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Supplementary Figures 

 
Supplementary Fig. 1. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as 
measured by (a) VM and (b) SPIN-VM for subject S1. To obtain consistent principal components (PCs) across both VM and 
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights 
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was 
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings 
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring 
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent 
semantic maps across many high-level visual and frontal areas. 
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Supplementary Fig. 2. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as 
measured by (a) VM and (b) SPIN-VM for subject S2. To obtain consistent principal components (PCs) across both VM and 
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights 
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was 
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings 
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring 
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent 
semantic maps across many high-level visual and frontal areas. 
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Supplementary Fig. 3. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as 
measured by (a) VM and (b) SPIN-VM for subject S3. To obtain consistent principal components (PCs) across both VM and 
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights 
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was 
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings 
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring 
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent 
semantic maps across many high-level visual and frontal areas. 
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Supplementary Fig. 4. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as 
measured by (a) VM and (b) SPIN-VM for subject S4. To obtain consistent principal components (PCs) across both VM and 
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights 
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was 
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings 
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring 
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent 
semantic maps across many high-level visual and frontal areas. 
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Supplementary Fig. 5. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as 
measured by (a) VM and (b) SPIN-VM for subject S5. To obtain consistent principal components (PCs) across both VM and 
SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. Category model weights 
for each voxel were then projected onto the second, third, and fourth PCs of the group semantic space. Each voxel was 
assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings 
and furniture, whereas magenta implies selectivity for vehicles). Compared to VM, estimated selectivities of neighboring 
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. Therefore, SPIN-VM produces more coherent 
semantic maps across many high-level visual and frontal areas. 
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Supplementary Fig. 6. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual 
representation as measured by (a) VM and (b) SPIN-VM for subject S1. To obtain consistent principal components (PCs) 
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. 
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each 
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and 
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM, 
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. 
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.  
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Supplementary Fig. 7. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual 
representation as measured by (a) VM and (b) SPIN-VM for subject S2. To obtain consistent principal components (PCs) 
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. 
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each 
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and 
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM, 
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. 
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.  
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Supplementary Fig. 8. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual 
representation as measured by (a) VM and (b) SPIN-VM for subject S3. To obtain consistent principal components (PCs) 
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. 
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each 
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and 
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM, 
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. 
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.  
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Supplementary Fig. 9. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual 
representation as measured by (a) VM and (b) SPIN-VM for subject S4. To obtain consistent principal components (PCs) 
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. 
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each 
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and 
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM, 
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. 
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.  
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Supplementary Fig. 10. Cortical flatmaps of low-level visual representation. Cortical flatmaps of low-level visual 
representation as measured by (a) VM and (b) SPIN-VM for subject S5. To obtain consistent principal components (PCs) 
across both VM and SPIN-VM models, model weights obtained by both techniques were pooled and PCA was applied. 
Motion-energy model weights for each voxel were then projected onto the first three PCs of the group Gabor space. Each 
voxel was assigned a color by representing projections on the first, second, and third PCs with red, green, and blue channels, 
respectively. Similar colors imply selectivity for similar low-level features (e.g., yellow signifies medium eccentricity and 
lower spatial frequency, whereas magenta signifies low eccentricity and higher spatial frequency). Compared to VM, 
