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ABSTRACT
The purpose of this paper is to demonstrate the optimality properties of principal component filter-banks for various
noise reduction schemes. Optimization of filter-banks (FB's) for coding gain maximization has been carried out in
the literature, and the optimized solutions have been observed to satisfy the principal component property, which has
independently been studied. Here we show a strong connection between the optimality and the principal component
property; which allows us to optimize FB's for many other objectives. Thus, we consider the noise-reduction scheme
where a noisy signal is analyzed using a FB and the subband signals are processed either using a hard-threshold
operation or a zeroth order Wiener filter. For these situations, we show that a principal component FB is again
optimal in the sense of minimizing the expected mean-square error.

Keywords: Principal Component Filter-Banks, noise-reduction

1. INTRODUCTION
A generic filter-bank based signal processing scheme is shown in Fig. 1 . Suppose we are allowed to choose any filter-
bank (FB) from a class C of uniform orthonormal M-channel FB's. For example, C could be the class of ideal FB's,
or that of FB's having FIR filters with a certain bound on their order. This paper is concerned with the problem
of finding the best FB from the class C for a particular kind of subband processing, for given statistics of the
input. In particular we focus on the situation when the FB input is a noisy signal, and the subband processors are
aimed at removing the noise.

To explain our usage of the term 'best FB', consider the situation where the FB is used for data compression,
and so the processors P in Fig. 1 are quantizers. Under the standard high bit-rate quantization noise models and
assuming optimal bit allocation among the subband quantizers, minimizing the mean-square reconstruction error is
equivalent to minimizing the product of the variances of the subband signals.' Thus, for this situation, the best FB
is the one that minimizes this product of subband variances.

When the class C consists of all M-channel orthogonal transform coders, the optimum FB in C for the above situ-

ation is the KLT.5 It produces subband signals v(n) in Fig. 1 such that the vector process (v, ,4x) . . . , v,)
has a diagonal autocorrelation matrix. When C is the class of all (unconstrained) M-channel orthonormal FB's, the

. . . 3 (x) (x) (x)optimum FB has been obtained in, . It produces a vector process (v0 ,v1 , . . . , v1_,) (see Fig. 1) that has a
diagonal power-spectrum (psd) matrix, with the diagonal elements (i.e. the subband spectra) ordered according to
a condition referred to as spectral majorization.1 In both these cases, the optimum FB turns out to be a principal
component filter bank (PCFB) for the class C. PCFB's were first propounded in,2 and are defined in Section 3.

There is a stronger connection between optimality of the FB and the principal component property. This con-
nection, which we believe is the precise reason for the optimality of PCFB's, does not seem to have been observed
in the literature. The main result is that the PCFB is optimal whenever the objective to be minimized is a concave
function of the subband variances produced by the FB. In the above-mentioned coding problem, the objective was
the product of the subband variances. Minimizing it is equivalent to minimizing its logarithm, which is a concave
function of the subband variances. Thus, the PCFB is optimal. The subsequent sections elaborate on this result,
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Figure 1. Generic FB based signal processing scheme.

and illustrate various other FB based signal processing schemes for which the FB optimization involves minimizing
a concave function of the subband variances. For example, this happens in the noise suppression system where the
FB input x(n) in Fig. 1 is a signal corrupted by zero mean additive white noise, and the processors P are either
zeroth order Wiener filters or hard-thresholders. Thus a PCFB is optimal for all these schemes as well.

2. PROBLEM FORMULATION
We are given a class C of M-channel orthonormal FB's, and a set of M subband processors P , i = 0, 1 , . . . , Al — 1

( numbered arbitrarily). A processor is simply a well-defined function that maps input sequences to output sequences.
The specification of this function might be independent of any statistical properties that the input sequences are
assumed to have; or on the other hand it might not. Examples of the former kind of processors are fixed LTJ systems
and memoryless squaring devices. Examples of the latter kind are Wiener filters and pdf-optimized quantizers. The
signal processing system consists of a FB from C and the processors P used in its subbands as shown in Fig. 1.

