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Supplementary Fig. 1. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as
measured by (a) VM and (b) SPIN-VM for subject S1. To obtain consistent principal components (PCs) across both VM and
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent
semantic maps across many high-level visual and frontal areas.
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Supplementary Fig. 2. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as
measured by (a) VM and (b) SPIN-VM for subject S2. To obtain consistent principal components (PCs) across both VM and
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent
semantic maps across many high-level visual and frontal areas.
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Supplementary Fig. 3. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as
measured by (a) VM and (b) SPIN-VM for subject S3. To obtain consistent principal components (PCs) across both VM and
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent
semantic maps across many high-level visual and frontal areas.
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Supplementary Fig. 4. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as
measured by (a) VM and (b) SPIN-VM for subject S4. To obtain consistent principal components (PCs) across both VM and
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent
semantic maps across many high-level visual and frontal areas.
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Supplementary Fig. 5. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as
measured by (a) VM and (b) SPIN-VM for subject S5. To obtain consistent principal components (PCs) across both VM and
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent
semantic maps across many high-level visual and frontal areas.
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Supplementary Fig. 6. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual
representation as measured by (a) VM and (b) SPIN-VM for subject S1. To obtain consistent principal components (PCs)
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied.
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM,
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM.
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.
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Supplementary Fig. 7. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual
representation as measured by (a) VM and (b) SPIN-VM for subject S2. To obtain consistent principal components (PCs)
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied.
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM,
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM.
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.
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Supplementary Fig. 8. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual
representation as measured by (a) VM and (b) SPIN-VM for subject S3. To obtain consistent principal components (PCs)
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied.
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM,
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM.
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.
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Supplementary Fig. 9. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual
representation as measured by (a) VM and (b) SPIN-VM for subject S4. To obtain consistent principal components (PCs)
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied.
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM,
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM.
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.
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Supplementary Fig. 10. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual
representation as measured by (a) VM and (b) SPIN-VM for subject S5. To obtain consistent principal components (PCs)
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied.
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM,
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM.
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.

12



Spatial-3 vs. Functional-9

10

Improvement in Prediction Scores (%)

-2 1 1 1 1 1 1 1 1 1 1 1 1

RET Vv4 V7 FFA EBA MT LOC PPA RSC TOS IPS FEF

Supplementary Fig. 11. Improvement in prediction scores (Spatial-3 vs. Functional-9). Improvement in prediction scores
for the category model with the optimal variant of regular SPIN-VM (Spatial-3; spatial with a window size of 3x3x3) versus
the optimal variant of SPIN-VM based on functional correlations (Functional-9; functional with a “window size” of 9x9x9).
Positive values indicate higher performance for Spatial-3 compared to Functional-9. Spatial-3 performs better in the majority
of the functional ROIs.
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Supplementary Fig. 12. Improvement in prediction scores (Spatial-3 vs. SpatialFunctional-3). Improvement in
prediction scores for the category model with the optimal variant of regular SPIN-VM (Spatial-3; spatial with a window size
of 3x3x3) versus the optimal variant of SPIN-VM based on the combination of functional correlations and spatial
neighborhood (SpatialFunctional-3; spatial + functional with a “window size” of 3x3x3). Spatial-3 performs better in the
majority of the ROIs, particularly in the high-level visual areas where the category model works best. Note that the difference
is relatively small as weights based on functional correlations closely resemble those based on spatial proximity.

14



()\nei)

