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ABSTRACT
Traditional photoconductive detectors are used at 70 and 160 microns in the Multiband Imaging Photometer for
SIRTF (MIPS).1 These devices are highly sensitive to cosmic rays and have complex response characteristics, all
of which must be anticipated in the data reduction pipeline. The pipeline is being developed by a team at the
SIRTF Science Center, where the detailed design and coding are carried out, and at Steward Observatory, where
the high level algorithms are developed and detector tests are conducted to provide data for pipeline experiments.
A number of innovations have been introduced. Burger's model is used to extrapolate to asymptotic values for the
response of the detectors. This approach permits rapid fitting of the complexities in the detector response. Examples
of successful and unsuccessful fits to the laboratory test data are shown. A changepoint detector algorithm based
on bayesian statistics is implemented for the detection of charge-producing cosmic ray hits in sample-up-the-ramp
infrared detector data. The algorithm finds the sample having the maximum likelihood of being a changepoint, and
then computes the probability that a changepoint actually occurred at that sample. Tracking the detector calibration
with frequent flashes of stimulators in the instrument has been validated for test data. Variations in response to the
stimulator have been normalized to a uniform value and applied to all other data. The resulting corrected response
was shown to be uniform over a three-hour period of data collection.

Keywords: infrared detector, sirtf, space telescope, ipac, nasa, ge:ga, cosmic ray, burger's equation, mips, multiband
imaging photometer

1. BURGERS EQUATION AND TRANSIENTS IN GALLIUM DOPED GERMANIUM
DETECTORS

1.1. Derivation of the Burgers equation
Gallium doped germanium detectors have been known to exhibit a number of transient effects under low background
conditions. Such behavior creates calibration uncertainties. In this section we will analyze monotonic and nonmono-
tonic transients, using an approach based on a model equation. To describe transient processes we start with a
complete set of partial differential equations (PDE) , which includes all known spatio-temporal processes inside of the
detectors. Then, by estimating values of different terms in the complete set of equations, we will be able to neglect
some of them to obtain a model tractable mathematically.

The continuity equation has the following form

pt+j=—R; (1)

R=gN((1—f)p—fpi) (2)
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j = ernpE —eDp + eE (3)

The Poisson's equation has the following form.

E = (N(f-fo)+p-po) (4)

The balance equation is written in the following form.

Nft = gN((1 — f)p — fpi) (5)

where p(x, t) is the free hole concentration, N is the concentration of traps, f is the occupancy of traps, R is the
recombination rate, rn is the hole mobility, D is the diffusion coefficient, g is the coefficient describing the capture
of electrons by traps, which is equal to the product of the capture cross section times Vth thermal velocity, P1 is
the whole conduction density when the Fermi energy is equal to the energy of traps, e is the electron charge, i is
the permitivity, E is the electric field applied along the x axis, semiconductor. The expression for the hole current
density j includes possible contributions from drift, diffusion and displacement current components.

=gN(1-fo) (6)

is the reciprocal of the time governing the capture of free electrons by traps, and

1_ P0 7
rrNfo(1-fo)

()
is the reciprocal of the relaxation time of the occupancy of traps.

Assuming that a static electric field B is applied along the x axis and that the spatial and time variations of small
perturbations in the hole concentration p in the occupancy of traps, and in the electric field are proportional to
exp(ikx — iwt) we can linearize the system above and end up with the following dispersion relation for perturbations
( see Kazarinov2).

(8)

where o = ernn is the conductivity, v0 = pEo. Let's first estimate the relative importance of the drift and
diffusion. The diffusion length is

LD /1b7 >> io-3•5 — 1025cm. (9)

The drift length is
Ld VOT = iO4 — 102cm. (10)

We have D >> 102!, vo >> i0 (see Haegel3). For large enough k >> iO4 we obtain the following root of
the dispersion relation

w=v0k—iDk2 (11)

This dispersion relation corresponds to the linear Burgers equation. So, we see that, at least in linear approxima-
tion, there are two dominating physical effects: drift and diffusion. However, we would like to incorporate into our
model the nonlinearity of the system. To do so, we will make use of the nonlinear Burger's equation, which takes
into account nonlinear drift and diffusion together:

Pt + vop + pp = (12)
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Figure 1. Fitting hook data to Burgers model. The actual asymptotic value is 79.1968, the fitting asymptotic value
is 78.2068

Here we suggest a further simplification based on using a specific analytical solution of the Burgers equation. The
solution has the following form.