estimated selectivities of neighboring voxels are more congruent (i.e., they have more similar colors) for SPIN-VM. 
Therefore, SPIN-VM produces more coherent Gabor maps across early visual areas.  
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Supplementary Fig. 11. Improvement in prediction scores (Spatial-3 vs. Functional-9). Improvement in prediction scores 
for the category model with the optimal variant of regular SPIN-VM (Spatial-3; spatial with a window size of 3x3x3) versus 
the optimal variant of SPIN-VM based on functional correlations (Functional-9; functional with a “window size” of 9x9x9). 
Positive values indicate higher performance for Spatial-3 compared to Functional-9. Spatial-3 performs better in the majority 
of the functional ROIs. 
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Supplementary Fig. 12. Improvement in prediction scores (Spatial-3 vs. SpatialFunctional-3). Improvement in 
prediction scores for the category model with the optimal variant of regular SPIN-VM (Spatial-3; spatial with a window size 
of 3x3x3) versus the optimal variant of SPIN-VM based on the combination of functional correlations and spatial 
neighborhood (SpatialFunctional-3; spatial + functional with a “window size” of 3x3x3). Spatial-3 performs better in the 
majority of the ROIs, particularly in the high-level visual areas where the category model works best. Note that the difference 
is relatively small as weights based on functional correlations closely resemble those based on spatial proximity.  
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Supplementary Fig. 13. Cortical distribution of 
regularization parameters. Cortical flatmap of optimal 
regularization parameters across spatial neighborhoods of 
voxels (λnei) displayed in subject S1 for the category 
model. Optimal λnei values were determined separately for 
each voxel during model fitting. Color bar shows the range 
of λnei [25-214] in logarithmic scale (pink = low, yellow = 
high). As expected, we find that optimal λnei values are 
relatively higher in both low-level retinotopic and high-
level category selective visual areas that are more engaged 
during viewing of natural movies than non-visual areas in 
frontotemporal, motor, and somatosensory cortices. These 
high λnei values likely compensate for the relatively lower 
λfeat values in SPIN-VM compared to VM. 
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Supplementary Fig. 14. Improvement in prediction scores (Functional-9 vs. Functional-15). Improvement in prediction 
scores for the category model with the optimal variant of SPIN-VM based on functional correlations (Functional-9; functional 
with a “window size” of 9x9x9) versus SPIN-VM based on functional correlations with a window size of 15 (Functional-15; 
functional with a “window size” of 15x15x15). Functional-9 performs better in the majority of the ROIs, particularly in the 
high-level visual areas where the category model works best.  
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Supplementary Fig. 15. Functional selectivity in a single voxel. Functional selectivity for object and action categories as 
measured by the category model for a single voxel (voxel #13137) in posterior superior temporal sulcus (pSTS) of subject 
S1. Functional selectivity obtained by smooth-VM (left) and SPIN-VM (right) is shown. Each node in these graphs represents 
a distinct object or action organized according to the hierarchical relations in the WordNet lexicon. Some important nodes are 
labeled to orient the reader. Red nodes correspond to categories that evoke above-mean responses, whereas blue nodes 
correspond to categories that evoke below-mean responses. The size of each node reflects the magnitude of the category 
response. The response of voxel #13137 is well-predicted by SPIN-VM (r = 0.61), and only poorly-predicted by smooth-VM 
(r = 0.02). pSTS has been implicated in the representation of facial identity and visually-observed social interaction 
(Srinivasan et al., 2016; Walbrin et al., 2018). While the model obtained via smooth-VM largely fails to capture these 
representations, SPIN-VM successfully captures selectivity for categories related to individuals such as ‘person’ and ‘man’, 
as well as categories related to social communication such as ‘talk’ and ‘text’.  
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Supplementary Fig. 16. Prediction scores with VM using PCA vs. L1-norm. Prediction scores for the category model 
across functional ROIs via VM based on two distinct regularization methods. The first method first performed PCA on 
stimulus features for dimensionality reduction, and then used ridge regularization based on L2-norm. The second method 
only used L1-norm based regularization on the original stimulus features. Color bars show mean prediction scores across five 
subjects and error bars indicate standard error of the mean (SEM). The conjunction of PCA with L2-norm based regularization 
yields significantly higher prediction scores than the L1-norm based regularization in all ROIs (p < 0.05).  
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Supplementary Fig. 17. Improvement in prediction scores on smoothed test data. Improvement in prediction scores 
when model performance was evaluated on smoothed versus raw test data. Results are shown for the category model as 
measured by VM, smooth-VM, and SPIN-VM. Colored bars show mean prediction score improvements across five subjects 
and error bars indicate standard error of the mean (SEM). Prediction scores are significantly greater in all twelve ROIs for all 
three methods when smoothed test data is used (p < 0.05). Naturally, smooth-VM benefits relatively more from smoothing 
of test data. 
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Supplementary Fig. 18. Prediction scores with SPIN-VM vs. smooth-VM on smoothed validation and data. Mean 
prediction scores for the category model with SPIN-VM versus smooth-VM when both test and validation data are smoothed. 
Colored bars show mean prediction scores across five subjects and error bars indicate standard error of the mean (SEM). 
SPIN-VM and smooth-VM demonstrate almost identical performance on smoothed validation and test data, even though 
SPIN-VM is trained on unsmoothed data.  
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Supplementary Tables 