b
Anterior

Superior

Supplementary Fig. 13. Cortical distribution of
regularization parameters. Cortical flatmap of optimal
regularization parameters across spatial neighborhoods of
voxels (Mei) displayed in subject S1 for the category
model. Optimal Anei values were determined separately for
each voxel during model fitting. Color bar shows the range
of Anei [23-214] in logarithmic scale (pink = low, yellow =
high). As expected, we find that optimal Anei values are
relatively higher in both low-level retinotopic and high-
level category selective visual areas that are more engaged
during viewing of natural movies than non-visual areas in
frontotemporal, motor, and somatosensory cortices. These
high Aaei values likely compensate for the relatively lower
Ateat Values in SPIN-VM compared to VM.
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12 SPIN-VM functional 9 vs. 15
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Supplementary Fig. 14. Improvement in prediction scores (Functional-9 vs. Functional-15). Improvement in prediction
scores for the category model with the optimal variant of SPIN-VM based on functional correlations (Functional-9; functional
with a “window size” of 9x9x9) versus SPIN-VM based on functional correlations with a window size of 15 (Functional-15;
functional with a “window size” of 15x15x15). Functional-9 performs better in the majority of the ROIs, particularly in the
high-level visual areas where the category model works best.
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Supplementary Fig. 15. Functional selectivity in a single voxel. Functional selectivity for object and action categories as
measured by the category model for a single voxel (voxel #13137) in posterior superior temporal sulcus (pSTS) of subject
S1. Functional selectivity obtained by smooth-VM (left) and SPIN-VM (right) is shown. Each node in these graphs represents
a distinct object or action organized according to the hierarchical relations in the WordNet lexicon. Some important nodes are
labeled to orient the reader. Red nodes correspond to categories that evoke above-mean responses, whereas blue nodes
correspond to categories that evoke below-mean responses. The size of each node reflects the magnitude of the category
response. The response of voxel #13137 is well-predicted by SPIN-VM (r = 0.61), and only poorly-predicted by smooth-VM
(r = 0.02). pSTS has been implicated in the representation of facial identity and visually-observed social interaction
(Srinivasan et al., 2016; Walbrin et al., 2018). While the model obtained via smooth-VM largely fails to capture these
representations, SPIN-VM successfully captures selectivity for categories related to individuals such as ‘person’ and ‘man’,

as well as categories related to social communication such as ‘talk’ and ‘text’.
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Supplementary Fig. 16. Prediction scores with VM using PCA vs. L1-norm. Prediction scores for the category model
across functional ROIs via VM based on two distinct regularization methods. The first method first performed PCA on
stimulus features for dimensionality reduction, and then used ridge regularization based on L2-norm. The second method
only used L1-norm based regularization on the original stimulus features. Color bars show mean prediction scores across five
subjects and error bars indicate standard error of the mean (SEM). The conjunction of PCA with L2-norm based regularization
yields significantly higher prediction scores than the L1-norm based regularization in all ROIs (p < 0.05).
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Supplementary Fig. 17. Improvement in prediction scores on smoothed test data. Improvement in prediction scores
when model performance was evaluated on smoothed versus raw test data. Results are shown for the category model as
measured by VM, smooth-VM, and SPIN-VM. Colored bars show mean prediction score improvements across five subjects
and error bars indicate standard error of the mean (SEM). Prediction scores are significantly greater in all twelve ROIs for all
three methods when smoothed test data is used (p < 0.05). Naturally, smooth-VM benefits relatively more from smoothing
of test data.
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Supplementary Fig. 18. Prediction scores with SPIN-VM vs. smooth-VM on smoothed validation and data. Mean
prediction scores for the category model with SPIN-VM versus smooth-VM when both test and validation data are smoothed.
Colored bars show mean prediction scores across five subjects and error bars indicate standard error of the mean (SEM).
SPIN-VM and smooth-VM demonstrate almost identical performance on smoothed validation and test data, even though
SPIN-VM is trained on unsmoothed data.
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Supplementary Tables

3X3X3 5X5X5 TXTXT 9X9X9 11X11X11 13X13X13 15X15X15
Whole A795+£.0279°  .1785+.0275  .1774+.0274 1764+ .0272 1758 £.0270 .1752+.0269 .1746 +.0267
cortex
RET 2826 +.0170  .2836+.0170  .2837+.0171 .2830+.0168 .2825+.0165 .2812+.0156 .2805+.0156
V4 3288 +.0180  .3301+£.0176  .3291+.0175 .3277+.0171 .3267+.0169 .3252+.0165 .3243+.0164
V7 5309 £.0388"  .5270+.0391 .5225+.0396 .5176+.0392 .5151+.0388 .5129+.0381 .5102 +.0384
FFA 7227 +£.0301° 72194+ .0307 .7205+.0308 .7185+.0310 .7177+.0310 .7171+.0315 .7163+.0310
EBA 7420 +£.0171° 74124+ .0172 7398 +.0175 .7383+.0177 .7373+.0181 .7363+.0181 .7356+.0186
MT 7263 £.0137° 7246+ .0141 7228 +.0145 .7205+.0151 .7186+.0152 .7173+.0156 .7158 +.0159
LOC .6599 +£.0415° 6587 +.0403  .6556+.0407 .6528 +£.0407 .6516+.0408 .6513+.0403 .6497 +.0405
PPA 4839 +£.0458" 4815+ .0463  .4772+.0464 4736+.0455 4713+.0450 4704+ .0445 4681 +.0439
RSC 4732 +.0589" 4707 +£.0596 4684 £.0596 4667 +.0587 .4664 +.0586 .4666 +.0594 4657 +.0584
TOS 5127 +£.0451 5136 +£.0445  .5111+£.0441  .5098 +£.0435  .5080+.0437 .5082+.0432 .5067 +.0435
IPS 3567 £.0355° 3547 +.0361  .3517+.0363 3492+ .0364 .3470+.0362 3458 +£.0359  .3440+.0360
FEF 2283 +£.0408° 2260+ .0411 .2225+.0407 .2195+.0406 .2171+.0400 .2161+.0400 .2143+.0395

