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Abstract Haze has been a focused air pollution phenomenon in China, and its characterization is highly
desired. Aerosol properties obtained from a single station are frequently used to represent the haze
condition over a large domain, such as tens of kilometers, which could result in high uncertainties due to their
spatial variation.Usingahigh-resolutionnetworkobservationoveranurbancity inNorthChina fromNovember
2015 to February 2016, this study examines the spatial representativeness of ground station observations of
particulate matter with diameters less than 2.5 μm (PM2.5). We developed a newmethod to determine the
representative area of PM2.5measurements from limited stations. The key idea is to determine the PM2.5 spatial
representative area using its spatial variability and temporal correlation. We also determine stations with large
representative area using two grid networks with different resolutions. Based on the high spatial resolution
measurements, the representative area of PM2.5 at one station can be determined from the grids with high
correlations and small differences of PM2.5. The representative area for a single station in the study period
ranges from 0.25 to 16.25 km2 but is less than 3 km2 for more than half of the stations. The representative area
varies with locations, and observation at 10 optimal stations would have a good representativeness of those
obtained from 169 stations for the 4month time scale studied. Both evaluations with an empirical orthogonal
function analysis and with independent data set corroborate the validity of the results found in this study.

1. Introduction

Haze pollution is atmospheric pollution phenomenon with large fine aerosol amount. On 8 December 2015,
Beijing released the first haze pollution of red warning in history and more red warnings have been released
from then. Heavy haze pollution has affected many aspects of our society, such as weather and climate, pub-
lic health, economics, and social activities (Peters et al., 1997a, 1997b; Pope III et al., 2002; Schwartz & Neas,
2000; Q. Wang et al., 2013; Yin & Chen, 2007; Zhao & Garrett, 2015). For example, aerosol influences cloud
properties, alters the radiation budget of the earth-atmosphere system, affects atmospheric circulation pat-
terns, and causes changes in surface temperature and precipitation (Kaufman et al., 2002). At the same time,
heavy haze pollution has also aroused widespread concerns from the country and even the world. Significant
efforts have been made to monitor, predict, and control the haze pollution.

Satellite remote sensing has been widely used for the estimation of the mass concentration of ground parti-
culate matter with diameters less than 2.5 μm (PM2.5) (Kaufman & Fraser, 1983; Van Donkelaar et al., 2006,
2010, 2012; Zheng et al., 2017). Since the aerosol optical depth (AOD) measured from satellite reflects the
integrated amount of aerosol particles in the vertical column with a relatively large horizontal area (1 km2

or even larger), and the relationship between AOD and PM2.5 often varies a lot with locations (Ma et al.,
2014; Ramachandran, 2005; J. Wang & Christopher, 2003; Zhang et al., 2009), the derived relationship between
AOD from satellite and surface PM2.5 may have large uncertainties. Recently, Zheng et al. (2017) have inves-
tigated the various influential factors that can affect the relationship between AOD and PM2.5, which include
the different domain representativeness of AOD.

Nowadays, the high-density observations of China’s ground hourly data allow us to understand the regional
distribution of air pollutants by ground observation alone (Rohde & Muller, 2015). Several ground-based
observation networks are currently operated for aerosol measurements, including the Aerosol Robotic
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Network (Holben et al., 2001), the Interagency Monitoring of Protected Visual Environment network (Malm
et al., 1994), and about 2,400 environmental observation stations in China. While the measurements from
these stations are well calibrated and widely used for evaluation of satellite aerosol observations (Bréon
et al., 2011; Chu et al., 2003; Engel-Cox et al., 2004; Levy et al., 2010; Li et al., 2015), these stations still have
limited representativeness in space and have a relatively large distance from each other. In practice, the aero-
sol observation is often used to represent the pollution over a large area and used to compare with the satel-
lite observations within a domain with a radius like 1 km or 5 km. However, when the regional change of the
local emission sources is large, the limited number of city monitoring stations are unable to accurately pro-
vide the air quality information for the whole city.