P=Pi+ P2P1
(x-Ut) (13)

1+bexp((p2—pi) 2D )

U=P12 (14)

In the fitting procedure the spatial variable x is set to zero. These simplifications have been justified aposteriori
by successful fitting to the experimental data.

1.2. Applications of the Burgers equation
Application of the Burgers equation to the problem of monotonic transients gives the asymptotic values identical
to those obtained from the Fuks-Schubert model (the difference is less than ipercent). It also shows that by using
only 30 percent of the real data, the asymptotic level can be predicted with the accuaracy 1.4 percent. The main
advantage of the approach suggested here is the possibility of capturing the so-called hook effect. Figure 1 shows the
result of the fitting to Burgers model hook-data numerically simulated by Haegel and Skoge.4

2. THE RADHIT DETECTOR
It is expected that, in the environment of space, the detector elements of SIRTF instruments will be exposed to
charge-inducing events. While careful shielding will reduce the number of events, long integration times and the
large detector areas required for detection at infrared wavelengths will lead to significant occurrence of radiation hits
in the data. SIRTF integrations will be sampled several times during the observation. This will nominally produce a
linear time series of charge from the detector readout. When a radiation hit occurs, there is an increase in the charge
accumulated by the detector during the corresponding sampling interval. This results in a raising of the measured
charge values at that and all suceeding samples. In this section is presented a method of detecting the resulting
changepoint in the time series data. The method is not complicated to implement; matrices are involved, but can
be calculated beforehand. After data collection, they are only used in matrix multiplication. Otherwise, most of the
other computation consists of vector inner products, exponentiation of a scalar, and a sort process.
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2.1. The probability distribution
The rise in charge at a detector element during a sampling interval of duration Lt is dependent on the photon flux
and the dark current of the detector. These two effects may be combined into a single rate, (. Assuming that the
combination of rate and sampling duration is high enough for the accumulation of about 15 electrons or more, the
probability density function for the charge rise LE may be considered gaussian. It is

P(zEtI7) = N((zt, (zt, LE) (15)

where N(p, 2, ) is a normal probability density over x of mean p and variance o2. The t subscript in LE indicates
the time at which the sample is taken. This index is most conveniently taken as ranging from 1 to N, where N is
the number of samples in the integration. The symbol , "gamma-slash" , indicates that no radiation hit occurred.

The accumulated charge at time T is the sum of all the charge increases up to T

Ecum(T) = i: LEt (16)
t < =T

No pedestal charge is assumed since it will not affect the calculations and in the end the quantity of interest is the
slope of the charge vs time. The variance of Ecum (T) S equal to Ecum (T) and the expected value of the variance
barring radiation hits is (T. The read noise in electrons, orn , adds gaussian noise to the measurement. Therefore
the measured charge, E(T) , has an expected variance of (T + o.

When a radiation hit occurs in the sample labeled t, it adds an amount /.Erh to the charge rise. Since there is
currently no precise prediction of the distribution of LErh for SIRTF instruments, calculations in this report will
be performed conservatively at a constant, low zErh. Then the charge rise when a radiation hit occurs during the
sample time with label t obeys the probability density function

P(LEtI7) = N(C/.t + /.&Erh, (Lt LEt) (17)

where the variance is as before. LErh does not contribute to the variance because it is assumed to be a constant.
The symbol y indicates that a radiation hit occurred.

The accumulated charge at time T follows the equation as above. Typically, the charge vs time data when
one radiation hit occurs will consist of a linear segment as charge from photon flux and dark current is steadily
accumulated, a discontinuous jump in charge at the sample at which the radiation hit occurs, and another linear
segment of charge accumulation. Efforts to detect radiation hits will center on detecting the discontinuity in charge
and determining whether it is statistically significant.