Supplementary Table 1: Prediction scores for the category model estimated with SPIN-VM in functional ROIs. The
prediction scores are reported as mean = SEM across five subjects. Results are given for seven different window sizes. The
highest prediction score in each row is annotated in bold font. If the highest prediction score in a row is significantly greater
than all the other prediction scores in the same row, it is also marked with a * (p < 0.05, Bootstrap test).
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3X3X3 5X5XS5S TXTXT 9X9X9 11X11X11 13X13X13 15X15X15

Whole 22080 £.0097° .2071 +£.0097 .2063 £.0098 .2055+.0098 .2051+.0095 .2048+.0100 .2040 +.0096
cortex
RET .6521 +£.0285" 6504 +.0284 .6495+.0284 .6487 +.0282 .6477+.0282 .6463 +.0281 .6458 +.0283
V4 .6240 +£.0197°  .6226+.0198 .6217+.0198 .6202+.0198 .6191+.0194 .6175+.0195 .6163+.0196
V7 .6663 +£.0203"  .6643 +£.0204 .6623 £.0206 .6609 +.0203  .6598 £.0205 .6597 +.0203 .6583 +£.0203
FFA 6528 £.0354°  .6496 +.0361  .6454+.0363 .6425+.0367 .6424+.0361 .6416+.0362 .6393 +.0363
EBA .6899 +£.0231° 6886 +.0227 .6873+.0232 .6862+.0232 .6847+.0233 .6836+.0228 .6827+.0235
MT .6941 +£.0140° 6932+ .0135 .6915+.0137 .6901 +.0137 .6889+.0135 .6878+.0133  .6866 +.0134
LOC .6583£.0176  .6570+.0171 .6554+.0174 .6539+.0178 .6528+.0175 .6518+.0172 .6513+.0179
PPA 4642 +£.0309° 4625+ .0307 .4615+.0309 4593 +.0308 4574+ .0313 .4559+.0310 .4528+.0316
RSC 3753 +£.0480 3748 £.0472 .3733+£.0467 .3746+.0465 .3722+.0466 .3722+.0462 .3721+.0465
TOS 5374 £.0474 5361 +£.0460 .5362+.0461 5357 +.0474 5365+ .0456 5359+ .0452  .5355+.0463
IPS 3952 +.0410" 3931 +.0407 3906 £.0406 .3889 +.0399 .3874+.0404 3867 +.0399 .3859 +.0400
FEF 2550 £.0523° 2536 +.0519  .2510+.0512 2479 +.0501 .2477 +.0503  .2472+.0499 2452 +.0492

Supplementary Table 2: Prediction scores for the motion-energy model estimated with SPIN-VM in functional ROIs. The
prediction scores are reported as mean = SEM across five subjects. Results are given for seven different window sizes. The
highest prediction score in each row is annotated in bold font. If the highest prediction score in a row is significantly greater
than all the other prediction scores in the same row, it is also marked with a * (p < 0.05, Bootstrap test).
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Gaussian Average LoG

Whole cortex 1795 £.0279 1792 +£.0277 1788 +£.0277
RET 2826 +.0170 2833 +.0169 2844 +.0171
V4 .3288 +.0180 .3300+.0175 3307 £.0174
\Z 5309 +£.0388 5291 +.0388 5264 +.0396
FFA L7227 +.0301 7232 +£.0303 7223 +.0305
EBA 7420 £ .0171 7418 +£.0171 7408 +£.0175
MT 7263 +=.0137 7258 +£.0139 7248 +.0140
LOC .6599 +.0415 .6594 £+ .0405 .6583 +.0409
PPA 4839 +.0458 4837 +.0466 4811 +.0465
RSC 4732 £.0589 4727 +.0597 4712 +£.0597
TOS 5127 +.0451 .5148 +.0448 5134 +.0450
IPS 3567 +.0355 .3564 +.0358 .3551+.0362
FEF 2283 +£.0408 2282 +.0411 2272 +.0411