With the continuous expansion of large cities, the internal structure of the city is more and more complex.
Urban winds near surface and inversions of atmospheric temperature within the boundary layer make it diffi-
cult to disperse (Y. Wang et al., 2014). The aerosol pollution over a location is the sum of both local emission
sources and long-range transport (Garrett et al., 2010; Sun et al., 2014; Zhao et al., 2009). When the pollution
is highly related to local emission sources, the spatial variation of air pollution is large and observations from
limited stations are not reliable to represent the air quality over a large domain. Scaperdas and Colvile (1999)
studied the representative problems of the environmental monitoring stations at the crossroads in central
London,where they argued that thedifferent layouts of high-risebuildings and streets in cities hada significant
impact on the diffusion of microscale emissions (such as traffic emissions). Thus, it is very important to under-
stand the temporal and spatial distribution characteristics of PM2.5 and its representativeness in large cities.

During the last 2 or 3 years, several cities in North China have established high spatial resolution PM2.5 obser-
vation network, which includes hundreds of monitoring stations in a single city. Using these observations,
this study first examines the spatial representativeness of PM2.5 observed at a single station or a limited num-
ber of stations by exploring their spatial heterogeneities. We then develop a method to determine the repre-
sentative area of measurements from a network of limited stations and validate the accuracy of this method
using the higher density monitoring stations.

The paper is organized as follows. Section 2 describes the measurements and the method used in this study.
Section 3 shows the analysis and results. Section 4 gives a summary and discussion.

2. Data and Method
2.1. Data

We use a network observation of air pollution within a city in North China, for the region with latitudes from
37.95°N to 38.15°N and longitude from 114.40°E to 114.65°E. The instrument used for the measurement is
called XHAQSN-808, manufactured by the Sailhero cooperation. It includes several modes to measure differ-
ent variables, including PM2.5, PM10, SO2, NO2, CO, and O3. Here we briefly describe the mode used for mea-
suring PM2.5. It takes use of the β ray absorption method, with a measurable range set as 0–2000 μg/m3.
Observation is done at every hour. The hourly minimum detection amount is 5 μg/m3, and the
resolution/accuracy is 0.01 μg/m3.

There are totally 169 stations in the study area, and then distribution is shown in Figure 1. The area with lati-
tudes less than 38.06°N is the most densely populated inner city region with most observation stations there.
The domain size shown in Figure 1 is 21.89 km (zonal) × 22.24 km (poleward). The data period examined in
this study is from 2 November 2015 to 29 February 2016.

We have made further data quality control to the network observations. First, for the observation data with
value 0, they are set as missing. Second, if there are repeated values for no less than 3 times, it is likely that the
instrument has stopped working and the reporting system is simply repeating the last valid measurement
received (Rohde & Muller, 2015), and the data are also set as missing. Third, if there are only one or two
continually missing data, the PM2.5 value at the missing data time will be filled using a linear interpolation.
Fourth, we remove the unreasonable extreme values observed from ground stations using a variability check,
which is described as follows. For every station at a given time, we compare the PM2.5 observation (x) with the
average PM2.5 observation (y) from all stations within a 1 km circular domain around the station. If x > 2y or
x < y/2, the observations are assumed as extreme data and discarded. This method is similar as that used by
Rohde and Muller (2015).
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2.2. Method

First, for the considered data set, we introduce empirical variogram to estimate the magnitude of the spatial
heterogeneity over different region size. For observations zi (i = 1,…, k) at locations x1, x2,…, xk, the empirical
variogram γ(h) is defined as (Cressie, 1992)

γ hð Þ ¼ 1
2 N hð Þj j ∑ i;jð Þ∈N hð Þ zi � zj

�
�

�
�
2

(1)

where N(h) denotes the set of pairs of observations i, j, such that |xi� xj| = h, and |N(h)| is the number of pairs
in the set. h is often denoted as lag distance. The empirical variogram γ(h) varies with the distance h among
stations. Generally, but not always, γ(h) increases with h. Based on the variation of γ(h) with h, we can estimate
a distance R with relatively weak change of γ(h) to h for h ≤ R and large increase of γ(h) to h for h > R. The
distance R varies with the time scale considered. Thus, R is determined as a minimum of values with different
time scales. The spatial representativeness of PM2.5 obtained from a single station is determined based on the
PM2.5 spatial variability over the study period.