For this system, we define the subband variance vector as v = (4 o, . . . , a_i)T whose i-th entry is the
variance of the subband signal input to the processor P, for i = 0, 1, . . . , M — 1. It can be computed for each FB
given the psd matrix of the M-fold blocked version of the scalar process x(ri) input to the FB. The optimization
search space is defined as the set S consisting of all subband variance vectors associated with all FB's in the given
class C. We do not assume any constraint as to which processor P2 to use in which subband of the FB. The set
S is therefore 'permutation-symmetric': If v is in S then all vectors obtained from v by permuting its entries are
also in S. The problem at hand is to find the FB from C that minimizes an objective function that is well-defined
on the class C. The assumption we make on this objective is that it can be fully evaluated at each FB in C given
the variances of the subband signals that the FB produces, and the information as to which variance enters which
processor P. Thus the objective can be represented by a real-valued function g defined on the search space S. This
happens for a number of FB based signal processing schemes, as will be seen later.
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Figure 2. Concave functions on different domains.

Notice that the objective need not be symmetric in its arguments, i.e. g could have different values at two
different vectors in S which are permutations of each other. This usually happens because the subband processors
Pi are not identical. To find the best FB, we find the vector v0 S that minimizes g over S. The optimum FB
is then identified as any FB in C whose subband variances are the entries in v0 , provided the subbands of this FB
are coupled to the subband processors in the order corresponding to v0.

3. PCFB'S AND THEIR OPTIMALITY
3.1. Definitions and statement of result
Majorization : Given two sets A, B each having M real numbers (not necessarily distinct) , A is defined to majorize
B if the elements a e A and b2 B arranged in descending order ao � a1 . . . aAi_ i , and b0 � b1 � . . . �
obey the property that

a > b for all P = 0, 1 , . . . , M — 1, with equality holding when P = M — 1 . (1)

We say that a vector a majorizes another vector b if the set of entries of a majorizes that of b.

PCFB's : Let us be given a class C of uniform orthonormal M-channel FB's, and the power-spectrum of the input
to the FB. A PCFB for the class C is defined to be a FB in C whose set of subband variances majorizes the setof
subband variances of any FB in C. Alternatively, a PCFB may be defined as a FB that minimizes (over all FB's in C)
the mean-square error caused by dropping the P weakest (lowest variance) subbands, for any P =0, 1 , . . . , Al. The
equivalence of these two definitions is due to the fact that dropping subbands results in a mean-square reconstruction
error that is the sum of the variances of the dropped subband signals (upto a constant scale-factor of ) . The PCFB
and its existence depends on both the class C and the input spectrum.

Main result on PCFB optimality. Let C be a perfectly arbitrary class of uniform M-channel orthonormal FB's,
such that a PCFB exists for this class. Then the search space S has the property that its convex hull co(S) is a
polytope (defined in Section 3.2 below). All the corners of this polytope are permutations of each other, and are
elements of S that correspond to the PCFB. The objective g to be minimized is a real-valued function on S. If it
has an extension to co(S) on which it is concave, then at least one of the corners of the polytope is a minimum of
g. Thus, the PCFB is always optimal. Further if g is strictly concave, then its minimum is necessarily at some
corner of the polytope, i.e. the optimum FB is necessarily a PCFB.

3.2. Discussion of the result
Recall that a function f : D —* 1Z is defined to be concave if given any x, y ED and t [0, 1],

f(jx + (1 - i)y) � f(x) + (1 - L)f(y) (2)

Graphically, this means that the function is always above its chord, as is seen from the examples in Fig. 2. Here the
domain D of f is some subset of 7M, however the definition makes sense only if D is a convex set. D is defined
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Figure 4. Optimality of corners of polytopes.

to be convex if any convex combination of any finite set of elements from D is also in D. A convex combination of
the vectors x, i = 1, 2 N is a vector of the form cx for some a E [0, 1] that satisfy a = 1. The
convex hull of a set E is defined as the set of all possible convex combinations using vectors from E, and is denoted
by co(E). A convex polytope is defined as the convex hull of a finite set of points. Given such a polytope co(E). we
can assume that no element of E is a convex combination of other elements of E. This is because any such element
can be deleted from E without changing co(E). Under this condition, the elements of the finite set E are called
corners of the polytope. The reason for these names is clear from examples of polytopes embedded in 1 , 2 or 3 -
dimensional space as shown in Fig. 3.