 3××3××3 5××5××5 7××7××7 9××9××9 11××11××11 13××13××13 15××15××15 
Whole 

cortex 

.1795 ± .0279* .1785 ± .0275 .1774 ± .0274 .1764 ± .0272 .1758 ± .0270 .1752 ± .0269 .1746 ± .0267 

RET .2826 ± .0170 .2836 ± .0170 .2837 ± .0171 .2830 ± .0168 .2825 ± .0165 .2812 ± .0156 .2805 ± .0156 

V4 .3288 ± .0180 .3301 ± .0176 .3291 ± .0175 .3277 ± .0171 .3267 ± .0169 .3252 ± .0165 .3243 ± .0164 

V7 .5309 ± .0388* .5270 ± .0391 .5225 ± .0396 .5176 ± .0392 .5151 ± .0388 .5129 ± .0381 .5102 ± .0384 

FFA .7227 ± .0301* .7219 ± .0307 .7205 ± .0308 .7185 ± .0310 .7177 ± .0310 .7171 ± .0315 .7163 ± .0310 

EBA .7420 ± .0171* .7412 ± .0172 .7398 ± .0175 .7383 ± .0177 .7373 ± .0181 .7363 ± .0181 .7356 ± .0186 

MT .7263 ± .0137* .7246 ± .0141 .7228 ± .0145 .7205 ± .0151 .7186 ± .0152 .7173 ± .0156 .7158 ± .0159 

LOC .6599 ± .0415* .6587 ± .0403 .6556 ± .0407 .6528 ± .0407 .6516 ± .0408 .6513 ± .0403 .6497 ± .0405 

PPA .4839 ± .0458* .4815 ± .0463 .4772 ± .0464 .4736 ± .0455 .4713 ± .0450 .4704 ± .0445 .4681 ± .0439 

RSC .4732 ± .0589* .4707 ± .0596 .4684 ± .0596 .4667 ± .0587 .4664 ± .0586 .4666 ± .0594 .4657 ± .0584 

TOS .5127 ± .0451 .5136 ± .0445 .5111 ± .0441 .5098 ± .0435 .5080 ± .0437 .5082 ± .0432 .5067 ± .0435 

IPS .3567 ± .0355* .3547 ± .0361 .3517 ± .0363 .3492 ± .0364 .3470 ± .0362 .3458 ± .0359 .3440 ± .0360 

FEF .2283 ± .0408* .2260 ± .0411 .2225 ± .0407 .2195 ± .0406 .2171 ± .0400 .2161 ± .0400 .2143 ± .0395 

Supplementary Table 1: Prediction scores for the category model estimated with SPIN-VM in functional ROIs. The 
prediction scores are reported as mean ± SEM across five subjects. Results are given for seven different window sizes. The 
highest prediction score in each row is annotated in bold font. If the highest prediction score in a row is significantly greater 
than all the other prediction scores in the same row, it is also marked with a * (p < 0.05, Bootstrap test). 
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 3××3××3 5××5××5 7××7××7 9××9××9 11××11××11 13××13××13 15××15××15 
Whole 

cortex 

.2080 ± .0097* .2071 ± .0097 .2063 ± .0098 .2055 ± .0098 .2051 ± .0095 .2048 ± .0100 .2040 ± .0096 