Second, we divide the whole study area into R × R grids. For each grid which includes stations no less than 3,
we analyze the coefficient of variation (CV) among the stations for their time-averaged PM2.5 concentration,
which is defined as,

CV ¼ Std
Mean= (2)

where the Std and Mean are the standard deviation and mean of the time-averaged PM2.5 concentration
among the stations within a grid, respectively. Equation (2) implies that CV can represent the relative varia-
bility of PM2.5 within a grid. We need set up a CV threshold value to classify low and high spatial variability
of PM2.5 for a grid. The CV threshold value is defined here as the ratio between the standard deviation and
the mean of all measurements for the study region, which is ~0.15. When CV is less than the threshold value
of 0.15 or the spatial variability is less than 15% of the mean within a grid, the grid is identified as a Grid with
nearly Uniform PM2.5 (GUP) concentration. Generally, the spatial representativeness of PM2.5 observed at GUP
might be larger than that at other grids and will be investigated and quantified in next few steps.

Figure 1. The 169 ground observation stations which lie within a domain with latitudes from 37.95°N to 38.15°N and
longitude from 114.40°E to 114.65°E. The map is from google map.
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We carry out the analysis of second step using all PM2.5 observations, using the PM2.5 observations at differ-
ent pollution levels, such as 0–35 μg/m3, 35–75 μg/m3, 75–115 μg/m3, 115–150 μg/m3, 150–250 μg/m3,
250–500 μg/m3, and >500 μg/m3. The air pollution level is classified based on the technical regulation on
ambient quality index (HJ633–2012) from the Ministry of Environmental Protection of the People’s
Republic of China (2012).

Third, for each R × R grid, we divide it into r × r (r < R) subgrids with a higher spatial resolution. Each subgrid
generally contains a very small number of stations, such as less than five. We then make regional average
within each subgrid to obtain a time series of averaged PM2.5. For each subgrid, we can define an index of
correlation (IC), which is

IC ¼ 1
n
∑ni¼1

ri
di

(3)

where ri and di are the correlation coefficient and distance between a given subgrid and others within a dis-
tance R of the given subgrid, respectively; n is the number of subgrids within a distance R to the given subgrid
(n ≥ 3). For these subgrids, the higher the IC value, the better the spatial representativeness. Those subgrids
within GUP or with an IC value higher than a threshold are denoted as the sub-Grids with spatial
Representativeness to be Determined (GRD). The spatial representativeness of GRD is most likely larger than
that of other subgrids.

Fourth, for a GRD (A), we examine every subgrid (B) within the study area to figure out if the PM2.5 measured
at A can represent that measured at B. We believe that high correlation of time series and small time-
averaged difference are the representative criteria. So we introduce two indicators, the correlation (R)
between the time series of PM2.5 observations at A and B, and the differences (D) in time-averaged PM2.5

mass concentration at A and B. When R is high and D is small, PM2.5 observations at A will have a good repre-
sentativeness to that measured at B. In this study, we adopted the threshold values of 0.9 and 30 μg/m3 for R
and D, respectively. R> 0.9 is adopted to make sure the high correlation, and 30 μg/m3 is actually about 15%
of the averaged PM2.5 mass concentration during study period which can ensure the weak spatial variation.
So, when R> 0.9 and D< 30 μg/m3, the PM2.5 mass concentration of subgrid B could be represented by that
at subgrid A. We should note that the threshold values for R and D could be subjective and affect the regional
representativeness we obtained. When more rigorous (loose) threshold values are adopted, there will be less
(more) GRDs identified with a good representativeness.

The subgrid A is also called sub-Grid of Representativeness (GR), and all subgrids that A can represent form a
subgrid collection. Considering that the subgrid collection of every GR is often discontinuous in space, we
need to add some subgrids into the collection to make them more continuous in space, which is somewhat
subjective and could introduce extra uncertainties to our study. The uncertainties caused by the filling could
vary by cases and are not discussed quantitatively here. The total subgrid collection obtained is the represen-
tative area of the examined GR or a station in GR.

