydrothermal vents (~10
10

 moles N per year, Brandes et al. 1998), fixation of N2 to NO (which 

would reach the oceans as NO3
-
, Mancinelli and McKay 1988, Wong et al. 2017) or to HCN 

(which would reach the oceans as NH3, Navarro-Gonzalez et al. 2001) by lightning (~10
12

 

moles N per year, Navarro-Gonzalez et al. 1998, Navarro-Gonzalez et al. 2001, Wong et al. 

2017), and the photochemical production of HCN (~2x10
12

 moles N per year, Tian et al. 2011). 

Very early in Earth history, abiotic nitrogen fixation rates may have been even higher due to 

additional production of N2O and HCN via atmospheric chemistry driven by frequent coronal 

mass ejections, though this process may have become less significant by Archean time as the 

frequency of superflares declined (Airapetian et al. 2016). 

The primary mechanism of abiotic N fixation, and the N species produced, is expected 

to vary with the CH4: CO2 ratio of the early atmosphere. Under a high CO2 atmosphere, 

lightning-based N fixation would produce large fluxes of NO, which would reach the oceans as 

NO3
-
 on the order of 10

12
 moles N/year (Mancinelli and McKay 1988, Navarro-Gonzalez et al 

1998, Navarro Gonzalez et al 2001). However, under the relatively high methane 

concentrations that are hypothesized to have been present in the Archean atmosphere (e.g. 

Pavlov et al. 2000, Kasting et al. 2001, Pavlov et al. 2001), lightning-based N fixation would 

have primarily produced HCN (Navarro Gonzalez et al. 2001), and photochemical HCN 
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production may have been quite high (Tian et al. 2011), potentially totaling ~3x10
12

 moles 

N/yr. Under either scenario, fluxes of fixed nitrogen would have been on the order of 10
12

 

moles N per year. This is a minimum value, disregarding any recycling of organic nitrogen, 

which may have been a significant process before O2 was available to fuel nitrification and a 

complete nitrogen cycle (Zerkle and Mikhail 2017). Additional sources of bioavailable nitrogen 

to the early biosphere may have been through rock weathering, both of nitrogen in primary 

igneous rocks as well as recycling of fossil organic nitrogen in sediments (e.g. Houlton et al. 

2018). 

 

2.4 Other nutrients and electron donors 

While sulfur isotope analysis of early Archean stromatolite and microbialite samples 

indicates that microbial sulfur cycling was active at this time (e.g. Shen et al. 2001, Bontognali 

et al. 2012), it is expected that sulfur-based autotrophy played only a minor role in the Archean 

oceans due to the rapid titration of sulfide to form iron-sulfide precursors and pyrite in an iron-

rich water column (Walker and Brimblecombe 1985, Canfield 2004). As a result, sulfate 

concentrations were very low in Archean seawater (Habicht et al. 2002, Crowe et al. 2014, 

Paris et al. 2014), and so the contribution of sulfate reduction to remineralization was likely 

minor, and recycling of sulfur was minimal (Fischer et al. 2014). In sum it is therefore likely 

that sulfur metabolisms contributed only very small amounts of productivity to the Archean 

biosphere, 1-4 orders of magnitude less than molecular hydrogen (Kharecha et al. 2005, 

Canfield et al. 2006). Incorporation of a sulfur-based productivity model would shift the 

expected rates of productivity presented here slightly, but because the availability of sulfur is 

much less than iron (Walker and Brimblecombe 1985), this shift would be even smaller than 

the difference between an anoxygenic phototrophic biosphere with and without iron oxidation 

(Scenario 1 and Scenario 2 in Table 2). Assuming a volcanic SO2 outgassing flux of ~10
11
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moles/year (Ono et al. 2003), sulfur could fuel at most only about 4x10
10

 moles carbon 

fixed/year, less than 2% of the estimate for H2-fueled productivity.  

While it has been proposed previously that the supply of trace metal cofactors may have 

been a limitation to the productivity of early primary producers (e.g. Anbar and Knoll 2002, 

Saito et al. 2003), this has not been demonstrated for the anoxygenic organisms expected to 

drive much of primary productivity before the evolution of oxygenic photosynthesis. 