Now if the function f : D —+R is concave and D is a polytope, then at least one of the corners of D is a minimum
of f over D. This fact is illustrated in Fig. 4, which makes it intuitively clear. Indeed it is a standard result in convex
function theory, provable directly from the definitions of polytopes and concave functions.

In our problem, f =g, the objective function; and D = co(S) where S is the optimization search-space (defined
in Section 2). Further, if a PCFB exists then it can be shown that co(S) is a polytope whose corners correspond to
the PCFB. This proves the main result on PCFB optimality (Section 3.1). The crucial fact that co(S) is a polytope
when a PCFB exists, follows from the geometrical meaning of majorization.'° It is proved in detail in.12 The
proof essentially is in two steps, each using a theorem from'0 : (1) If a, b are two vectors such that a majorizes b,
then b = Qa for some doubly stochastic matrix Q (i.e. a matrix with non-negative entries such that the sum of all
entries in any row or column is unity) . (2) Any doubly stochastic matrix can be written as a convex combination
of permutation matrices. Thus, b is a convex combination of permutations of a, and hence lies inside the polytope
with the permutations of a as corners.

4. PROBLEMS WITH CONCAVE OBJECTIVES
This section shows a number of filter-bank based signal processing schemes for which the FB optimization objective
is a concave function of the subband variances of the FB. Thus, from Section 3, if a PCFB exists then it is optimal
for all these schemes.
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4.1. General features and structure of the problems
Consider the generic FB based signal processing scheme shown in Fig. 1 . We denote by v(n) the i-th subband
signal generated by feeding the signal s(ri) as input to the FB, for i = 0, 1, . . . , M — 1 (where the subbands are
numbered according to the subband processors they are associated with) .The system of Fig. 1 is aimed at producing
a certain desired signal d(n) at the FB output. It is deemed to be optimized if the actual FB output y(n) is 'as close
to' d(n) as possible, i.e. some measure of the error signal e(n) =d(n)— y(n) is minimized. To formulate this measure,
we assume that the signals x(n) and d(n) are jointly CWSS(M) (wide sense cyclostationary with period M). Often
the subband processors P are such that the error e(n) is also a CWSS(M) process — this happens whenever the P
are LTI systems for instance. The error measure is then the variance of the process e(n) averaged over the period of
cyclostationarity M. If the FB is orthonormal, this measure takes the form

M -1

E{V)2], where (3)

v(n) = v(n) v(n), for i = 0, 1, . . . , M — 1 (4)

Thus (d) serves as the desired response that the processor P must try to approximate at its output as best as
possible in the sense of minimizing E[Ivf 2].

Let the variance of v(n) be denoted by o. The subband variance vector (defined in Section 2) is thus
V = (cr , o, . . . , Cr1)T many situations, the processors P are such that

E[Iv)(n)I2] h(a) (5)

where h is some function that depends on the kind of processor P, and is independent of the FB. Thus, for such
processors Pi, (3) and (5) show that the FB optimization objective g takes the form

M-1
g(v) = : h() (6)