After knowing the spatial representativeness of GRs, we can further estimate the minimum number of GRs
that can represent the study area as large as possible by analyzing the overlapping of the domains that all
GRs represent. Here is a rule: if the representative domain of GRA contains that of GRB, GRB will be removed
and only GRA will remain. By subtracting some GRs whose representative areas can be represented by other
GRs, we can find the minimum number of GRs that can represent the study area as large as possible. These
GRs are denoted as the Important Grids of Representativeness (IGR) in this study.

3. Analysis and Results
3.1. Spatial Heterogeneity

Figure 2 shows the time series boxplots of the medians of daily average PM2.5 mass concentration among all
stations in the study area from 2 November 2015 to 29 February 2016. We can see clearly the distribution
range of daily averaged PM2.5 mass concentration in the whole study area. Obviously, the serious pollution
period with large temporal (orange line) and spatial (gray lines) variations of PM2.5 mass concentration is from
26 November 2015 to 5 January 2016, during which the maximum PM2.5 mass concentration value for all of
the medians among all stations is more than 600 μg/m3. By contrast, there are two relatively clean air periods
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with more than 7 days each, which are from 16 to 25 November 2015 and from 12 to 20 February 2016. For
these two clean air periods, the median values of daily averaged PM2.5 mass concentration among all stations
are generally less than 100 μg/m3.

Figure 2 shows approximately periodic variations of PM2.5 mass concentrations. By defining a PM2.5 pollution
event as that PM2.5 increase from low to high followed by a decrease from high to low values, we can find
more than 10 PM2.5 pollution events in the study period. Except for the two relatively clean air periods, a
PM2.5 pollution event develops very fast in no more than 3 days from a clean start. The dissipation of the pol-
lution event is even faster, which is strongly related to the meteorological conditions such as strong wind
speed. Among the PM2.5 pollution events, there are serious pollution periods from the end of November
2015 to early January 2016. For these heavy pollution cases, there are strong variations of PM2.5 mass concen-
tration in both time and space, and the regional representativeness of PM2.5 observations at a single station
might be smaller during these periods compared to others.

The spatial distribution of PM2.5 varies with the time scale considered. We first examine the spatial distribu-
tion of PM2.5 on a monthly time scale. Figure 3 shows the spatial distributions of monthly averaged PM2.5

along with their variogram calculated by equation (1) for the study area in November–February. The monthly
region-averaged PM2.5 mass concentrations are 195 μg/m3, 268 μg/m3, 168 μg/m3, and 85 μg/m3 in
November–February, respectively. Spatially, the PM2.5 mass concentration is in general slightly larger in north
region (>38.1°N) and southeast edge. The variograms shows the similar trend with the lag distance (h) for all
months: the variogram is relatively small and varies slowly with the lag distance when h < 4 km and is large
and varies quickly with the lag distance (h) when h> 4 km. Figure 4 further shows the spatial distributions of
daily averaged PM2.5 and hourly PM2.5 along with their variograms. For the daily time scale analyses
(Figures 4a and 4b), we chose a relatively clean day on 21 November and a polluted day on 21 December with
region-average PM2.5 of 57 μg/m3 and 566 μg/m3, respectively. The variograms show the different change
with lag distance (h) as that found for monthly analyses in Figure 3. On the clean day, the variogram changes
drastically with lag distance compared with the polluted day. For the hourly observation analyses (Figures 4c
and 4d), we choose the noontime (12:00 Beijing time) of the clean and polluted days shown in Figures 4a and
4b. The change of variogram with lag distance (h) on the clean (polluted) day noontime is similar to (larger
than) that from daily time scale analyses. Roughly, the variogram has weak change with lag distance h< 2 km
in all cases except for clean days. Considering this, we next analyze the spatial variation of PM2.5 observations
within 2 km × 2 km grids.