Consideration of individual trace metals shows that metals important to organisms performing 

methanogenesis and anoxygenic phototrophy (e.g. Fe, Ni) were relatively abundant early in 

Earth history compared to metals that are less essential for these organisms (e.g. Cu, Mo, Zn) 

(Williams and Rickaby 2012, Robbins et al. 2016). Methanogens and anoxygenic phototrophs 

may even have inherited their suite of metal cofactor demands as a result of their evolution and 

diversification in the early ferruginous oceans in a manner analogous to that which has been 

proposed for Cyanobacteria in euxinic Paleoproterozoic environments (Saito et al. 2003).  

While a source of inorganic carbon is necessary to support autotrophic carbon fixation, 

this is not expected to have been limiting for the early biosphere. The composition of the 

Archean atmosphere is poorly constrained, but it is generally thought that pCO2 and dissolved 

inorganic carbon was significantly higher than today (Hotinski et al. 2004, Fischer et al. 2009, 

Blättler et al. 2016), partially due to geological constraints such as the mineralogy of Archean 

paleosols (Rye et al. 1995) and partially as a satisfactory solution for maintaining a clement 

climate under the faint young sun (e.g. Kasting 1987). CO2, as dissolved inorganic carbon, 

should therefore have been well in excess of the demands of the early biosphere, both as a 

source of carbon for fixation of biomass as well as the terminal electron acceptor for cellular 

redox balance in metabolisms like methanogenesis and anoxygenic photosynthesis. Because 

CO2 is predicted to have been available as an abundant electron acceptor, primary production 

on the early Earth need not be considered electron acceptor limited, though the efficiency of 
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heterotrophic remineralization was likely limited in a manner similar to low-energy anaerobic 

ecosystems today in which the availability of electron acceptors limits the amount of energy 

conserved by, and resulting growth rate and yield of, respiratory heterotrophic microbes. 

 

3 The electron donor-limited early biosphere 

The results of these calculations show that H2 was likely the most significant electron 

donor for the biosphere prior to water oxidation, with relatively minor contributions from 

ferrous iron and reduced sulfur species. Moreover, the results suggest that fluxes of nutrients 

like fixed nitrogen and phosphorus were in great excess to those of electron donors. This is 

important because it suggests that the geological supply of electron donors may have been a 

fundamental limit on primary productivity before the evolution of oxygenic photosynthesis 

(Figure 1, Table 2). While iron oxidation has been considered a significant source of energy to 

the early biosphere (e.g. Fischer and Knoll 2009), its relative contribution to rates of primary 

productivity is contested (e.g. Kharecha et al. 2005, Canfield et al. 2006), and depending on 

interpretations of the original mineralogy and genesis of iron formation sediment it is possible 

that biological iron oxidation in the Archean oceans was minimal (Rasmussen et al. 2013, 

Rasmussen et al. 2015, Rasmussen et al. 2016; Rasmussen et al. 2017, Johnson et al. 2018, 

Supplemental Information). Regardless of the topology of the early iron cycle, our estimates 

here for the maximum rates of iron-fueled productivity (Table 2) suggest that iron was at best a 

minor fuel for the early biosphere compared to molecular hydrogen. Though re-reduction of 

iron oxides could provide recycled ferrous iron to fuel additional productivity, this would be 

stoichiometrically balanced by organic carbon remineralization, and so would not contribute to 

increasing NPPe. Tallied altogether, we estimated that global NPPe was likely no higher than 

~1.375x10
13

 moles e
-
/yr (yielding ~2.75x10

12
 moles organic C/yr), and perhaps somewhat less 

if iron did not serve as an electron donor for photosynthesis. This value is more than 1000x 
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lower than modern productivity (Figure 2), and lower than previous estimates of Archean 

productivity (e.g. Kharecha et al. 2005, Canfield et al. 2006). This value is moreover an upper 

bound on productivity assuming perfect efficiency of converting electrons from H2 into 

biomass; actual values of NPPe may have been lower due to relatively inefficient consumption 

of H2 by methanogens (as discussed below) in H2-replete but aphotic environments such as the 

subsurface or deep marine hydrothermal vents. While it is always possible that productivity 

was limited by other nutrients in localized environments, aspects of ecology, or other 

environmental challenges (e.g. temperature or UV stress), the results presented here suggest 

that it was the geological flux of electron donors that fundamentally limited primary production 

of the biosphere as a whole. This makes sense, as organisms have evolved to become more 

efficient with their use and recycling of nutrients (e.g. reducing phosphorous demand via 

alternative membrane lipids, Van Mooy et al. 2006, or diel reallocation of trace metals between 

photosynthesis and nitrogen fixation, Saito et al. 2011), but electron donors are 

stoichiometrically consumed during the fixation of organic carbon and other than reduction in 

cell size there is no apparent means for reducing cellular organic carbon demand.  