Supplementary Table 3: Prediction scores for the category model estimated with SPIN-VM in functional ROIs. The
prediction scores are reported as mean = SEM across five subjects. Results are given for three different types of graph
Laplacian filters: Gaussian, average, and LoG. The highest prediction score in each row is annotated in bold font.
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Gaussian Average LoG

Whole cortex .2080 +£.0097 2078 £.0097 2073 +£.0097
RET .6521 +.0285 .6509 +.0287 .6513 +.0284
V4 6240 +.0197 .6232 +.0201 6229 +.0197
\Z .6663 +.0203 .6656 +.0202 .6647 +.0204
FFA .6528 +.0354 .6505 +.0361 .6484 +.0363
EBA .6899 +.0231 .6893 +.0230 .6886 +.0231
MT .6941 +.0140 .6936 +.0138 .6932+.0139
LOC .6583 +.0176 .6580+.0174 .6566+.0174
PPA 4642 +.0309 4629 +.0306 4621 +.0305
RSC 3753 +£.0480 3774 £.0480 3749 +.0471
TOS 5374 £.0474 .5362 +.0475 5371 £.0467
IPS 3952 £.0410 .3938 +£.0407 3931 +.0408
FEF 2550 +.0523 2544 + .0515 2544 + .0519

Supplementary Table 4: Prediction scores for the motion-energy model estimated with SPIN-VM in functional ROIs. The
prediction scores are reported as mean = SEM across five subjects. Results are given for three different types of graph
Laplacian filters: Gaussian, average, and LoG. The highest prediction score in each row is annotated in bold font.
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SPIN-VM VM smooth-VM

Whole cortex 1795 +.0279° 1733 +£.0283 1741 +.0281
RET .2826 +.0170" 2626 +.0140 2668 +.0161
V4 .3288 +.0180" 3051 +.0166 3077 +.0168
\Z .5309 +.0388" .5038 +£.0367 5081 +.0367
FFA 7227 +.0301° 7146 +.0318 7152 +£.0317
EBA 7420 +.0171° 7285 £.0205 7289 +.0197
MT 7263 +.0137" 7083 +£.0177 7092 +.0175
LOC .6599 +.0415" 6412 +.0414 .6396 = .0406
PPA .4839 +.0458" 4604 +.0421 4641 +.0429
RSC 4732 +.0589" 4614 +.0590 4644 + .0594
TOS 5127 £.0451 .5006 +.0448 .5093 +.0455
IPS .3567 +.0355" .3410+.0325 3429 +.0331
FEF .2283 +.0408" 2133 +.0386 2148 +.0385

Supplementary Table 5: Prediction scores for the category model estimated with SPIN-VM, VM, and smooth-VM, in
functional ROIs. The prediction scores are reported as mean + SEM across five subjects. Bold font is used to annotate the
cases in which SPIN-VM achieves significantly higher prediction scores than VM (p < 0.05, Bootstrap test). If SPIN-VM
also yields significantly higher prediction scores than smooth-VM, it is marked with a * (p < 0.05).
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SPIN-VM VM smooth-VM

Whole cortex .2080 +.0097" 2015 +£.0091 .2024 +.0095
RET .6521 +.0285" .6403 +.0281 .6399 +.0293
V4 .6240 +.0197" .6070 +.0192 .6072 +.0197
\Z .6663 +.0203" .6570+.0197 .6596 +.0194
FFA .6528 +.0354" .6395 +.0354 .6408 +.0348
EBA .6899 +.0231" .6765 +.0230 .6775 +.0236
MT .6941 +.0140" .6826 +.0129 .6846 +.0135
LOC .6583 £.0176" .6462 +.0175 .6464 + .0180
PPA .4642 +.0309" 4394 +.0291 4362 +.0296
RSC .3753 +.0480" 3637 +.0449 3597 +.0457
TOS 5374 +£.0474" .5337+.0473 .5312 +.0495
IPS .3952 +.0410" .3851 +£.0391 .3877 +.0400
FEF .2550 +.0523" 2459 + .0488 2459 +.0491