3.2. Determination of Spatial Representativeness
3.2.1. The Spatial Distribution of PM2.5

The CV analysis is for spatial variation within a given domain/grid so that we choose the domain/grid without
high spatial variation as the GUP. To do this kind of CV analysis, we need make the domain/grid not too large
that we can recognize relatively clear spatial variability of CV and not too small that there are enough stations
(3–15 stations) within one grid for the calculation of CV. Based on the results shown in section 3.1, we classify
the study area into 2 km × 2 km grids and calculate the CV value for each grid that includes no less than three

Figure 2. The time series boxplot of the medians of daily averaged PM2.5 mass concentration in the study area from 2
November 2015 to 29 February 2016. The gray boxes represent the upper and lower quartile data range, and gray lines
represent the data range of the most extreme values that are considered to be not outliers that exceed 1.5 times inter-
quartile range from the upper and lower quartile.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027913

SHI ET AL. 3149



stations and at most 15 stations. According to the average value of PM2.5 mass concentration of the whole
study area, we classify the observation time into seven types with different pollution levels, which are
<35 μg/m3, 35–75 μg/m3, 75–115 μg/m3, 115–150 μg/m3, 150–250 μg/m3, 250–500 μg/m3, and
>500 μg/m3. Figure 5 shows the spatial distributions of the grid CV values under seven different pollution
conditions (Figures 5a–5g) along with that for all observation time (Figure 5h). Here we have adopted the
Universal Transverse Mercator system for the study region and set the origin of coordinates at the location
with longitude 114.4°E and latitude 37.95°N. The relative time frequencies for the classified seven pollution
levels during the study period are 18%, 17%, 12%, 8%, 18%, 21%, and 6%, respectively.

With a threshold value of 0.15 for CV in each grid, we determine the grid with nearly uniform PM2.5 mass con-
centration, that is, GUP. The GUPs, which are shown as empty triangles in Figure 5, vary with the pollution
conditions. Under the condition that region-averaged PM2.5 mass concentration is less than <35 μg/m3,
the CV value can be as large as 0.47 and there are only eight GUPs. The numbers of GUPs under other con-
ditions are 14, 17, 21, 19, 13, and 14 with increasing PM2.5 levels as defined above. We can see that the num-
ber of GUPs increases with PM2.5 mass concentration when it is less than 115–150 μg/m3 and decreases
when PM2.5 mass concentration is larger. Under the condition that region-averaged PM2.5 mass concentra-
tion is 115–150 μg/m3, there are the most GUPs (the number is 21) which make up a proportion of 87.5%
of the total effective grids in the study area, whereas the GUPs (16 grids) are about 66.7% of the effective

Figure 3. The spatial distribution of monthly averaged PM2.5 along with their variograms for the study area in November
(a), December (b), January (c), and February (d).
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grid points for the condition with all observation time. More GUPs represents that there are more grids with
uniform PM2.5 mass concentration, implying less local emission impacts for the study area. Thus, the results
shown above potentially suggests the shift from local source influence to regional background/long-range
transport influence to back to local to nearby high-emitting source influence when PM2.5 concentration
increase from low to high.
3.2.2. Temporal Correlation Analysis
The major purpose of IC analysis is to figure out the stations/subgrids that have good temporal correla-
tion of PM2.5 with surrounding regions. Thus, the subgrids for IC analysis should be as small as possible.
We could simply use the stations. Considering that most surface station observations have spatial repre-
sentative area larger than 0.5 km × 0.5 km and most of these subgrids contain only 1 or 2 (maximum is 5)
stations, we adopted the subgrid with a resolution of 0.5 km. For every 2 km × 2 km grid, we divide it
into subgrids with higher resolution, 0.5 km × 0.5 km. For every subgrid, it contains 1 to 5 ground sta-
tions, and the averaged PM2.5 measurements from these stations are used as the PM2.5 mass concentra-
tions at one subgrid. For all subgrids, we calculate their IC values using equation (3). As indicated earlier,
the higher the IC value, the better the spatial representativeness. Figure 6a shows the determined IC
values for all subgrids in the study area. We identify subgrids in 16 GUPs and the subgrids outside
GUPs with lager IC values (>0.4817, and 0.4817 is the median of all IC values) as the GRD. Figure 6b