2.1.1. A Changepoint Detector
The following method is due to Kheradmandnia.5

2.1.2. The General Linear Model
Suppose that the data is linear except at the discontinuity where the radiation hit occurs, at time t. Then it could
be fitted with a pair of linear functions,

Ej(T) = a1 + b1T when T < t (18)

Eft(T) = a2 + b2T when T > t (19)

The data need not have the same slope before and after the changepoint. Since there are a finite number of samples,
the above equations can be written as:

Ej(t) = a1 + b1t1 (20)

Efjt(t2) = a1 + b1t2
Eft(t3) = a1 + b113

Eft (tM_i) = a1 + bltM_1
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Eft(tM) = a2 + b2TM

Efjt(tM+1) = a2 + b2TM+l

Eft(N) = a2 + b2TN

where the radiation hit occurs in the Mt sample. N is the total number of samples. The above can be written in
matrix form

Efit Gb (21)

where
1 ii 0 0
1 2 0 0
1 t3 0 0

1 tM1 0 0
0 0 1 tM
0 0 1 tM+1

0 0 1 tN

and Tb=(ai b1 a2 b2)
If E represents the measured charges, and with the error defined from the following

E=Efi+e (22)

then E satisfies the likelihood function

2N eTe
p(EG,b,o)=(2ro )exp[—---] (23)

The data is assumed to be normal and of constant variance o. This is an approximation to the noise expected in the
measured charges, in which the photon noise, dark current fluctuations, and read noise are the main contributors. In
the measured charges, the photon and dark current noise increase in proportion to the amount ofcharge accumulated,
while the read noise remains constant.

O Ruanaidh and W.J. Fitzgerald8 integrate the constants b, and o out of the above equation to express the
likelihood of a choice of G given the data

(N-M)

p(GE)oc
[ETE_ETG(GTG)_1GTE]_ 2

(24)
/det(GTG)

The method of determining the changepoint is to posit it to be at a chosen value M and compute the likelihood of
the corresponding G, which contains the choice of M implicitly. This is repeated for all possible M, and the result
with the greatest likelihood is taken to indicate the location of the changepoint. A charge ramp of 80 samples with
a slope of 900 electrons per sample and a readnoise of 120 electrons containing a radhit of magnitude 2000 electrons
at sample number 52 is shown in figure 2, and a plot of the log of the likelihood, call it L(M), vs M for this charge
ramp is shown in figure 3.

2.2. Declaring the Presence or Absence of a Radiation Hit
The method described assumes a priori that a radiation hit occurred, and estimates the most likely sample number
of the hit. An additional procedure is needed in order to determine whether or not a radiation hit occurred. The
procedure is based on a comparison of the charge increase at the location of the posited radiation hit compared to
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Figure 2. Charge vs sample number for ramp with Figure 3. Log-likelihood vs sample number for
900 e/sample flux and radhit of 2000 at sample 52. charge ramp of previous figure 2.

the expected charge increase. Suppose that, from the calculation in section 2.1.2, the most likely changepoint is
determined to be at M. The change in measured charge from M —1 to M due to the radiation hit is

LIEM EM EM1 (zt (25)

where the expected increase without a radiation hit (Lit, due to dark current and the collection of photons, is
subtracted off. A more accurate estimate of the charge increase is given by (eq. 21)

LEM Ej(M) — Ef2t(M — 1) — CLt (26)

and the vector of least squared estimates is

Ej = G(GTG)_1GTE (27)

Now it must be determined whether LIEM is large enough to be considered as resulting from a radiation hit. Bayes
rule states that, given LEMt, the probability that a radiation hit occurred is,

P(LEMI7)P(7)P(yILEM)= P(y)+P(') (28)

where the definitions of P(J.EM7) and P(/.EMJ7') are based on equations 17 and 15, with the difference that the
variance due to the read noise is added to the variance parameter of the gaussian function. P(7) and P(7) are the a
priori probabilities that a radiation hit did, and did not, occur, respectively. To complete the probability calculation,
the charge accumlated due to flux and read noise during one sample period, (t in equations 15, 17, and 26, and the
amount of charge added by the radiation hit, LErh, in eq. 17 must be determined. The quantity (7t is estimated
from the data before the posited radiation hit:

(eStt = Eft(M — 1) — Eft(M — 2) (29)

and the magnitude of the radiation hit is taken as the lowest magnitude one could expect to detect at a high
confidence level. This is expressed as a radiation hit magnitude to noise ratio SNRmjn ,times the expected standard
deviation of the measured EEM. In other words,

LErh SNRmjn/Cest/..t + o.n (30)

The quantity \/(e8tLt +o is to be used as the standard deviation in P(LEMf7) and P(LEMJ7'). The quantity
SNRrnin was set equal to three, which in the simulations produced a high probability of detection and an acceptable
false alarm rate at all chosen values of flux and read noise.
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N 80 samples
I Urn 120 electronsi

C 900 electrons per sample
E 0-2000 electrons

Table 1. Values of parameters used in simulations

2.3. Detecting Radiation Hits at the Endpoints
The likelihood calculation for G cannot be done for M = 1, 2, or N. Indeed, if the radiation hit occurs during the
first sample, the very first and all subsequent charge measurements will contain the effect of the hit, and there will
be no discontinuity in the data. Therefore no changepoint detection method can detect a radiation hit in the first
sample. When M = 2 or M = N, the matrix G is singular and the method fails. To handle M = 2 or M = N,
the data point at M is examined directly in relation to the rest of the data. The method is similar for that used to
determine the presence of a radiation hit as described in section 2.2. An estimate fof LEM must be found, and it
must be determined whether LEM is large enough to be considered as resulting from a radiation hit.

2.3.1. The Matrix Method at the Endpoints
The method to be used will take advantage of the following fact: when a radiation hit occurs at M = 2 or M = N,
the likelihood function p(GE) has its maximum at M = 3 or M = N —1, respectively. Therefore, whenever the
method of section 2.1.1 yields M = 3 or M = N — 1 as the most likely changepoint location, the endpoints must be
checked as candidates for the true changepoint location.

2.3.2. The Procedure for Examining the Far Endpoint
When the maximum of p(GE) is at M = N — 1, the actual radhit, if any, could be at either N — 1 or N. Thus
LEM of eq. 26 is taken as the maximum of

LEN E1(N) — Eft(N — 1) — (estZt (31)

and
zEN_l E(N — 1) — Ej(N — 2) — C8zt (32)

Then the procedure from section 2.2 is then applied to determine whether a radiation hit should be declared.

2.3.3. The Procedure for Examining the Near Endpoint
When the maximum of p(GE) is at M = 3, the actual radhit, if any, could be at either 2 or 3. The estimation of
the flux from eq. 29 is

(est't = Eft(2) — Eft(1) (33)

E1 at the values 1 and 2 when M = 3 is a fit to a two-point data segment and thus (est 5 very susceptibleto noise
in E1 and E2 . Use of this value of Cest in eq. 30 would result in many misdeclarations. The slope is best estimated
from the segment of the charge ramp after the radhit. There may be a radhit between samples 2 and 3, and so the
following quantity is used:

C8tLt = Ej(4) — Ef2t(3) (34)

The threshhold from eq. 30 is then recalculated. This approach has the drawback of including data that occurs
after the radiation hit. However, the radiation hit will still be detectable unless the new is comparable to the
charge addition due to the radiation hit itself. LEM is then taken as the maximum of

LE2 Ej(2) —Eft(1) — (Sz (35)

and the value LE3 calculated from eq. 26. The procedure from section 2.2 is then applied with the appropriate flux
estimate to determine whether a radiation hit should be declared.
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2.4. Performance on Simulated data
There are several parameters to be set in the production of simulated data: the number of samples in the integration,
N, the read noise, rn , the charge flux due to photons and dark current, (, whether or not a radiation hit occurred,
and if so, its position, M, and its magnitude LE. Table 1 shows the tested range of values of the parameters. The
parameters were chosen to correspond to typical physical values for the 70 um detector.