RET .6521 ± .0285* .6504 ± .0284 .6495 ± .0284 .6487 ± .0282 .6477 ± .0282 .6463 ± .0281 .6458 ± .0283 

V4 .6240 ± .0197* .6226 ± .0198 .6217 ± .0198 .6202 ± .0198 .6191 ± .0194 .6175 ± .0195 .6163 ± .0196 

V7 .6663 ± .0203* .6643 ± .0204 .6623 ± .0206 .6609 ± .0203 .6598 ± .0205 .6597 ± .0203 .6583 ± .0203 

FFA .6528 ± .0354* .6496 ± .0361 .6454 ± .0363 .6425 ± .0367 .6424 ± .0361 .6416 ± .0362 .6393 ± .0363 

EBA .6899 ± .0231* .6886 ± .0227 .6873 ± .0232 .6862 ± .0232 .6847 ± .0233 .6836 ± .0228 .6827 ± .0235 

MT .6941 ± .0140* .6932 ± .0135 .6915 ± .0137 .6901 ± .0137 .6889 ± .0135 .6878 ± .0133 .6866 ± .0134 

LOC .6583 ± .0176 .6570 ± .0171 .6554 ± .0174 .6539 ± .0178 .6528 ± .0175 .6518 ± .0172 .6513 ± .0179 

PPA .4642 ± .0309* .4625 ± .0307 .4615 ± .0309 .4593 ± .0308 .4574 ± .0313 .4559 ± .0310 .4528 ± .0316 

RSC .3753 ± .0480 .3748 ± .0472 .3733 ± .0467 .3746 ± .0465 .3722 ± .0466 .3722 ± .0462 .3721 ± .0465 

TOS .5374 ± .0474 .5361 ± .0460 .5362 ± .0461 .5357 ± .0474 .5365 ± .0456 .5359 ± .0452 .5355 ± .0463 

IPS .3952 ± .0410* .3931 ± .0407 .3906 ± .0406 .3889 ± .0399 .3874 ± .0404 .3867 ± .0399 .3859 ± .0400 

FEF .2550 ± .0523* .2536 ± .0519 .2510 ± .0512 .2479 ± .0501 .2477 ± .0503 .2472 ± .0499 .2452 ± .0492 

Supplementary Table 2: Prediction scores for the motion-energy model estimated with SPIN-VM in functional ROIs. The 
prediction scores are reported as mean ± SEM across five subjects. Results are given for seven different window sizes. The 
highest prediction score in each row is annotated in bold font. If the highest prediction score in a row is significantly greater 
than all the other prediction scores in the same row, it is also marked with a * (p < 0.05, Bootstrap test). 
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 Gaussian Average LoG 

Whole cortex .1795 ± .0279 .1792 ± .0277 .1788 ± .0277 

RET .2826 ± .0170 .2833 ± .0169 .2844 ± .0171 

V4 .3288 ± .0180 .3300 ± .0175 .3307 ± .0174 

V7 .5309 ± .0388 .5291 ± .0388 .5264 ± .0396 

FFA .7227 ± .0301 .7232 ± .0303 .7223 ± .0305 

EBA .7420 ± .0171 .7418 ± .0171 .7408 ± .0175 

MT .7263 ± .0137 .7258 ± .0139 .7248 ± .0140 

LOC .6599 ± .0415 .6594 ± .0405 .6583 ± .0409 

PPA .4839 ± .0458 .4837 ± .0466 .4811 ± .0465 

RSC .4732 ± .0589 .4727 ± .0597 .4712 ± .0597 

TOS .5127 ± .0451 .5148 ± .0448 .5134 ± .0450 

IPS .3567 ± .0355 .3564 ± .0358 .3551 ± .0362 

FEF .2283 ± .0408 .2282 ± .0411 .2272 ± .0411 

Supplementary Table 3: Prediction scores for the category model estimated with SPIN-VM in functional ROIs. The 
prediction scores are reported as mean ± SEM across five subjects. Results are given for three different types of graph 
Laplacian filters: Gaussian, average, and LoG. The highest prediction score in each row is annotated in bold font. 
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 Gaussian Average LoG 

Whole cortex .2080 ± .0097 .2078 ± .0097 .2073 ± .0097 

RET .6521 ± .0285 .6509 ± .0287 .6513 ± .0284 

V4 .6240 ± .0197 .6232 ± .0201 .6229 ± .0197 

V7 .6663 ± .0203 .6656 ± .0202 .6647 ± .0204 

FFA .6528 ± .0354 .6505 ± .0361 .6484 ± .0363 

EBA .6899 ± .0231 .6893 ± .0230 .6886 ± .0231 

MT .6941 ± .0140 .6936 ± .0138 .6932 ± .0139 

LOC .6583 ± .0176 .6580 ± .0174 .6566 ± .0174 

PPA .4642 ± .0309 .4629 ± .0306 .4621 ± .0305 

RSC .3753 ± .0480 .3774 ± .0480 .3749 ± .0471 

TOS .5374 ± .0474 .5362 ± .0475 .5371 ± .0467 

IPS .3952 ± .0410 .3938 ± .0407 .3931 ± .0408 

FEF .2550 ± .0523 .2544 ± .0515 .2544 ± .0519 

Supplementary Table 4: Prediction scores for the motion-energy model estimated with SPIN-VM in functional ROIs. The 
prediction scores are reported as mean ± SEM across five subjects. Results are given for three different types of graph 
Laplacian filters: Gaussian, average, and LoG. The highest prediction score in each row is annotated in bold font.   
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 SPIN-VM VM smooth-VM 