Molecular hydrogen is an incredibly versatile and favorable electron donor for diverse 

metabolisms (hydrogenotrophy), including methanogenesis, acetogenesis, anoxygenic 

photosynthesis, and both aerobic and anaerobic lithotrophy. Of these, lithotrophy is not 

expected to have been significant before the rise of oxygen, as it relies on respiratory electron 

acceptors such as dioxygen or sulfate that were scarce prior to the evolution of oxygenic 

photosynthesis. Though the absolute ages of metabolic pathways are largely unknown, 

methanogenesis and acetogenesis are thought to be relatively ancient and among the earliest 

metabolisms to appear on Earth (Battistuzzi et al. 2004, Martin and Russell 2007), and so may 

have been responsible for primary productivity in the earliest stages of biosphere.  
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While the timing of evolution of anoxygenic photosynthesis is not well constrained, it may 

have been late relative to other anaerobic metabolisms due to the complexity of the electron 

transport chains associated with high potential metabolic pathways such as respiration and 

phototrophy (Fischer et al. 2016). The evolution of anoxygenic photosynthesis may have led to 

a significant boost in primary productivity, as this metabolism provides an efficient 

biochemical logic for carbon fixation per flux of electron donor compounds as compared to 

lithotrophic metabolisms (e.g. Ward et al. 2017). Methanogenic productivity is limited by the 

necessity of consuming electron donor compounds to supply cellular energy as well as to fix 

carbon—a limitation absent in anoxygenic phototrophs that can either directly generate 

NADPH via type I reaction centers and/or can run cyclic electron flow to generate ATP and 

complete reverse electron transport (Madigan et al. 2012). Methanogens, as a result, must 

channel electrons into methane to conserve energy, and only fix on the order of 1 mole of 

organic carbon for every 10 moles of methane generated, dropping their expected productivity 

by an order of magnitude (e.g. Thauer et al. 2008). This leads to a drop in yield from ~2.4x10
14

 

cells/mol H2 for anoxygenic phototrophs to ~1.7x10
13

 cells/mol H2 for methanogens (assuming 

average oxidation state of organic carbon of -1, ~10 femtograms of carbon per cell, and 

maximum yields for methanogens without cytochromes of 3 g per mole of CH4 (Whitman et al. 

1998, Thauer et al. 2008). As a result of this relative inefficiency of methanogenesis, primary 

productivity could have increased by about a factor of ten following the evolution and 

expansion of anoxygenic photosynthesis (from Scenario 2 to Scenario 3 in Table 2 and Figure 

1).  

Determining the age of anoxygenic photosynthesis will therefore be important for 

understanding transitions in the scale of primary productivity through time. While there is some 

evidence for anoxygenic photosynthesis as early as ~3.4 Ga in the form of depth-dependent 

accumulation of organic carbon in microbial mat laminae (Tice and Lowe 2004), these 
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observations are unfortunately not diagnostic for any crown-group anoxygenic photosynthetic 

bacteria, and may record now extinct stem-group phototrophic lineages, as many extant 

anoxygenic phototrophic lineages appear to have radiated after the GOE following horizontal 

gene transfer of phototrophy genes from older, unknown donor lineages (e.g. Fischer et al. 

2016, Shih et al. 2017b, Ward et al. 2018, Brinkmann et al. 2018). Less ambiguous evidence 

for the antiquity of anoxygenic photosynthesis comes from the biological record, which 

demonstrates by the relationships between oxygenic photosystems and anoxygenic reaction 

centers that some form of anoxygenic photosynthesis must have arisen much earlier than the 

evolution of oxygenic photosynthesis (Fischer et al. 2016). This evidence, however, only 

provides a sense of the relative timing of anoxygenic photosynthesis, with confirmation of 

absolute ages requiring additional insight from the rock record.  

It is valuable to note that even for a molecular hydrogen-fueled early biosphere, iron serves 

as the ultimate source of most electrons from the solid Earth—water/rock interactions in 

hydrothermal vents, continental crust, and other environments result in the transfer of electrons 

from iron in rocks to molecular hydrogen, which is then released to the biosphere (Mayhew et 

al. 2013, Sherwood Lollar et al. 2014). Iron is the single largest reservoir of electrons in the 

Earth’s crust (Walker and Brimblecombe 1985), yet is comparatively inaccessible to biology, 

and so the extent to which life can be rock-powered is dependent on the extent of hydrothermal 

alteration and delivery to the oceans. Thus at a planetary scale, water is the crucial intermediary 

in the transfer of electrons from rocks to life, particularly in the absence of photosynthesis. 