Figure 4. The spatial distribution of daily averaged PM2.5 along with their variograms for the study area in a clean day of 21
November (a) and a polluted day of 21 December (b), and the spatial distribution of instantaneous PM2.5 along with their
variograms for the study area at 12:00 (Beijing time) on 21 November (c) and 21 December (d).
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Figure 5. The spatial distribution of coefficient of variation (CV) for each grid that includes no less than 3 stations and at
most 15 stations. Figures 5a–5g are for seven different pollution conditions with PM2.5 mass concentration as <35 μg/
m3, 35–75 μg/m3, 75–115 μg/m3, 115–150 μg/m3, 150–250 μg/m3, 250–500 μg/m3, and >500 μg/m3, respectively;
Figure 5h is for observations of all time. In a–h, the GUP is marked by the black empty triangle.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027913

SHI ET AL. 3152



shows the subgrids that are identified as GRDs. In total, 68 subgrids have been identified as GRDs in
which the PM2.5 observations could have a large spatial representativeness, and they have been
numbered as 1 to 68 from upper left to bottom right in Figure 6b.
3.2.3. Determination of the Representative Domain
Using the method indicated in section 2, we determine the GRDs that have good spatial representativeness.
Note that we have adopted the threshold values of 0.9 and 30 μg/m3 for R and D, respectively. It is found that
there are 50 GRDs, that is, those grids with serial numbers in Figure 7, which can represent their surrounding
subgrids with a total number of from 1 to 20. These 50 GRDs are denoted as GRs in this study. Figure 8 further
illustrated the spatial representativeness results using eight examples after filling the gaps among discontin-
uous subgrids in space. After filling, the 50 GRs have better spatial representativeness, with total representa-

tive area containing up to 49 subgrids. Thus, the representative domain
area of these 50 GRs ranges from 0.25 km2 to 12.25 km2. Considering that
other types of subgrids or stations could have a much weaker spatial
representativeness, we could roughly conclude that PM2.5 observations
over most stations in the study area generally have a spatial representa-
tiveness less than 12.25 km2 in winter. Another interesting result is that
the representative domain is not a circle, but with directional preference.
This is most likely related to the local meteorology and surface condition,
which is worthy of further examination in the future. One thing we should
note is that the representative domain is also limited by the observation
stations we have over the study area.
3.2.4. Determination of IGR
Considering the overlapping of the representative domains among the 50
GRs, we have carried out a merging analysis by removing those GRs with
small domains, which are mostly covered by larger domains represented
by other GRs. We found that PM2.5 mass concentration at 10 IGRs can
represent that at all stations during the study period. The GRD serial num-
ber, number of representative subgrids, and areas of representative
domain of these 10 IGRs have been listed in Table 1. The representative
domain of these 10 IGRs have also been illustrated in Figure 7, from which
we can see that these 10 IGRs have the ability to represent almost all the
subgrids observations in this study in winter 2015. Table 1 shows that
the minimum and maximum representative domain area for these 10
IGRs are 1.25 km2 and 16.25 km2, respectively.

Figure 9 shows the probability distribution denoted by the subgrid num-
ber of the representative domain area for 50 GRs and 10 IGRs. For the

Figure 6. The determined index of correlation (IC) values for all subgrids in the study area (a) and the subgrids in 16 GUPs
and the subgrids outside GUPs with IC > 0.4817 (b). The subgrids that are identified as GRDs are those yellow grids in (b)
with a total number of 68, which are numbered from 1 to 68.

Figure 7. The 50 GRs determined in this study and the representative
domains of the 10 Important Grids of Representativeness (IGRs), which are
shown by different colors. The overlapped area between two domains is
represented by a deeper color than the one that represents one domain
(e.g., deep blue, deep green, and deep yellow). Every grid with a number
represents a grid of representativeness.
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spatial representativeness of 50 GRs without merging, the spatial representative area is mostly 0.25–
12.25 km2 and only two GRs have a presentation area larger than 8 km2 with one GR about 9–10 km2 and
one GRs about 12–13 km2. For the IGRs with merging, the spatial representative area becomes larger while
still is 1–3 km2 for half IGRs. The representative area for the other half IGRs is between 3 and 16 km2 with
almost the same occurrence frequency. The maximum representative area for IGRs is 16.25 km2 as a result
of merging analysis, which is slightly larger than the maximum representative area of 12.25 km2 for GRs.

