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Abstract—Designing good error correcting codes whose gen-
erator matrix has a support constraint, i.e., one for which only
certain entries of the generator matrix are allowed to be non-
zero, has found many recent applications, including in distributed
coding and storage, multiple access networks, and weakly secure
data exchange. The dual problem, where the parity check matrix
has a support constraint, comes up in the design of locally
repairable codes. The central problem here is to design codes
with the largest possible minimum distance, subject to the given
support constraint on the generator matrix. An upper bound on
the minimum distance can be obtained through a set of singleton
bounds, which can be alternatively thought of as a cut-set bound.
Furthermore, it is well known that, if the field size is large enough,
any random generator matrix obeying the support constraint will
achieve the maximum minimum distance with high probability.
Since random codes are not easy to decode, structured codes
with efficient decoders, e.g., Reed-Solomon codes, are much more
desirable. The GM-MDS conjecture of Dau et al states that
the maximum minimum distance over all codes satisfying the
generator matrix support constraint can be obtained by a Reed
Solomon code. If true, this would have significant consequences.
The conjecture has been proven for several special case: when
the dimension of the code k is less than or equal to five, when
the number of distinct support sets on the rows of the generator
matrix m, say, is less than or equal to three, or when the generator
matrix is sparsest and balanced. In this paper, we report on
further progress on the GM-MDS conjecture. In particular, we
show that the conjecture is true for all m less than equal to
six. This generalizes all previous known results (except for the
sparsest and balanced case, which is a very special support
constraint).

I. INTRODUCTION

There has been a recent interest in finding an MDS code

with a generator matrix constrained on the support. This

problem appears in many areas such as distributed coding and

storage, multiple access networks, where each relay nodes has

access to a subset of the sources [1], [2], and weakly secure

data exchange, where users have a subset of the data packets

and want to exchange them without revealing information to

eavesdroppers [3], [4].

For a linear code with length n and dimension k, the

singleton bound on the minimum distance is dmin ≤ n−k+1.

To achieve this bound, namely for MDS codes, any k columns

of the generator matrix G should be linearly independent. Let

Si be the set of positions of the zeros in the ith row of G.

Then, for any subset I ⊂ [k], the columns indexed in
⋂

i∈I Si

will have zeros in all their entries in I .1 Since those columns

need to be linearly independent, for any nonempty I ⊂ [k],

k − |I| ≥

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

(1)

is a necessary condition for the code to be MDS.

It is not hard to show that generating a random matrix with

a constrained support satisfying (1) will result in an MDS

code with high probability if the field size is large enough

[5]. Nonetheless, since random codes are not easy to decode,

it is more preferable to design structured codes like Reed-

Solomon codes, which have efficient decoders. The GM-MDS

conjecture stated by Dau et al. [6] describes (1) as also a

sufficient condition for the existence of a Reed-Solomon code

whose generator matrix satisfies the support constraints.

Although the conjecture has many equivalent versions and

partial proofs have been proposed in [1], [4], [6], [7], it has not

been proven yet in general. Heidarzadeh et al. [7] proved it for

k ≤ 5. Halbawi et al. [1] proved the statement for m ≤ 3 if

there are m distinct support sets on the rows of the generator

matrix. In [8], [9], the result is proven when the generator

matrix is sparsest and balanced. Yan et al. [4] give a partial

induction step, a way to reduce the problem from k to k − 1
if one of the inequalities in (1) holds with equality for some

I such that |I| = k − 1.

We should mention that there is a related problem where,

given a support constraint on the generator matrix, one would

like to find a code with the largest minimum distance. This

is because not every support constraint will admit an MDS

code. Again it can be shown that, for a large enough field size,

a random generator matrix satisfying the support constraints

achieves the maximum minimum distance with high proba-

bility. In [6], it has been shown that the existence of Reed-

Solomon codes that achieve the maximum minimum distance

is equivalent to the GM-MDS conjecture studied in this paper.

Finally, we should mention that the dual problem where the

support constraint is on the parity check matrix, is of interest

in locally-repairable codes [10], [11].

In this paper, we will group the rows with the same support

constraint and prove the GM-MDS conjecture for m ≤ 6,

which improves all the previous results except the sparsest

1[n] represents the set {1, 2, . . . , n}
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and balanced case. Furthermore, we will give a more extensive

way for reducing the problem, which covers any equality case,

not limited to |I| = k − 1.

The rest of the paper is organized as follows. In the next

section we formulate the problem and, in fact, introduce a

slightly more general problem including multisets which will

be of use in our proof. The proof of the main result appears

in Section 3 and the paper concludes with Section 4.