Whole cortex .1795 ± .0279* .1733 ± .0283 .1741 ± .0281 

RET .2826 ± .0170* .2626 ± .0140 .2668 ± .0161 

V4 .3288 ± .0180* .3051 ± .0166 .3077 ± .0168 

V7 .5309 ± .0388* .5038 ± .0367 .5081 ± .0367 

FFA .7227 ± .0301* .7146 ± .0318 .7152 ± .0317 

EBA .7420 ± .0171* .7285 ± .0205 .7289 ± .0197 

MT .7263 ± .0137* .7083 ± .0177 .7092 ± .0175 

LOC .6599 ± .0415* .6412 ± .0414 .6396 ± .0406 

PPA .4839 ± .0458* .4604 ± .0421 .4641 ± .0429 

RSC .4732 ± .0589* .4614 ± .0590 .4644 ± .0594 

TOS .5127 ± .0451 .5006 ± .0448 .5093 ± .0455 

IPS .3567 ± .0355* .3410 ± .0325 .3429 ± .0331 

FEF .2283 ± .0408* .2133 ± .0386 .2148 ± .0385 

Supplementary Table 5: Prediction scores for the category model estimated with SPIN-VM, VM, and smooth-VM, in 
functional ROIs. The prediction scores are reported as mean ± SEM across five subjects. Bold font is used to annotate the 
cases in which SPIN-VM achieves significantly higher prediction scores than VM (p < 0.05, Bootstrap test). If SPIN-VM 
also yields significantly higher prediction scores than smooth-VM, it is marked with a * (p < 0.05). 
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 SPIN-VM VM smooth-VM 

Whole cortex .2080 ± .0097* .2015 ± .0091 .2024 ± .0095 

RET .6521 ± .0285* .6403 ± .0281 .6399 ± .0293 

V4 .6240 ± .0197* .6070 ± .0192 .6072 ± .0197 

V7 .6663 ± .0203* .6570 ± .0197 .6596 ± .0194 

FFA .6528 ± .0354* .6395 ± .0354 .6408 ± .0348 

EBA .6899 ± .0231* .6765 ± .0230 .6775 ± .0236 

MT .6941 ± .0140* .6826 ± .0129 .6846 ± .0135 

LOC .6583 ± .0176* .6462 ± .0175 .6464 ± .0180 

PPA .4642 ± .0309* .4394 ± .0291 .4362 ± .0296 

RSC .3753 ± .0480* .3637 ± .0449 .3597 ± .0457 

TOS .5374 ± .0474* .5337 ± .0473 .5312 ± .0495 

IPS .3952 ± .0410* .3851 ± .0391 .3877 ± .0400 

FEF .2550 ± .0523* .2459 ± .0488 .2459 ± .0491 

Supplementary Table 6: Prediction scores for the motion-energy model estimated with SPIN-VM, VM, and smooth-VM, 
in functional ROIs. The prediction scores are reported as mean ± SEM across five subjects. Bold font is used to annotate the 
cases in which SPIN-VM achieves significantly higher prediction scores than VM (p < 0.05, Bootstrap test). If SPIN-VM 
also yields significantly higher prediction scores than smooth-VM, it is marked with a * (p < 0.05). 
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 SPIN-VM VM smooth-VM 