If the h are concave on [0, oo) then g is concave on co(S) where S is the search space (defined in Section 2). Thus,
from Section 3, PCFB's are optimal whenever the h are concave on [0, oc) . We may note that often all the h are
identical functions, the typical reason being that the processors P are identical. In this case g is symmetric in its
arguments, i.e. it is not changed by permutations of the o. Hence the subbands of optimum FB can be coupled to
the subband processors in an arbitrary fashion. If the h2 are not identical, g loses this symmetry property, and then
the coupling has to be done in a definite way to ensure optimality. In the high bit-rate coding problem with optimal
bit allocation,' h2(x) = log(x). At low bit-rates, let the i-th quantizer have a normalized quantizer function f1.
Under the assumption that f is independent of the FB (thus ruling out pdf-optimized quantizers), h2(x) = f? (b)x
where b2 is the number of bits alloted to the i-th subband.6 Since all these h2 are concave (on [0, oc)), this gives a
direct proof of the results of."6

4.2. Denoising/Wiener filtering for white noise
Here the FB input in Fig. 1 is x(n) = s(ri) + p(n) where s(n) is a pure signal and ,a(n) is zero mean white noise. We
assume that (n) is uncorrelated to s(n), and has a fixed known variance j2 > o. The overall desired output signal
. . (x) . . (s) .
is d(n) = s(n). The i-th subband process v2 (n) contains a signal component v2 (n) and a zero mean additive
noise component v (n). Orthonormality of the FB ensures that the subband noise components are also white with
variance and are uncorrelated to the signal components.

4.2.1. Subband processors as constant multipliers
Suppose each processor P2 is a fixed multiplier of value k2 (memoryless LTI system). Then

v(n) = v(n) — v(n) = (1 — k)v(n) — kv(n) (7)
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Figure 5. Subband error functions.

Thus, since v"(n) is zero mean and uncorrelated to

E[Iv(n)I2] - kjI2a + k2ij2 (8)

where o is the i-th subband variance corresponding to the signal s(n), i.e. a =E[Iv(n)2]. Comparison with (5)
identifies the h in (5,6) as

h(x) = 1 — kl2x+ kI2i2 (9)

which is linear in x, and is hence concave. Notice that while in (5) ,o was the variance of the subband signal v (ri)
corresponding to the FB input x(n) , here it is the variance of v(n) v(n) _ v(n). This distinction is not
very serious here: It says that the optimal FB is a PCFB for the signal s(n) (as opposed to the FB input x(n)).
However in the present problem, because the noise is white, and E{jv(n)2J j2 E{tv(n)I2] j2, we find that
PCFB's for s(n) are also PCFB's for x(n) and vice verca. The situation when the noise is colored is more involved12:
In certain cases it is possible to show optimality of a simultaneous PCFB for signal and noise (if it exists). This is
discussed in detail in Section 6.

4.2.2. Using multipliers matched to input statistics.
If the processor P is a zeroth order Wiener filter, then it is a multiplier given by

k =
a2±2 (10)

where is the variance of v8)(n). On the other hand, if P2 is a hard-threshold operator, it keeps or kills the subband
depending on whether the variance of the subband signal component is greater than or less than the variance of the
noise component. In this case, it is a multiplier given by

k=I 1 if�2
(11)i

t. 0 otherwise

These schemes can be implemented in practice by estimating o from the subband process v (n), which is possible
since 2 known. Substituting these k in (8) and comparing with (5) shows that we have a new set of h, i.e.

h (x) = I ;r if P = 0th order Wiener filter
2

min(x, 2) if P = hard thresholder

These functions are plotted in Fig. 5, and are concave on [0, oc). Thus the PCFB is optimal for any mixture of zeroth
order Wiener filters and hard thresholders in the subbands.

Notice that in Fig. 5, the Wiener filter curve lies fully below the hard threshold curve, i.e. the Wiener filter
yields a lower mean-square error. This is expected since it is by definition the optimum choice of multiplier k in this
sense. Use of hard thresholds is motivated by other considerations,7'8 for example to effect a bias—variance tradeoff.
Indeed, (7) shows that when s(n) has nonzero mean and k E [0, 1], the estimation bias decreases if k increases. The
Wiener filter always produces bias, while the hard thresholder produces zero bias whenever it results in k = 1.
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Figure 6. Corners and boundaries of compact convex sets.