II. PROBLEM SETUP

A. GM-MDS conjecture

Consider the generator matrix of a generalized Reed-

Solomon code:

GRS =











1 1 . . . 1
α1 α2 . . . αn

...
...

...

αk−1
1 αk−1

2 . . . αk−1
n











(2)

for distinct α1, . . . , αn ∈ Fq. For a nonsingular T ∈ F
k×k
q ,

define the k × n generator matrix

G = T GRS (3)

The GM-MDS conjecture [6] is

Conjecture 1: If S1, . . . , Sk ⊂ [n] satisfy for any nonempty

I ⊂ [k],

k − |I| ≥

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

, (4)

then, there exists q, α1, . . . , αn ∈ Fq and a nonsingular

T ∈ F
k×k
q such that Gij = 0 for all i ∈ [k] and j ∈ Si

where G = TGRS . ⋄

B. Grouping equal subsets

We will group the equal subsets and represent the position

of zeros in the rows of the generator matrix by the sets

S1, . . . , Sm with multiplicities r1, . . . , rm where
∑m

i=1 ri = k.

That is, the first r1 rows of G will have zeros at positions in

S1, the next r2 rows will have zeros at positions in S2 and so

on. Then, the condition (4) on these sets becomes

k −
∑

i∈I

ri ≥

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

(5)

for any nonempty I ⊂ [m].
Dau et al. [6] have shown that it is sufficient to prove only

the case when |Si| = k − 1 for i ∈ [k] in Conjecture 1. We

will first show that in the grouped case, it is sufficient to prove

the conjecture when |Si| = k − ri for i ∈ [m]:
Suppose (Si)

m
i=1 satisfies condition (5). Let S′

i = Si ∪ S′′
i

for i ∈ [m] and S′′
1 , . . . , S

′′
m be any partition of [n′]\[n] such

that |S′′
i | = k − ri − |Si| where n′ = n+

∑m

i=1 k − ri − |Si|.
Note that k − ri − |Si| ≥ 0 due to (5) for I = {i}.

Then, (S′
i)

m
i=1 will also satisfy the condition (5). De-

fine G′
RS ∈ F

k×n′

similarly by introducing new variables

αn+1, . . . , αn′ . If q, α1, . . . , αn′ , T is a solution for (S′
i)

m
i=1,

then q, α1, . . . , αn, T will be a solution for (Si)
m
i=1.

After this assumption, the span of the grouped rows in T
will be uniquely determined. Therefore, we can analyze the

singularity of one example:

T =



























0
∏

j∈S1
−αj . . .

∑

j∈S1
−αj 1

. .
.

. .
.

. .
.

∏

j∈S1
−αj . . .

∑

j∈S1
−αj 1 0

.

.

.

0
∏

j∈Sm
−αj . . .

∑

j∈Sm
−αj 1

. .
.

. .
.

. .
.

∏

j∈Sm
−αj . . .

∑

j∈Sm
−αj 1 0



























(6)

which is partitioned into m blocks where the ith block has

k − |Si| rows formed by the coefficients of the polynomials

pi, xpi, . . . , xk−1−|Si|pi where pi(x) =
∏

j∈Si
(x−αj). The

precondition

m
∑

i=1

k − |Si| =
m
∑

i=1

ri = k ⇐⇒
m
∑

i=1

|Si| = (m− 1)k (7)

ensures that the matrix T is k× k square. Furthermore, in the

multiplication T GRS , the rows will consist of the substitution

of αi’s in the polynomials of the form xℓpj , which will have

zeros at the desired positions.

As a result, we end up with an equivalent conjecture to

Conjecture 1:

Conjecture 2: For m ≥ 2, let S1, . . . , Sm ⊂ [n] such that

|Si| ≤ k − 1,
∑m

i=1 |Si| = (m − 1)k and for any nonempty

I ⊂ [m],

k −

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

≥
∑

i∈I

k − |Si|. (8)

Then, detT (which is a multivariate polynomial of αi’s) is

not identically zero, where T is given by (6). ⋄

From now on, we will assume that α1, . . . , αn are indeter-

minates and write detT = 0 or detT 6= 0 to indicate that the

determinant is identically zero or nonzero, respectively.