For each value of LE, 1024 charge ramps each containing exactly one radhit were prepared. The location of the
radhit was chosen randomly from the range 2 to N. The radhit detector algorithm was performed on the ramps to
obtain a probability and sample number for each one. Probabilities were compared to a threshold in order to declare
a radhit, and a radhit declaration was considered correct only if the sample number was also correct. The radhit
detector was operated with the a priori radhit probability P(y)set to 0.4.

Figure 4 shows the number of correct declarations of the radhit detector vs magnitude when the threshold was
0.99. Reliable radhit detection begins at about 600 electrons. To optimize the threshold, the radhit magnitude was
held constant and the threshold was varied. At each threshold, the number of false alarms (declarations for the
zE = 0 ramps) was tabulated. For each threshold, the number of correct detections was also counted and plotted
against the number of false alarms. Figure 5 shows the resulting plots for two radhit magnitudes, 600 electrons (lower
curve) and 750 electrons (upper curve) . The probability threshold for declaring a radhit is the parameter for each
curve and takes on the values, from left to right, (0.999, 0.995, 0.99, 0.975, 0.95, 0.85, 0.75, 0.65) .The plots show
that a threshold of 0.99 gives the best tradeoff of probability of detection vs probability of false alarm.

2.5. Performance on Real data
A 70 um detector array of 4 x 32 elements was placed in the proton beam of a synchrotron and 45 charge ramps
were measured. The charge ramps were 64 samples long, each sample being about 1/8 second in duration. The
background illumination level was such as to produce a response in the detector of about 2000 electrons per second.
In addition, a second stimulator was flashed every 18 charge ramps for a duration of two charge ramps at a level of
10,000 electrons per second.

Since more than one radhit event can occur in a single charge ramp, the radhit detector was executed multiple
times on each charge ramp. If a radhit was found in a charge ramp, the radhit detector was executed again on each
of the two segments defined by the radhit, and so on. There is no a priori knowledge of whether a given charge ramp
contains a radhit and therefore a direct measure of radhit detector performance cannot be done. Figure 6 shows the
frequency of the number of radhits found per charge ramp. The curve shows that the frequency obeys a power law
as expected, and that the radhit detector can reliably detect multiple radhits up to seven per charge ramp.

940

920

880

500 1000 1500 2000
100 200 300 400 500
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Figure 6. Log frequency plot of the number of radhits found per charge ramp.

3. STIMFLASH CALIBRATION
Each pixel in the MIPS Germanium array has a responsivity that depends on its internal physical characteristics
and the previous impinging flux history. Pixel responsivity also tends to rise with accumulated cosmic ray dose. The
responsitivity change will have many undesirable effects; among them are: (a)the pixel response will appear to be
not proportional to the incident flux, and (b) the image will have artifacts that are NOT related to the objects in
the observation.

To minimize the effects described above, a procedure has been devised whereby at regular intervals, an internal
stimulator is excited to add a constant infra-red signal to the incident signal. These periodic stimfiashes can then be
used to deduce the relative instantaneous responsitivity of each pixel in the MIPS array. The stimfiash calibration
is complete when the resulting relative reponsitivity is applied to calibrate the measurements

3.1. Theory and Assumptions
At a given Data Collection Event (DCE) n, we have a background flux b(ri) impinging on a pixel. If the responsitivity
of the pixel is h(n), then the measured response is

y(n) = h(n)b(n) (36)

If some DCEs dn later a constant stimfiash flux S is turned on to add to the background flux, then the measured
response is

y3(n+ dn) = h(n+ dn)[S+b(n+ dn)] (37)

If we assume that during this short interval dn that the responsitivity is constant at h(n) and the background
flux b(n + dn) is the same as b(n), then

y3(n + dn) — y(n) = h(n)S (38)

Hence the instantaneous responsivity of the pixel is given by

h1n— y(n+dn)—y(n) 39S
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Figure 7. Total incident flux versus time showing Figure 8. History of total incident flux history for
stimfiash every thirteenth DCE. the Aug 19 1999 experiment.