5. WHAT IF THERE IS NO PCFB?
As seen earlier, existence of a PCFB implies that the set S of realizable subband variance vectors (the optimization
search space) has a special structure: Its convex hull co(S) is a polytope. By definition this means that co(S) =co(E)
where E is a finite set. Assuming that E is chosen to have as few elements as possible, the vectors in E are known as
corners of the polytope. When a PCFB exists, in fact these corners are permutations of each other, and correspond
to the PCFB. So the PCFB is always optimal whenever the minimization objective is concave over the polytope
co(S), as illustrated in Fig. 4.

Thus whenever co(S) is a polytope, the optimization can be reduced to a search over the finite set of FB's that
correspond to the corners of the polytope. When a PCFB exists, this set has exactly one element, namely the PCFB.
If there is no PCFB, one could hope that if co(S) is indeed still a polytope, then it would not be very difficult to
identify this finite set of FB's that corresponds to its corners (and thereby solve the optimization problem). However,
a polytope is a fairly structured object. Given an input power spectrum and a class C of FB's, say the class of FIR
FB's with a given bound on the filter orders, there is no apriori reason to believe that the corresponding set co(S)
is a polytope. In general, co(S) would thus be a bounded convex set that is not necessarily a polytope. We shall
assume that co(S) is closed (or compact), which will be true for most 'natural' classes C of FB's. We will next
observe that corners can be defined for arbitrary convex sets (not necessarily polytopes) ,and note that they have
optimality properties similar to those discussed above.

5.1. Arbitrary convex sets: corners and their optimality
Definition.'0 Let B be a convex subset of 'jIM A point z B is said to be an extreme point, or a corner of Bif

z=ax+(1—Q)y with aE(O,1),x,yEB
implies x = y (= z).

Geometrically, we cannot draw a line-segment that contains z in its interior (i.e. not as an endpoint) and yet lies
wholly within the set B. The interior of B cannot have any corners, because around each point in the interior we can
draw a ball that lies wholly in B. So all the corners lie on the boundary (which is the set of points of B thatare not
in the interior). However, not all boundary points are necessarily corners. If B is a polytope, the above definition
can be verified to coincide with the earlier definition of corners of a polytope. These points are illustrated in Fig. 6,
which shows the corners of some closed and bounded (or compact) convex sets.

It can be shown without much effort, that every compact convex set is the convex hull of its boundary, and that
it has at least one corner. The proof of the following result however is less obvious:
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Figure 7. Optimality of corners of compact convex sets.

Krein-Milman theorem / Internal representation of convex sets10'11: Every compact convex set is the
convex hull of its corners.

This result is evidently true for polytopes, and can be verified to be true in the examples shown in Fig. 6. The
result is thus intuitively clear (although its formal proof might not be obvious). Its importance lies in the fact that
it can be used to immediately prove:

Optimality of corners: Given any function g that is concave on a compact convex set D, at least one of the corners
of D is a minimum of g. Further if g is strictly concave then its minimum is necessarily at a corner of the set.

For the special case when the compact convex set is a polytope, this result was discussed earlier and is illustrated
in Fig. 4. Fig. 7 illustrates the result for a compact convex set that is not a polytope. In Fig. 7, all corners are
'equally good', i.e. all are minima, but this of course need not be true in general.

Proof of optimality of corners: Let v0 be the minimum of g over D. (Its existence is either assumed or follows
if g is assumed to be continuous.) By the Krein-Milman theorem, v0 is a convex combination of some set of corners
of D, i.e.

vO) where e [0, 1] , = 1 (12)

for some distinct corners z3 of D. Now at least one of the z has to be a minimum of g over D. If not, then
g(zj) > g(vopt) for all j = 1, 2, . . . , J, and hence

g(vopt) g(jzj) � jg(zj) > jg(vopt) g(vopt), (13)

i.e. g(vopt) > g(vopt) which is a contradiction. Hence at least one corner of D is a minimum of g over D. The first
inequality above is the Jensen's inequality for concave functions. g is strictly concave, then this inequality is strict
unless one of the /3 is unity. Hence in this case v0 equals the corresponding z3 , i.e. the minimum is necessarily at
a corner of D.