C. Extension to multisets

Multisets are the generalization of the sets where multiple

instances of the set elements are allowed [12]. The multiset

extension for the sets S1, . . . , Sm will be useful later in

the proof of our main results. Although multisets have

no meaning regarding the positions of the zeros in the

generator matrix, we can still define the matrix T in (6)

for Si’s being multisets, in which case, the polynomials

pi(x) =
∏

j∈Si
(x − αj) may have multiple roots. We will

not write the conjecture for multisets; however, the fact that

the condition (8) is necessary can be extended for multisets

as well:

Theorem 1: Let S1, . . . , Sm be multisets in the universe

[n] such that |Si| ≤ k− 1,
∑m

i=1 |Si| = (m− 1)k. Define the

matrix T as in (6). If detT 6= 0, then the condition (8) holds



for any nonempty I ⊂ [m]. ⋄

Now, we will introduce Proposition 1 and Lemma 2

regarding the multiset extension, which will be handy

later when proving our main results. Proposition 1 is

straightforward by definition of T in (6).

Proposition 1: Let S1, . . . , Sm be multisets in the universe

[n] such that |Si| ≤ k − 1 and
∑m

i=1 |Si| = (m− 1)k.

Let p1, . . . , pm be the polynomials defined as

pi(x) =
∏

j∈Si
(x− αj) for all i ∈ [m]. Then, detT = 0 if

and only if there exists some polynomials q1, . . . , qm, not

all zero, such that deg qi ≤ k−1−degpi and
∑m

i=1 qipi = 0. ⋄

Lemma 1: Let S1, . . . , Sm be multisets in the universe [n]
such that |Si| ≤ k−1,

∑m

i=1 |Si| = (m−1)k and
⋂m

i=1 Si = ∅.

Define S0 =
⋂m−1

i=1 Si and S′
i = Si\S0 for i ∈ [m]. Let T and

T ′ be defined as in (6) for (Si)
m
i=1 and (S′

i)
m
i=1 respectively

(for (S′
i)

m
i=1, we use k′ = k − |S0|). Then,

1) det T ′ 6= 0 implies detT 6= 0.

2) (Si)
m
i=1 satisfies the condition (8) if and only if (S′

i)
m
i=1

satisfies the condition (8) for k′ = k − |S0|. ⋄

Sketch of Proof: For the first part, if detT = 0, us-

ing Proposition 1, we have
∑m

i=1 qipi = 0, which yields

p0 , gcdi∈[m−1] pi divides qmpm. Since S0 ∩ Sm = ∅,

(p0, pm) = 1 and p0 divides qm. Then, dividing all the terms

in
∑m

i=1 qipi by p0 and using Proposition 1 again completes

the proof. The second part is straightforward by definition of

(S′
i)

m
i=1. �

III. MAIN RESULTS

Due to the lack of a complete proof for Conjecture 2, we

will apply the minimal counterexample method in order to

present all our findings and to show that the conjecture holds

for all m ≤ 6. If Conjecture 2 is not true, then, there will

be at least one counterexample which satisfies the conditions

in Conjecture 2 but for which, detT = 0. Among these

counterexamples, there will be one (or many) that is minimal

with regards to the parameters (m,n, k) when considered in

lexicographical order. In Lemma 2, some necessary conditions

are listed for a minimal counterexample. Note that these

conditions are not necessary for any counterexample but for a

minimal counterexample.

It will be needed in the statement of Lemma 2 to define a

new collection of sets (Qi)
n
i=1 where Qi = {t : i ∈ St} ⊂ [m].

Lemma 2: If Conjecture 2 is not true and (Si)
m
i=1 is a

counterexample such that (m,n, k) is the smallest possible in

the lexicographical order2, then, the following3 must be true:

i. For any nonempty I ⊂ [m] such that |I| 6= 1,m,

k − 1−

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

≥
∑

i∈I

k − |Si| (9)

2It turns out that Lemma 2 is also true for different orderings of (m,n, k).
3Although there are eight conditions listed, the last five are consequences

of the first three.

ii. For any i 6= j ∈ [n],

Qi ∩Qj = ∅ =⇒ Qj = [m]\Qi (10)

iii. For any i, j ∈ [n],

|Qi ∪Qj | 6= m− 1 (11)

iv. For any i 6= j ∈ [m], there exists ℓ ∈ [n] such that i ∈ Qℓ

and j /∈ Qℓ (Equivalently, Si 6⊂ Sj).

v. For any i ∈ [n], |Qi| ≤ m− 3.

vi. For any i ∈ [n],

|Qi| ≥
n− 1

k − 1
(12)

Furthermore, since n ≥ k + 1, |Qi| ≥ 2.