Whole cortex .7382 ± .0080 .6549 ± .0074 .7328 ± .0102 

RET .8636 ± .0091 .8359 ± .0120 .8888 ± .0149* 

V4 .8507 ± .0123 .8154 ± .0159 .8659 ± .0163 

V7 .8458 ± .0150* .8063 ± .0228 .8228 ± .0166 

FFA .8690 ± .0105* .8395 ± .0144 .8537 ± .0084 

EBA .8223 ± .0120* .7793 ± .0130 .7597 ± .0177 

MT .8247 ± .0162* .7803 ± .0212 .7673 ± .0198 

LOC .8645 ± .0190* .8314 ± .0247 .8201 ± .0253 

PPA .8696 ± .0074* .8228 ± .0099 .8445 ± .0084 

RSC .8889 ± .0119* .8463 ± .0132 .8713 ± .0144 

TOS .8544 ± .0103 .8033 ± .0115 .8369 ± .0242 

IPS .8293 ± .0099 .7611 ± .0186 .8125 ± .0209 

FEF .8065 ± .0133 .7240 ± .0252 .8172 ± .0236 

Supplementary Table 7: Local coherence values for the category model in functional ROIs (mean ± SEM) obtained based 
on model weights estimated with SPIN-VM, VM, and smooth-VM. The highest local coherence value in each row is 
annotated in bold font. If this value is significantly higher than both of the alternatives, it is marked with a * (p < 0.05, 
Bootstrap test). 
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 SPIN-VM VM smooth-VM 

Whole cortex .7848 ± .0051 .6887 ± .0072 .7721 ± .0134 

RET .8699 ± .0059* .8258 ± .0089 .8358 ± .0084 

V4 .8934 ± .0078* .8491 ± .0119 .8671 ± .0063 

V7 .9028 ± .0072* .8741 ± .0124 .8858 ± .0095 

FFA .8681 ± .0103* .8082 ± .0152 .8253 ± .0088 

EBA .8772 ± .0061* .8291 ± .0073 .8180 ± .0125 

MT .8906 ± .0028* .8509 ± .0035 .8411 ± .0056 

LOC .8947 ± .0062* .8617 ± .0094 .8577 ± .0105 

PPA .8788 ± .0050* .7959 ± .0066 .8444 ± .0119 

RSC .8973 ± .0104* .8428 ± .0153 .8604 ± .0146 

TOS .8980 ± .0086* .8679 ± .0118 .8812 ± .0113 

IPS .8885 ± .0097 .8469 ± .0131 .9044 ± .0134 

FEF .8410 ± .0124 .7719 ± .0175 .8711 ± .0234 

Supplementary Table 8: Local coherence values for the motion-energy model in functional ROIs (mean ± SEM) obtained 
based on model weights estimated with SPIN-VM, VM, and smooth-VM. The highest local coherence value in each row is 
annotated in bold font. If this value is significantly higher than both of the alternatives, it is marked with a * (p < 0.05, 
Bootstrap test). 
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 SPIN-VM VM smooth-VM 

Whole cortex .2072 ± .0140 .1949 ± .0136 .2156 ± .0161* 

RET .3167 ± .0190 .2864 ± .0152 .3179 ± .0192 

V4 .3677 ± .0202 .3293 ± .0188 .3688 ± .0219 

V7 .5894 ± .0421 .5449 ± .0410 .6025 ± .0418* 

FFA .7795 ± .0230 .7662 ± .0264 .7856 ± .0235* 

EBA .7820 ± .0134 .7637 ± .0168 .7893 ± .0136* 

MT .7709 ± .0100 .7436 ± .0140 .7790 ± .0093* 

LOC .7078 ± .0394 .6780 ± .0385 .7134 ± .0411* 

PPA .5429 ± .0536 .5064 ± .0496 .5465 ± .0547 

RSC .5106 ± .0641 .4907 ± .0644 .5106 ± .0641 

TOS .5582 ± .0522 .5359 ± .0527 .5703 ± .0553* 

IPS .4125 ± .0434 .3787 ± .0370 .4259 ± .0460* 

FEF .2671 ± .0477 .2441 ± .0442 .2735 ± .0494 

Supplementary Table 9:  Prediction scores with VM, smooth-VM, and SPIN-VM for the category model on smoothed test 
data. The prediction scores are reported as mean ± SEM across five subjects. Bold font is used to annotate the cases in which 
smooth-VM achieves significantly higher prediction scores than VM (p < 0.05, Bootstrap test). If smooth-VM also yields 
significantly higher prediction scores than SPIN-VM, it is marked with a * (p < 0.05). 
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 SPIN-VM VM smooth-VM 