vvv
In our FB optimization problem, D = co(S) where S is the search space. Let E be the set of corners of D, so

E c S and co(S) = co(E). From the above result, the optimization over co(S) can be reduced to one over E. Thus
the analytical tractability of the problems considered earlier can be traced to the fact that co(S) is a polytope, i.e.
that E is finite. In general, 'almost every' corner in E is associated with a concave (in fact linear) objective for which
the corner is the unique minimum.* Thus, if a PCFB does not exist, or more precisely if E is not finite, it is not

*This can be proved using the concept of 'exposed points' or 'tangent hyperplanes' to convex sets."

f(x, on D)
y

xDomain D =
unit disk in 2

unit circle = corners of D
= minima of f
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possible to make a general statement about the optimality of any single FB for a large class of objectives. It might be
possible to avoid a suboptimum numerical search for a specific objective. However the analytical solution will have
to exploit the specific structures of both the objective function and the set co(S) . Thus we see that in absence of a
PCFB, the problem of finding the optimum FB for a given concave objective usually becomes analytically intractable.
So in such cases, a numerical procedure (that in general gives a suboptimum solution) such as a gradient-descent
based algorithm is usually needed. It is enough to search for the minima over the set E (as opposed to S or co(S));
however it is not known to the authors at this time whether there are numerical search procedures that can exploit
this fact.

5.2. The "sequence of compaction-filters" algorithm
This is an algorithm that has sometimes been proposed1'4 to find a 'good' FB in classes C that need not necessarily
have PCFB's. It involves a sequential maximization of subband variances. To be explicit, it is carried out by
rearranging the elements of each vector in the optimization search space S in decreasing order, and then picking the
'greatest' of these vectors in the 'dictionary ordering' on R.M. This vector can thus be shown to be a corner of co(S).

When the class C has a PCFB, all corners of co(S) correspond to the PCFB. Hence the algorithm always produces
the PCFB, and is thus optimal for many problems as shown by the earlier sections. On the other hand, if a PCFB does
not exist, then there will be at least two corners that are not equivalent, i.e. whose coordinates are not permutations
of each other. The sequential algorithm produces one corner, but the minima of the concave objective could easily
be at other non-equivalent corners. Thus the algorithm could be suboptimum.

To illustrate this point, consider the following hypothetical example with M = 3 channels: Let co(S) = co(E)
where the set E consists of vectors v1 = (3,2, i)T, v2 = (2.9, 2.2, 0.9)T and their permutations. Since E is finite,
co(S) is a polytope whose corners lie in E. Since neither of v1 ,v2 majorizes the other, in fact all elements of E are
corners of co(S) . A PCFB does not exist because v1 ,v2 are not permutations of each other. Now consider the high
bit-rate coding problem of.1 Here the objective to be minimized over S is r(v), the product of the coordinates of
V E S. (As noted earlier, this is equivalent to minimizing an objective that is concave on co(S).) Since ir(vi) =6 and
ir(v2) = 5.742, v2 is the minimum. However, the sequential algorithm produces va Vi , and is thus suboptimum.

More generally, let P co(S) be the polytope whose corners are permutations of the vector va produced by
the sequential algorithm. Then P = co(S) if a PCFB exists. Now consider the function 1(v) = —d(v, P), where
d(v, P) = min{Iv — xli : x E P} is the minimum distance from v to P using any valid norm . on . It can be
shown that f is a well-defined continuous concave function on . From the definition it is clear that (1 ) f has a
constant value (zero) on P, and (2) if a PCFB does not exist, then P is actually the set of maxima of f over co(S).
Since the sequential algorithm produces subband variance vector E P, it leads to the worst possible choice of
FB's for an infinite family of such concave objectives f.