Supplementary Table 6: Prediction scores for the motion-energy model estimated with SPIN-VM, VM, and smooth-VM,
in functional ROIs. The prediction scores are reported as mean = SEM across five subjects. Bold font is used to annotate the
cases in which SPIN-VM achieves significantly higher prediction scores than VM (p < 0.05, Bootstrap test). If SPIN-VM
also yields significantly higher prediction scores than smooth-VM, it is marked with a * (p < 0.05).
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SPIN-VM VM smooth-VM

Whole cortex 7382 +£.0080 .6549 +.0074 7328 £.0102
RET .8636 +.0091 .8359+.0120 .8888 +.0149"
V4 .8507+.0123 .8154 +.0159 .8659 +.0163
\Z .8458 +.0150" .8063 +.0228 .8228 +.0166
FFA .8690 +.0105" .8395+.0144 .8537 +.0084
EBA .8223 +.0120° 7793 +£.0130 7597 +.0177
MT .8247 +.0162" 7803 +£.0212 7673 +£.0198
LOC .8645 +.0190" .8314 +.0247 .8201 £.0253
PPA .8696 +.0074" .8228 +.0099 .8445 + .0084
RSC .8889 +.0119" .8463 +£.0132 8713 +.0144
TOS .8544 +.0103 .8033 £.0115 .8369 +.0242
IPS .8293 +.0099 7611 +.0186 8125 +.0209
FEF .8065 +.0133 7240 £+ .0252 8172 +£.0236

Supplementary Table 7: Local coherence values for the category model in functional ROIs (mean = SEM) obtained based
on model weights estimated with SPIN-VM, VM, and smooth-VM. The highest local coherence value in each row is
annotated in bold font. If this value is significantly higher than both of the alternatives, it is marked with a * (p < 0.05,
Bootstrap test).
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SPIN-VM VM smooth-VM

Whole cortex .7848 +.0051 .6887 +.0072 7721 +.0134
RET .8699 +.0059" .8258 +.0089 .8358 +.0084
V4 .8934 +£.0078" .8491 +.0119 .8671 +.0063
V7 .9028 +.0072" .8741+.0124 .8858 +.0095
FFA .8681 +£.0103" .8082 +.0152 .8253 +.0088
EBA .8772 £.0061" .8291 £.0073 .8180+.0125
MT .8906 +.0028" .8509 +.0035 .8411 +.0056
LOC .8947 +£.0062" .8617 +.0094 8577 +.0105
PPA .8788 +.0050" 7959 £ .0066 .8444 + 0119
RSC .8973 £.0104" .8428 +.0153 .8604 +.0146
TOS .8980 +.0086" .8679+.0118 .8812+.0113
IPS .8885 +.0097 .8469 +.0131 9044 +.0134
FEF .8410+.0124 719+ .0175 8711 £.0234

Supplementary Table 8: Local coherence values for the motion-energy model in functional ROIs (mean + SEM) obtained
based on model weights estimated with SPIN-VM, VM, and smooth-VM. The highest local coherence value in each row is

annotated in bold font. If this value is significantly higher than both of the alternatives, it is marked with a * (p < 0.05,

Bootstrap test).
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SPIN-VM VM smooth-VM

Whole cortex 2072 +.0140 .1949 +.0136 22156 +.0161"
RET 3167 +.0190 2864 +.0152 3179 £.0192
V4 3677 +.0202 3293 +£.0188 .3688 +.0219
\Z .5894 +.0421 .5449 +.0410 .6025 +.0418"
FFA 7795 £.0230 7662 +.0264 7856 +.0235"
EBA 7820+ .0134 7637 +.0168 7893 +£.0136"
MT 7709 +.0100 7436 +.0140 7790 +.0093"
LOC 7078 £.0394 .6780 +.0385 7134 +£.04117
PPA .5429 +.0536 .5064 +.0496 .5465 £.0547
RSC 5106 +.0641 4907 +.0644 .5106 £.0641
TOS 5582 +£.0522 .5359 +.0527 5703 +£.0553"
IPS 4125 +.0434 3787 +.0370 .4259 +.0460"
FEF 2671 +.0477 2441 +.0442 2735 £.0494

Supplementary Table 9: Prediction scores with VM, smooth-VM, and SPIN-VM for the category model on smoothed test
data. The prediction scores are reported as mean = SEM across five subjects. Bold font is used to annotate the cases in which
smooth-VM achieves significantly higher prediction scores than VM (p < 0.05, Bootstrap test). If smooth-VM also yields
significantly higher prediction scores than SPIN-VM, it is marked with a * (p < 0.05).
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SPIN-VM VM smooth-VM