vii. There exists i ∈ [n] such that |Qi| ≥ 3.

viii. If |Qi| = 2 for some i ∈ [n], then, for any j ∈ [n],
|Qi ∩Qj| ≥ 1. ⋄

Proof:

i. Since detT = 0, by Proposition 1, there exist polynomials

q1, . . . , qm, not all zero, such that deg qi ≤ k − 1− deg pi
and

∑m

i=1 qipi = 0. Assume the contrary. Then, there

exists some I with 2 ≤ |I| ≤ m− 1 such that

k −

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

=
∑

i∈I

k − |Si| (13)

Let J = {0} ∪ [m] − I , S0 =
⋂

i∈I Si, p0 = gcdi∈I pi
and S′

i = Si − S0, p′i = pi/p0 for i ∈ I . Then, by (13),

(S′
i)i∈I and (Si)i∈J satisfy the conditions in Conjecture 2

(for (S′
i)i∈I , we use k′ = k− |S0|). By the minimality of

(Si)
m
i=1, Conjecture 2 is true for both (S′

i)i∈I and (Si)i∈J .

We can write that

0 =

m
∑

i=1

qipi =

(

∑

i∈I

qip
′
i

)

p0 +
∑

i∈[m]−I

qipi (14)

Using Proposition 1 for (Si)i∈J , we get qi = 0 for i /∈ I
and

∑

i∈I qip
′
i = 0. Then, by using Proposition 1 for

(S′
i)i∈I , we get qi = 0 for i ∈ I . Contradiction.

ii. Assume the contrary. Hence, there exists i 6= j ∈ [n] such

that Qi∩Qj = ∅ and Qi∪Qj 6= [m]. W.l.o.g. assume that

Qn−1 ∪ Qn = ∅ and m /∈ Qn−1 ∪ Qn. For all i ∈ [m],
define the sets

S′
i =

{

Si n /∈ Si (i /∈ Qn)

(Si\{n}) ∪ {n− 1} n ∈ Si (i ∈ Qn)
(15)

Since Qn−1∩Qn = ∅, if n ∈ Si, then n−1 /∈ Si yielding

|S′
i| = |Si|. Hence, we can define T ′ for S′

i’s and

detT ′ = det T |αn=αn−1
= 0 (16)



Since [m] 6⊂ Qn−1 ∪ Qn, |
⋂m

i=1 S
′
i| = |

⋂m

i=1 Si| = 0.

Since [n − 2] ∩ Si = [n − 2] ∩ S′
i, for any nonempty

I ⊂ [m],
∣

∣

∣

∣

∣

⋂

i∈I

S′
i

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{n− 1} ∩
⋂

i∈I

S′
i

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

{n, n− 1} ∩
⋂

i∈I

Si

∣

∣

∣

∣

∣

(17)

≤ 1 (18)

Therefore, for |I| 6= 1,m,

k −

∣

∣

∣

∣

∣

⋂

i∈I

S′
i

∣

∣

∣

∣

∣

≥ k − 1−

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

≥
∑

i∈I

k − |S′
i| (19)

Hence, (S′
i)

m
i=1 is also a counterexample with parameters

(m,n− 1, k). Contradiction.

iii. Assume the contrary. W.l.o.g. assume that

Qn−1 ∪Qn = [m− 1]. For all i ∈ [m], define the

multisets

S′
i =

{

Si n /∈ Si (i /∈ Qn)

(Si\{n}) ⊎ {n− 1} n ∈ Si (i ∈ Qn)
(20)

where ⊎ is the multiset summation. Then, similar to (ii),

detT ′ = 0. We have that |
⋂m

i=1 S
′
i| = |

⋂m

i=1 Si| = 0.

Denote by µS(j) the multiplicity of j in S. Then, for any

i ∈ [m], µS′

i
(n) = 0, µS′

i
(n− 1) = µSi

(n− 1)+ µSi
(n),

and µS′

i
(j) = µSi

(j) for j ∈ [n − 2]. Then, for any

nonempty I ⊂ [m],

∣

∣

∣

∣

∣

⋂

i∈I

S′
i

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

=

n−1
∑

j=1

min
i∈I

µS′

i
(j)−

n
∑

j=1

min
i∈I

µSi
(j) (21)

≤ min
i∈I

µS′

i
(n−1)−min

i∈I
µSi

(n−1) (22)

≤ min
i∈I

µSi
(n− 1) + 1

−min
i∈I

µSi
(n− 1) (23)

= 1 (24)