Whole cortex .2375 ± .0117 .2231 ± .0101 .2464 ± .0126* 

RET .7164 ± .0231 .6943 ± .0229 .7286 ± .0200* 

V4 .6928 ± .0195 .6656 ± .0186 .7033 ± .0172* 

V7 .7229 ± .0187 .7082 ± .0191 .7361 ± .0191* 

FFA .7280 ± .0288 .7084 ± .0303 .7380 ± .0279* 

EBA .7401 ± .0168 .7209 ± .0171 .7442 ± .0164* 

MT .7366 ± .0068 .7189 ± .0070 .7437 ± .0083* 

LOC .7213 ± .0166 .7034 ± .0154 .7300 ± .0152* 

PPA .5261 ± .0381 .4890 ± .0352 .5313 ± .0390* 

RSC .4163 ± .0579 .3940 ± .0510 .4280 ± .0605* 

TOS .5675 ± .0536 .5566 ± .0537 .5826 ± .0535* 

IPS .4401 ± .0494 .4185 ± .0455 .4556 ± .0530* 

FEF .3020 ± .0617 .2820 ± .0559 .3138 ± .0632* 

Supplementary Table 10: Prediction scores with VM, smooth-VM, and SPIN-VM for the motion-energy model on 
smoothed test data. The prediction scores are reported as mean ± SEM across five subjects. Bold font is used to annotate the 
cases in which smooth-VM achieves significantly higher prediction scores than VM (p < 0.05, Bootstrap test). If smooth-VM 
also yields significantly higher prediction scores than SPIN-VM, it is marked with a * (p < 0.05). 
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 SPIN-VM VM smooth-VM 

Whole cortex .2123 ± .0146 .1967 ± .0139 .2156 ± .0161 

RET .3231 ± .0207 .2855 ± .0156 .3179 ± .0192 

V4 .3784 ± .0217 .3263 ± .0190 .3688 ± .0219 

V7 .6011 ± .0430 .5437 ± .0413 .6025 ± .0418 

FFA .7840 ± .0222 .7661 ± .0260 .7856 ± .0235 

EBA .7887 ± .0123 .7651 ± .0170 .7893 ± .0136 

MT .7795 ± .0087 .7447 ± .0135 .7790 ± .0093 

LOC .7173 ± .0378 .6784 ± .0393 .7134 ± .0411 

PPA .5525 ± .0558 .5065 ± .0507 .5465 ± .0547 

RSC .5142 ± .0663 .4915 ± .0643 .5106 ± .0641 

TOS .5687 ± .0533 .5391 ± .0535 .5703 ± .0553 

IPS .4267 ± .0483 .3824 ± .0371 .4259 ± .0460 

FEF .2720 ± .0495 .2461 ± .0436 .2735 ± .0494 

Supplementary Table 11:  Prediction scores with VM, smooth-VM, and SPIN-VM for the category model on smoothed 
validation and test data. The prediction scores are reported as mean ± SEM across five subjects. Both SPIN-VM and smooth-
VM perform significantly better than VM in all twelve ROIs (p < 0.05). Bold font is used to annotate the cases in which there 
is a significant difference between SPIN-VM and smooth-VM (p < 0.05, Bootstrap test).  
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 SPIN-VM VM smooth-VM 

Whole cortex .2464 ± .0129 .2265 ± .0106 .2464 ± .0126 

RET .7287 ± .0217 .6991 ± .0221 .7286 ± .0200 

V4 .7053 ± .0178 .6704 ± .0177 .7033 ± .0172 

V7 .7315 ± .0199 .7102 ± .0193 .7361 ± .0191 

FFA .7310 ± .0295 .7119 ± .0299 .7380 ± .0279 

EBA .7455 ± .0163 .7225 ± .0173 .7442 ± .0164 

MT .7451 ± .0083 .7210 ± .0072 .7437 ± .0083 

LOC .7278 ± .0156 .7062 ± .0152 .7300 ± .0152 

PPA .5385 ± .0402 .4934 ± .0363 .5313 ± .0390 

RSC .4235 ± .0603 .3963 ± .0528 .4280 ± .0605 

TOS .5783 ± .0520 .5595 ± .0547 .5826 ± .0535 

IPS .4502 ± .0520 .4224 ± .0473 .4556 ± .0530 

FEF .3109 ± .0641 .2845 ± .0569 .3138 ± .0632 

Supplementary Table 12: Prediction scores with VM, smooth-VM, and SPIN-VM for the motion-energy model on 
smoothed validation and test data. The prediction scores are reported as mean ± SEM across five subjects. Both SPIN-VM 
and smooth-VM perform significantly better than VM in all twelve ROIs (p < 0.05). Bold font is used to annotate the cases 
in which there is a significant difference between SPIN-VM and smooth-VM (p < 0.05, Bootstrap test). 
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