Figure 10 shows the identified IGRs along with the original stations within the study area. Clearly, the number
of IGRs and their representative domain are related to the availability and distribution of observation stations
in the study region. This implies that the representative domain could be underestimated when there are lim-
ited number of observation stations. As shown in Figure 10, the sparse distribution in space of observation
stations could cause no representative domain found for IGRs in some directions.

3.3. Evaluation
3.3.1. EOF Analysis
To evaluate the representativeness of the identified 10 IGRs above, we divide all effective subgrids into
two groups, Group A with 10 IGRs and Group B including all effective grids. For the two group data sets,
we carry out empirical orthogonal function (EOF) analysis. If the 10 IGRs have a good representativeness
of the whole region, the spatial and temporal components in EOF decomposing of Group A and Group B

will well correspond with each other.

Hourly PM2.5 value varies more significantly in time and space than
daily or monthly PM2.5 value. Daily average PM2.5 is often used for
the evaluation (Spangl et al., 2007), though hourly PM2.5 was used
in the process of determination of IGRs. To do an effective spatial-
temporal EOF decomposition, we need remove the days with inva-
lid data. There are total 93 days with valid data among 120 days,
with a time fraction of 77.5% of all 120 days. The EOF decomposi-
tion shows that the first principal components of both Group A
and Group B can explain the PM2.5 variations of 98.42% and
98.11%, respectively. Figure 11a shows that the first principal com-
ponents of Group A and Group B are highly correlated (r = 0.998).
Similarly, the first EOF patterns of Group A and Group B can explain
most of the PM2.5 spatial variations, and Figure 11b shows high cor-
relation (r = 0.932) between them. The results of spatial-temporal
EOF analysis indicate that the PM2.5 observations from 10 IGRs can

Figure 8. Eight examples for the spatial representativeness with filling subgrids. Red spots represent the grid of represen-
tativeness, yellow grids are the identified grid collection that measurement at Grid of Representativeness can represent,
and the green are filled grids.

Table 1
The GRD Serial Number, Number of Subgrids Represented, and Area of
Representative Domain (km2) of 10 IGRs

GRD serial number
Number of subgrids

represented
Area of representative

domain (km2)

4 11 2.75
8 5 1.25
10 13 3.25
48 39 9.75
68 11 2.75
16 65 16.25
52 21 5.25
67 7 1.75
40 8 2.00
55 19 4.75

Note. GRD = Grids with spatial Representativeness to be Determined.
IGR = Important Grids of Representativeness.
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well represent both spatial and temporal characteristics of PM2.5 obtained from all sites over the study
region.
3.3.2. Evaluation With Independent Data
The analysis in section 3.3.1 shows that the PM2.5 observations at 10 IGRs can represent the spatial and
temporal variations of all observations from 169 sites over the study region during the examined
4 months. We wonder whether they have the same good representativeness over other period. We here
use PM2.5 observations obtained during another period to check the representativeness of selected
10 IGRs.

The PM2.5 observations used here are for the period from 1 to 20 December 2016. For this 20 day period, we
have valid observations only at 67 stations. By regridding to 0.5 km × 0.5 km, we got 56 grids with valid data.
For the selected 10 IGRs, only six of them have valid data. For other four IGRs without valid data, one IGR was
removed since there are no observation stations with valid data around it, and three IGRs are replaced by
nearby subgrids which belong to GRs and have valid observation data. Similarly, we set the 9 selected
IGRs as Group A1 and all 56 grids as Group B1. These grids information has been shown in Figure 12a.

Figure 12b shows the comparison of daily average PM2.5 obtained
between Group A1 (blue box) and Group B1 (green box) using boxplots.
The observations from Group A1 agree very well with those from Group
B1 in both median and quartile values for all 20 days considered here. It
is also found that the daily average PM2.5 for Group A1 and Group B1
shows almost the same temporal variation with high correlation
(r = 0.999). These results suggest that the observations from selected
IGRs also have a good representativeness of all grid observations over
the whole area in December 2016, which indirectly evaluate the reliability
of the representativeness of 10 IGRs determined earlier.