6. COLORED NOISE SUPPRESSION
In the denoising problems of Section 4.2, the noise i(n) at the FB input was white with variance ij2. Hence the
subbands of any orthonormal FB would have noise components that are white with variance i2. Jf the input noise is
colored, the variances of the subband noise components now depend on choice of FB. Thus all equations of Section 4.2
will have to be modified by replacing the fixed noise variance ij2 y the specific subband noise variance i . The
objective function thus depends on two subband variance vectors v and v, , respectively corresponding to signal
and noise. In fact the objective has the form

Al—i

f(v,v,) =: f(o,ri2), where (14)

I Ii — kj2x + 1kI2 y for constant multiplier k in i-th subband
f(x, y) = ; for O-th order Wiener filter in i-th subband (15)

min(x, y) for hard thresholder in i-th subband

Thus the optimization search space here is S, the set of all realizable pairs (va, v,). We denote by 5c and

respectively the set of realizable signal and noise subband variance vectors. The above functions f, can be verified
to be concave over the non-negative quadrant of 2• So the objective f is concave over T co(S) x co(S,) DS.
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When the noise is white, S has exactly one element, and a PCFB for the signal is optimum. Notice that this
PCFB is also a common PCFB for both the signal s(n) and the noise pin), since any FB is a PCFB for a white
input. Such a common PCFB (if it exists) has certain optimality properties even if neither the signal nor the noise
is white. We now state and outline proofs of these properties.

6.1. Statement of results
Result :t. If the power spectrum (psd) matrices of the M-fold blocked versions of the signal and noise are scaled

versions of each other, then for any class C, a common signal and noise PCFB (if it exists) is always optimal.

Result 2. If C is the class of all M-channel orthogonal transform coders, a common signal and noise PCFB is
always optimal no matter what the psd matrices corresponding to s(n) and ,u(n) are (provided of course they are
such that a common PCFB exists). Notice that in this case, the common PCFB is also a PCFB for the signal
x(n) = s(n) + (n). This is not true in general, for example for the class of all (unconstrained) M-channel FB's.

Result 3. If C is the class of all M-channel orthonormal FB's (unconstrained), there are large classes of psd
matrices of s(n) and ji(n) for which a common signal and noise PCFB exists but is still not optimal for many
concave objectives.

Result 4. As Result 3 shows, for arbitrary class C and input psd matrices, a common signal and noise PCFB is
not necessarily optimal for all concave objectives. However, it is still always optimal for a certain nontrivial subset
of these objectives. There is a simple finite procedure that decides whether or not a given concave objective falls in
this subset.

6.2. Proofs of results
Result 1 is true because under the condition it imposes, the signal and noise subband variance vectors for any FB are
obtainable from each other by a constant scaling. Thus, the objective can be rewritten so that it depends on only
one of these subband variance vectors, and we can use the earlier results on PCFB optimality. Notice that in this
case, a PCFB for the signal is also a PCFB for the noise and vice-verca. To prove the remaining results, we assume
at the outset that a separate PCFB exists for both the signal s(n) and the noise ,u(n) (since this is a condition in all
these results). As stated in Section 3.1, this implies co(Sa) co(E) where E CS is a finite set of vectors all of
which correspond to the signal PCFB (and are hence permutations of each other). Similarly co(S,) =co(E,) where
E, c is a finite set corresponding to the noise PCFB. Thus T =co(E) x co(E,) = co(Ea X E,). So it can be
seen that T is a polytope whose set of corners is the (finite) Cartesian product Ea X E. Thus, S Cco(S) C T,
where T is a polytope.

All corners of co(S) lie in S, and at least one of them is the optimum. So we try to examine the nature of
the corners of co(S). The first observation is that any corner of the polytope T that lies in S is also a corner of
co(S). To establish results 2,3,4 of Section 6.1, we now assume that a common signal and noise PCFB exists. Now
any vector in S that corresponds to such a PCFB is a corner of T. Conversely, any corner of T that lies in S
corresponds to such a PCFB. Let E cE x E denote the set of all corners of T that lie in S. The points in E are
hence corners of co(S), but it is however not clear whether or not co(S) has other corners. In the extreme situation
when E = E x E,, then in fact co(S) = T and it does not have other corners. Since all its corners correspond
to a common signal and noise PCFB, such a PCFB would always be optimal. However, E =Ea X S usually
possible only in contrived cases, or with a degeneracy such as white noise.