And the background flux can thus be calibrated by

b(n) = y(n)/h(n) =
ys(fl +dfl) y(n) (40)

From the above, it can be seen that the stimfiash measurement subtracted from the background measurement
(stim - background) is the responsitivity calibration factor we can apply to individual pixels to remove the artifacts
caused by internal characteristics of the MIPS array. In equation 3.1, the value of S shall be known in physical units
(e.g., Jy) from comparison to a standard star measurement.

3.2. August 19 1999 Experiments
A three-hour long set of experiments was designed to verify the ability of our stimfiash calibration to properly account
for the responsivity changes in individual pixels. It consists of maintaining a background level for the duration of
160 Data Collection Events( DCE) and changing the background level and repeating the experiments. Each DCE
consisted of 64 samples taken at a sampling interval of approximately second.

A stimulator flash is turned on for every 13th DCE. This is shown in figure 7. In this same figure it can be seen
that the background flux is increased after being held constant for 160 DCEs.

Figure 8 depicts the incident flux history for the duration of the experiment. The solid horizontal lines are the
background fluxes which changes every 160th DCE. The dotted lines are the stimflash-on-background fluxes at every
13th DCE. The background flux change is positive and uniform for the first half of the experiment and negative for
the second half, thus retracing the changes of the first half.

The experiments were conducted on August 19, 1999 at the University of Arizona's Steward Observatory.

3.3. Measurements and Calibrated Results
Figure 10 shows the measured flux history for a pixel at row 20 and column 21. This flux is the slope of the least
squares linear fit to the measured charge ramp. The first 15 samples of the charge ramp were discarded to reduce
intra-DCE nonlinearity; in addition, radhits have been removed and saturated data discarded. It can be observed
that the pixel responsitivity has changed with time such that there is a significant difference in response between the
earlier measurements and the latter measurements for the same incident flux level.

Figure 9 shows the measured stim - background flux that is derived from figure 10. To prevent the significant
noise present in this data from contaminating the calibration process, a least squares quadratic fit is performed and
the fitted curve is shown as a solid line. The coefficients of the fit are then used to interpolate the needed stim -
background data at every DCE. The measured flux is then calibrated according to equation 3.1 discussed earlier.
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Figure 10. Measured flux versus time for Pixel 20-
21

Figure 11. Stimfiash calibrated total flux versus
time for Pixel 20-21.

Figure 12. Stimfiash calibrated total flux versus
time for Pixel 16-16.

Figure 11 shows the calibrated flux history for pixel 20-21. Comparing this with the uncalibrated flux history, it
can be seen that significant portion of the effects of pixel responsitivity change has been removed: namely , for the
same incident flux,the response is almost the same for the long three hour duration of this experiment.

We have applied the same procedure to a large fraction of the pixels in the array. Similar results have been
observed. For demonstration, the results for pixell6-16 are presented in figure 12.

3.4. Discussions and Future Work
Despite the amount of noise in the stimfiash - background data, it can be concluded that the stimflash calibration
approach works reasonably well for our August 19 1999 experiment lasting approximately three hours. It can be
observed in the calibrated data that the long time scale curve fitting adopted here has introduced short time scale
artifacts. Significant improvements and optimizations in the MIPS array have since been made and more data have
been gathered in the new array. Some preliminary results are shown in Figure 14 for pixel 20-21 and Figure 13 for pixel
16-16. Here the stimfiash -background is interpolated between two adjacent stimfiashes to provide the calibration for
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Figure 13. Measured and Calibrated Flux for Pixel Figure 14. Measured and Calibrated Flux for Pixel
16-16 20-21

the background flux between the two stimflashes. The incident flux history is symmetrical in time about the center
of the plot. It can be seen that the calibrated fluxes are much more symmetrical than the uncalibrated fluxes. More
work needs to be done to understand some of the transients seen here and to then implement a more sophisticated
stimfiash calibration approach so that we can achieve a much higher degree of accuracy.
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