 

3.1 Trends in primary production over Earth history 

 Based on the calculations presented above, it appears that geologically sourced electron 

donors, principally molecular hydrogen, set the fundamental limit for rates of net primary 

production before the evolution of oxygenic photosynthesis. These estimates are 
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approximate—given limited understanding of several aspects of the Archean Earth such as 

volcanic outgassing and weathering rates and atmospheric compositions, and the results carry 

the uncertainties associated with a few-fold error in any given input term.  

 These estimates, combined with known changes in productivity that occurred later in 

Earth history, after the rise of oxygenic photosynthesis, allow one to assemble an approximate 

trajectory of primary productivity through time (Figure 2). After the origin of life, the biosphere 

is expected to be supported by anoxic, nonphototrophic metabolisms such as methanogenesis 

and acetogenesis; productivity at this time would have been low, particularly given the 

inefficiency of these metabolisms in terms of carbon fixed per unit of electron donor consumed, 

and so NPPe was likely less than ~1.25x10
12 

moles e
-
/year (i.e. ~0. 25x10

12 
moles organic 

carbon/yr). Following the evolution of anoxygenic photosynthesis somewhat later in Earth 

history (potentially by ~3.4 Ga, Tice and Lowe 2004), maximum NPPe would have risen by an 

order of magnitude to ~1.25x10
13 

moles e
-
/year (i.e. ~0. 25x10

13 
moles organic carbon/yr), due 

to the increased energetic efficiency of photosynthetic metabolisms. Following the evolution of 

oxygenic photosynthesis by Cyanobacteria (perhaps as late as the GOE, ~2.3 Ga, Fischer et al. 

2016, Shih et al. 2017a), and the introduction of water as a (virtually) unlimited electron donor, 

the productivity of the biosphere increased by the largest amount at any transition in Earth 

history. After the evolution of oxygenic photosynthesis, primary production was limited by the 

availability of nutrients such as phosphate (e.g. Reinhard et al. 2017), fixed nitrogen (e.g. 

Stüeken 2013), and perhaps trace metals (e.g. Anbar and Knoll 2002) and other trace molecules 

like vitamins (Monteverde et al. 2017). Productivity during this period is not well constrained, 

but geochemical evidence for anoxia in marine basins suggests that atmospheric oxygen 

concentrations and/or net productivity remained intermediate throughout the Proterozoic Eon 

(e.g. Reinhard et al. 2013, Crockford et al. 2018), perhaps maintained at a low-oxygen steady 

state by feedbacks related to modulation of phosphate availability due to interaction with 
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dissolved iron (Laakso and Schrag 2014, Derry 2015, Laakso and Schrag 2018). By the 

beginning of the Phanerozoic Eon, following the evolution and later diversification of 

eukaryotic algae in Proterozoic time (Brocks et al. 2017), marine productivity may have 

increased to near modern levels, while the evolution and expansion of land plants likely led to a 

near doubling of the total productivity of the biosphere as terrestrial productivity first became 

significant. A final boost to productivity may have been associated with the expansion of 

angiosperms in the Cenozoic (Boyce and Zwieniecki 2012, Boyce and Lee 2017), finally 

reaching the levels of productivity seen today—likely the highest in Earth history.   

 The pre-oxygen biosphere therefore appears to have been much lower in productivity 

than later in Earth history, and to have been more fundamentally constrained by geological, 

rather than biological, processes. In other words, before the GOE, the Earth set the tempo for 

the biosphere, and maintained it at low levels of productivity. As a result, while life may have 

had some limited impacts on the Earth system such as drawing down atmospheric 

concentrations of H2 (limiting its efficacy as a greenhouse gas, e.g. Wordsworth and 

Pierrehumbert 2013) and converting H2 into CH4 (increasing greenhouse effect, e.g. Kasting 

1987, or contributing to organic haze, Arney et al. 2017, though the magnitude of this flux 

depends on the relative H2 consumption of methanogens versus phototrophs), the early 

biosphere may have been inefficient at driving many geochemical cycles and may have been 

less capable of serving as a self-regulating feedback to the Earth system. Gaia—in the sense of 

life as a self-regulating feedback capable of regulating climate and habitability of the planet 

(e.g. Lovelock and Margulis 1974)—may not have been born until relatively late in Earth 

history, after the evolution of oxygenic photosynthesis, when life finally became sufficiently 

productive to play a dominant role in controlling geochemical cycles and climate feedbacks on 

the surface of the Earth.  
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3.2 Implications of electron limitation on the biosphere before oxygenic photosynthesis 

If nitrogen were not limiting to productivity before the rise of oxygen, there may not 

have been strong evolutionary pressure to evolve biological nitrogen fixation at this time. 