Whole cortex 2375+ .0117 2231 +£.0101 2464 +.0126"
RET 7164 +.0231 .6943 +.0229 7286 +.0200"
V4 .6928 +£.0195 .6656 +.0186 7033 +.0172°
\Z 7229 +.0187 7082 +.0191 7361 £.01917
FFA 7280 +.0288 7084 +.0303 7380 +.0279"
EBA 7401 +.0168 7209 +.0171 7442 + 0164
MT 7366 +.0068 7189 +.0070 7437 +.0083"
LOC 7213 +.0166 7034 +£.0154 7300 +.0152°
PPA .5261 +.0381 4890 +.0352 .5313 £.0390"
RSC 4163 +.0579 .3940 +.0510 .4280 +.0605"
TOS .5675 +.0536 5566 +.0537 .5826 +.0535"
IPS 4401 +.0494 4185 £.0455 .4556 +.0530"
FEF .3020 +.0617 .2820 = .0559 .3138 +£.0632"

Supplementary Table 10: Prediction scores with VM, smooth-VM, and SPIN-VM for the motion-energy model on
smoothed test data. The prediction scores are reported as mean = SEM across five subjects. Bold font is used to annotate the
cases in which smooth-VM achieves significantly higher prediction scores than VM (p < 0.05, Bootstrap test). If smooth-VM
also yields significantly higher prediction scores than SPIN-VM, it is marked with a * (p < 0.05).
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SPIN-VM VM smooth-VM

Whole cortex 2123 +£.0146 1967 +.0139 2156 +.0161
RET 3231 +£.0207 2855+ .0156 3179 +.0192
V4 3784 £.0217 3263 +.0190 .3688 +.0219
\Z .6011 +.0430 5437 +.0413 .6025 +.0418
FFA 7840 + .0222 7661 +.0260 7856 +.0235
EBA 7887 +.0123 7651 +.0170 7893 +£.0136
MT 7795 +.0087 7447 + .0135 7790 +.0093
LOC 7173 +£.0378 .6784 +.0393 7134 +.0411
PPA .5525 +.0558 5065 +.0507 5465 +.0547
RSC 5142 +.0663 4915 £.0643 5106 +.0641
TOS .5687 +.0533 .5391 +.0535 .5703 +.0553
IPS 4267 +.0483 .3824 +£.0371 4259 +.0460
FEF 2720 +.0495 2461 +.0436 2735 +.0494

Supplementary Table 11: Prediction scores with VM, smooth-VM, and SPIN-VM for the category model on smoothed
validation and test data. The prediction scores are reported as mean = SEM across five subjects. Both SPIN-VM and smooth-
VM perform significantly better than VM in all twelve ROIs (p < 0.05). Bold font is used to annotate the cases in which there
is a significant difference between SPIN-VM and smooth-VM (p < 0.05, Bootstrap test).
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SPIN-VM VM smooth-VM

Whole cortex 2464 + .0129 2265 +.0106 2464 + .0126
RET 7287 +.0217 .6991 +.0221 7286 = .0200
V4 7053 +£.0178 .6704 +.0177 7033 £.0172
V7 7315 +.0199 7102 +.0193 7361 £.0191
FFA 7310 £.0295 7119 +.0299 7380 +.0279
EBA 7455 +.0163 7225 +.0173 7442 + .0164
MT .7451 +.0083 7210 +.0072 7437 £ .0083
LOC 7278 +£.0156 7062 +.0152 27300 +.0152
PPA 5385 +.0402 4934 +.0363 5313 £.0390
RSC 4235 +.0603 .3963 +.0528 4280 +.0605
TOS .5783 +£.0520 .5595 +.0547 .5826 +.0535
IPS 4502 +.0520 4224 +.0473 .4556 +.0530
FEF 3109 +.0641 .2845 +.0569 3138 +.0632

Supplementary Table 12: Prediction scores with VM, smooth-VM, and SPIN-VM for the motion-energy model on
smoothed validation and test data. The prediction scores are reported as mean = SEM across five subjects. Both SPIN-VM
and smooth-VM perform significantly better than VM in all twelve ROIs (p < 0.05). Bold font is used to annotate the cases
in which there is a significant difference between SPIN-VM and smooth-VM (p < 0.05, Bootstrap test).
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