Proof of Result 2
If C is the class of M-channel orthogonal transform coders, the common signal and noise PCFB is the common

KLT, which is unique. So all vectors in E,, are corners of co(S) that correspond to the common KLT, and it turns
out that co(S) has no other corners. Thus, co(S,) = co(E) is a polytope with set of corners E, and at least one
of these corners minimizes the objective. So a common signal and noise PCFB (KLT) is always optimal. The crucial
fact that co(S) = co(E) is true no matter what the signal and noise spectra are (assuming of course that they are
such that a common KLT exists). It is shown in detail in,12 and thus completes the proof.

Proof of Result 3
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Figure 8. Suboptimality of signal and noise PCFB.

When C is the class of all M-channel orthonormal FB's (unconstrained) then the property co(S) = co(E) still
holds in certain restricted situations, for example when the signal and noise psd matrices are both constant. (In this
case the PCFB's are the corresponding KLT's.) However, it does not hold for all signal and noise psd matrices. If
it does not hold, it implies that co(S) has other corners besides the points in E. There would then be concave
objectives for which one of these other corners (which clearly does not correspond to a common signal and noise
PCFB) is optimal. This is illustrated by the example of Fig. 8. Here the filter-bank FB-II is not a PCFB for either
the signal or the noise. However it is better than FB-I, the common signal and noise PCFB for C, for the denoising
problem using either hard-thresholding or zeroth order Wiener filtering in both subbands. This can be verified by
substituting the corresponding signal and noise subband variance vectors from Fig. 8 into the objectives for these
problems. Note that many more such examples can be created, for instance by applying small perturbations on the
spectra in Fig. 8. This proves Result 3 of Section 6.1. Fig. 9 shows the various geometries of S as a subset of
T arising out of the situations discussed thus far. (The figure is only illustrative, since T actually lies in an even
dimensional space and not in 7Z.)

Proof of Result 4
We know from Theorem 1 that at least one of the finitely many corners of T is a minimum of the objective over

T. Such corners, though easy to find, may not lie in S,, and are hence not useful in general since we are seeking for
minima over S (or co(S)). However, there are always concave objectives with the property that their minimum
over T is a corner of T that actually lies in S . This corner would hence be the minimum of such an objective over
sv C T too. Thus for the subset of concave objectives having this property, a common PCFB is optimal. (F is
however not the complete set of concave objectives for which a common signal and noise PCFB is optimal. )Recall
that the (finite) set E x E, of corners of T is fully specified given the signal and noise subband variance vectors
generated by the common signal and noise PCFB. Thus we have a simple finite procedure to identify whether or not
a given concave objective is in the subset .F: We evaluate the objective at each corner of T, and find whether or not
the minimum over these corners (which is the minimum over T) lies in S,. This establishes Result 4 of Section 6.1.

7. CONCLUDING REMARKS
We have pointed out a basic connection between FB optimization and the principal component property. We have
shown that PCFB's are optimal for various signal processing schemes such as subband denoising using zeroth order
Wiener filters and hard thresholders. We have discussed these optimization problems in situations where a PCFB
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T co(S) x co(S) = co(E x E)
= co(S), o = corner of T = element of x

E c E, x E is the set of corners of T that lie in S
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separate but not common
signal and noise PCFB's exist.

E empty

C = transform coder class.
co(S) has no other corners,

i.e. co(S) = co(E)

Figure 9. Geometry of the search-space.

does not exist. We have also considered the case of colored noise suppression, where PCFB optimality is somewhat
more restricted. Certain extensions to biorthogonal and nonuniform FB's, can be found in.12
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