Nitrogen fixation is an energetically costly process, especially for the energy- and electron-

limited organisms characteristic of the pre-oxygen biosphere, and so there would be a clear 

advantage to making use of abiotically fixed nitrogen rather than investing in biological 

nitrogen fixation via nitrogenase. While there may have still been locally nitrogen-limited 

environments conducive to the early evolution of nitrogenase, it is conceivable that the 

evolution of this enzyme complex (or at least emergence of the crown group forms that are 

found today), was relatively late, postdating the last universal common ancestor, after the 

evolution of anoxygenic photosynthesis, or potentially even as late as the GOE. This is 

consistent with some phylogenetic and molecular clock analyses of the evolution of the 

nitrogenase family (e.g. Boyd et al. 2011) but will require further evidence to confidently 

assess.   

Alternatively, nitrogenase may have evolved much earlier but for a different function 

and was only later coopted for fixation of N2. Under high-methane conditions, the product of 

atmospheric (lightning and photochemical) nitrogen fixation would primarily be HCN 

(Navarro-Gonzalez et al. 2001, Tian et al. 2011, Airapetian et al. 2016). Following rainout to 

the ocean, HCN could hydrolyze to form NH4OH (Zahnle 1986), but can also be taken up 

directly by biology via nitrogenase (Dekas et al. 2009). One hypothesis holds that large fluxes 

of HCN to the oceans may therefore have triggered the evolution of nitrogenase first as a way 

to detoxify and take up HCN, and was only later coopted to N2 fixation (e.g. Silver and 

Postgate 1973, Raymond 2005). These scenarios are consistent with a methanogen origin for 

nitrogenase as previously proposed (Boyd et al. 2011), an idea that gains strength given the 

shared ancestry and similar biochemistry between nitrogenase subunits and those involved in 
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the synthesis of coenzyme F430—a nickel-containing tetrapyrole used by methyl-coenzyme M 

reductase (e.g. Zheng et al. 2016). That in mind, the largely unexplained occurrence of N2 and 

HCN fixation by methanogenic and ANME archaea in ammonia-rich sediments (e.g. Dekas et 

al. 2009) suggests that nitrogenase may play additional physiological roles in anaerobic and 

fixed-nitrogen replete environments that remain poorly understood (e.g. as an electron sink to 

maintain cellular redox balance). 

The limitation of net primary productivity of anoxygenic biospheres by the availability 

of electron donors has significant implications not only for our understanding of the size of the 

biosphere on the early Earth, but potentially on other worlds as well. This is particularly 

relevant for ice-covered worlds like Europa and Enceladus, where the photosynthetic use of 

water as an electron donor is impossible due to the lack of light penetration to the ocean. As a 

result, the size and productivity of any biosphere on these worlds would be limited by the flux 

of electron donor compounds from water/rock interactions at the base of their subsurface 

oceans. Since anoxygenic photosynthesis would also be impossible in these environments, the 

efficiency and yield from consumption of these electron donors may be low. This would be true 

whether dioxygen is supplied to the ocean from radiolysis of ice on the surface or not; aerobic 

lithotrophic metabolisms typically have low efficiency per electron donor (Ward et al. 2017), of 

a similar order to methanogenesis (e.g. 40 Fe
2+

 oxidized to Fe
3+ 

per 1 C fixed when using O2, 

compared to 4-6 Fe
2+

 oxidized to Fe
3+

 per 1 C fixed when using light, Ehrenreich and Widdel 

1994, Neubauer et al. 2002). This has valuable implications for the potential abundance, 

productivity, and detectability of life on icy moons, and can be leveraged to make expectations 

that bear on life detection missions. Of particular interest is the detection of H2 in Enceladus’ 

plume by Cassini (Waite et al. 2017), because an electron-limited biosphere would be expected 

to have consumed this H2—unless another nutrient such as phosphorous can be shown to be 

even more limiting to a potential biosphere on Enceladus, the detection of H2 at Enceladus 
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could be regarded as an ‘antibiosignature’ (Catling et al. 2018) indicating that this moon is 

uninhabited even if it is habitable.  
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Table 1: Phosphate, fixed nitrogen, and electron donor fluxes to the pre-oxygen biosphere. 