4. Summary and Discussion

This study examines the spatial representativeness of PM2.5 mass con-
centrations observed at a single station or subgrid in a heavily polluted
large city in North China. A method has been developed based on the
spatial variability of PM2.5 observations in the study area. It first identi-
fies the stations or subgrids that are likely to have large spatial repre-
sentativeness by analyzing the variogram, the CV, and the index of
correlation (IC). Then the representativeness of a given station or sub-
grid is determined using the correlation and time-averaged difference
of PM2.5 measured between this station and others. Finally, the repre-
sentative domain is determined by filling the discontinuous locations
among the represented grids.

Figure 9. The probability distribution denoted by subgrid number of the representative domain area for 50 Grids of
Representativeness (a) and 10 Important Grids of Representativeness (b).

Figure 10. The identified Grids of Representativeness (GRs) (grids with num-
bers), Important GRs (IGRs) (yellow grids), and represented domain (gray
grids) along with the original ground stations within the study area.
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Temporal variation of PM2.5 observations shows more than 10 pollution events from November 2015 to
February 2016 in the study area. The spatial variability of PM2.5 shows a dependency on the time scale exam-
ined, as well on the pollution conditions. The spatial variability of PM2.5 increases with the pollution severity,
with the largest values in the heavy pollution period from the end of November to early January. When air is
heavily polluted, there are often weak winds and weak vertical mixing making the surface pollution follows
the distribution of emission sources.

The CV analysis using 2 km × 2 km grids indicates that the number of GUPs increases with pollution level
when PM2.5 mass concentration is less than 115–150 μg/m3 and decreases when PM2.5 mass concentration
is higher. It potentially suggests the shift from local source influence to regional background/long-range
transport influence to back to local to nearby high-emitting source influence when PM2.5 concentration
increase from low to high. By dividing every 2 km × 2 km grid into 0.5 km × 0.5 km subgrids, index of correla-
tion has been analyzed for every subgrids in order to determine GRDs with a criterion. For these GRDs, we can
calculate its correlation coefficient and time-averaged difference in PM2.5 mass concentration with other sur-
rounding subgrids. Then we identify 50 GRDs can represent some surrounding subgrids, and the 50 GRDs are
called GRs. We have also filled the gaps in space among discontinuous subgrids in order to get amore reliable
spatial representative domain for all GRs, and the total area of those subgrids are the spatial representative
domain of the GRs. It is found that the area of spatial representative domain of the GRs for the study period
is from 0.25 km2 to 12.25 km2.

Wehavealsomadeamerginganalysisbykeepingas fewobservation stationsaspossible,while theycanmostly
represent thewhole study area.We found that 10 IGRs have the ability towell represent thePM2.5 pollution sta-
tus over the same regionas representedby current 169 stations at the 4month time scale in this study. The area

Figure 11. (a) The scatterplot of the first principal components from empirical orthogonal function (EOF) analysis between
Group A and Group B; (b) the variation of first EOF patterns from Group A and Group B with 10 representative sites. The
blue boxes and red lines in (b) represent the upper and lower quartile data range and the medians of the first mode
results from spatial EOF pattern of Group B for grids represented by their IGRs. The black asterisk in (b) represents the first
mode results from spatial EOF pattern of Group A.

Figure 12. The grid network of 0.5 km × 0.5 km for PM2.5 observations in December 2016 (a), and the boxplots of daily
PM2.5 observations from both Group A1 (blue box) and Group B1 (green box) (b) from 1 to 20 December 2016. In (a), all
grids with numbers represent effective subgrids with PM2.5 observation. IGR = Important Grids of Representativeness.
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of representative domain is 1–3 km2 for half of the 10 IGRs, while the maximum representative area of the 10
IGRs is 16.25 km2. Two evaluation studies, the EOF spatial-temporal analysis and independent data analysis,
both suggest the validity of the representativeness of 10 IGRs determined in this study.

This study further suggests that station redundancy exists in current observation network, and an optimal sta-
tion setup framework could be made based on our proposed method here. Moreover, our analysis implies
that the spatial representative domain is most likely to be underestimated due to the limited PM2.5 observa-
tion information (sparse distribution of stations) in some directions around the GRs. In other words, the PM2.5

mass concentration measured over the 10 IGRs could represent the PM2.5 pollution status over a larger area
than what we have indicated.
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