 

 

Flux Nutrient flux 

(10
12 

moles/yr) 

Citation Notes 

Phosphate 

(rivers) 

0.0722 Tyrrel 1999 New nutrient 

Phosphate 

(upwelling) 

0.04 10% average modern 

marine deep water P 

concentrations per Bjerrum 

and Canfield 2002, typical 

vertical mixing from 

Broecker and Peng 1982 

Recycling flux from 

remineralization at 

depth and upwelling 

from deep water 

Fixed N 

(photochemistry) 

2 Tian et al. 2011 Production of HCN in 

relatively high CH4 

atmosphere 

Fixed N 

(hydrothermal) 

0.01 Brandes et al. 1998   

Fixed N 

(lightning) 

0.714 Navarro-Gonzalez et al. 

1998, Navarro-Gonzalex et 

al. 2001, Wong et al. 2017 

NO from high CO2 

atmosphere, or HCN 

from high CH4 

H2 (volcanic 

outgassing) 

4.7 Holland 2002   

H2 (water-rock 

interactions) 

1.36 Sherwood Lollar et al. 

2014 

Sum of continental and 

oceanic fluxes 

Fe
2+

 

(hydrothermal) 

0.19 Elderfield and Schultz 

1996 

  

Fe
2+

 (production 

of new crust) 

1.4 Lecuyer and Ricard 1999   

 

 

 

 

 

 



© 2018 American Geophysical Union. All rights reserved. 

Table 2: Productivity scenarios referenced in Figure 1. 

 

 

Scenario Description NPPe (10
12 

moles e
-
/yr) 

Required P 

flux (10
12 

moles/yr) 

Required N 

flux (10
12 

moles/yr) 

1 Electron donor 

limited 

anoxygenic 

photosynthesis 

(H2 and Fe
2+

) 

13.75 0.0259 0.415 

2 Electron donor 

limited 

anoxygenic 

photosynthesis 

without 

photoferrotrophy 

(H2)  

12.15 0.0229 0.367 

3 Electron donor 

limited 

methanogenesis 

(H2) 

1.215 0.00229 0.0367 

4 Modern marine 

productivity 

(oxygenic 

photosynthesis) 

20000 37.7 604 
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Figure 1: Phosphate and fixed nitrogen fluxes to the biosphere, and resulting phase space for 

limitation on productivity. Electron donor, N, and P limitation fields assuming productivity in 

Scenario 1 (anoxygenic photosynthesis limited by iron and hydrogen as electron donors). 

Scenarios 2 (anoxygenic photosynthesis without iron as an electron donor) and 3 

(methanogenesis only) shift the electron limited field down and to the left. Predicted nitrogen 

(A) and phosphate fluxes (B) are well in excess of the demand of the electron limited rates of 

productivity predicted here, suggesting that the pre-oxygen biosphere was fundamentally 

limited by the supply of electron donor compounds. 
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Figure 2: Estimates for the productivity of the biosphere (moles of electrons used to fix organic 

carbon per year, on a log scale) Earth history. To first order, the productivity of life on Earth 

has increased through time, beginning near 0 at the origin of life to the high rates observed 

today. The earliest biosphere was supported by nonphototrophic metabolisms like 

methanogenesis and acetogenesis (brown), limited by supply of electron donors and the 

efficiency of these metabolisms. Following the evolution of anoxygenic photosynthesis, 

productivity increased ~10-fold due to the inherent energetic efficiency of these metabolisms 

per supply of electron donor (pink). The evolution of oxygenic photosynthesis by 

Cyanobacteria (cyan), productivity increased drastically due to the use of water as an unlimited 

electron donor. Productivity throughout Proterozoic time is poorly constrained. The evolution 

and expansion of eukaryotic algae, land plants, and angiosperms led to subsequent increases in 

productivity to modern levels (green). Error bars capture uncertainty in timing of evolution of 

major autotrophic metabolisms (horizontal) as well as uncertainty in net primary productivity at 

a particular period in time (vertical) as discussed in section 3.1 of the text. 

 