Therefore, for |I| 6= 1,m,

k −

∣

∣

∣

∣

∣

⋂

i∈I

S′
i

∣

∣

∣

∣

∣

≥ k − 1−

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

≥
∑

i∈I

k − |S′
i| (25)

So, (S′
i)

m
i=1 satisfies the conditions in Conjecture 2

except they are multisets. However, we can apply

Lemma 1 by defining S′
0 ,

⋂m−1
i=1 S′

i = {n− 1} and

S′′
i = S′

i\{n − 1}. Note that S′′
i ’s are normal sets

i.e. they do not contain any element with multiplicity

more than one. Then, by Lemma 1, (S′′
i )

m
i=1 is also

a counterexample with parameters (m,n − 1, k − 1).
Contradiction.

iv. Assume the contrary. Then, there exists i 6= j such that

Si ⊂ Sj . By (i),

k − 1− |Si ∩ Sj | ≥ 2k − |Si| − |Sj| (26)

yielding |Sj | ≥ k + 1. Contradiction.

v. Assume that Q1 = [m − 1]. Then, S0 =
⋂m−1

i=1 Si 6= ∅.

Apply Lemma 1. Hence, (S′
i)

m
i=1 is also a counter example

with smaller parameters. Contradiction.

Assume that Q1 = [m−2]. Then, by (iii), for any j ∈ [n],
|Q1 ∪Qj | 6= m− 1. Then, either |Q1 ∪ Qj | = m − 2
meaning Qj ⊂ [m − 2] or |Q1 ∪ Qj | = m meaning

m− 1,m ∈ Qj . Hence, there is no Qj containing m− 1
but not m. Contradiction due to (iv).

vi. Assume that Q1 = [ℓ]. Then, by (ii), for j = 2, . . . , n
either [ℓ] ∩ Qj 6= ∅ or Qj = [m]\[ℓ]. Hence, we can

partition the set {2, . . . , n} into

J1 = {2 ≤ j ≤ n : [ℓ] ∩Qj 6= ∅}, (27)

J2 = {2 ≤ j ≤ n : Qj = [m]\[ℓ]} (28)

If j ∈ J1, then Qj ∩ [ℓ] 6= ∅, which implies

j ∈
⋃ℓ

i=1(Si\{1}). Hence, J1 ⊂
⋃ℓ

i=1(Si\{1}). There-

fore,

|J1| ≤

∣

∣

∣

∣

∣

ℓ
⋃

i=1

(Si\{1})

∣

∣

∣

∣

∣

≤
ℓ

∑

i=1

|Si\{1}| = −ℓ+
ℓ

∑

i=1

|Si| (29)

where we use the fact that 1 ∈ Si for i ∈ [ℓ] since

Q1 = [ℓ].
If j ∈ J2, then Qj = [m]\[ℓ], which implies

j ∈
⋂m

i=ℓ+1 Si. Hence, J2 ⊂
⋂m

i=ℓ+1 Si. So,

k − |J2| ≥ k −

∣

∣

∣

∣

∣

m
⋂

i=ℓ+1

Si

∣

∣

∣

∣

∣

≥
m
∑

i=ℓ+1

k − |Si| (30)

As a result of (29) and (30),

n− 1 = |J1|+ |J2| (31)

≤ −ℓ+ k − (m− ℓ)k +
m
∑

i=1

|Si| (32)

= ℓ(k − 1) (33)

Thus, ℓ ≥ n−1
k−1 .

By (i), k − 1 − |S1 ∩ S2| ≥ 2k − |S1| − |S2|. Hence,

n = |
⋃m

i=1 Si| ≥ |S1 ∪ S2| ≥ k + 1.

vii. Assume the contrary. Then, for all i ∈ [n], |Qi| = 2. By

(v) and (vi), m ≥ 5. Then, by (ii), for any i, j ∈ [n],
Qi ∩ Qj 6= ∅; so, either Qi = Qj or |Qi ∩ Qj | = 1.

W.l.o.g. assume that Q1 = {1, 2}. Then, by (iv), for any

3 ≤ j ≤ m, there exists ℓj ∈ [n] such that j ∈ Qℓj and

2 /∈ Qℓj . Then, Qℓj = {1, j}. Then, for any i ∈ [n],
1 ∈ Qi. Then, there is no Qi containing 2 but not 1.

Contradiction due to (iv).

viii. Corollary of (ii) and (v).

�



A. Consequences of Lemma 2

Firstly, Lemma 2 allows us to make the assumptions listed

from (i) to (viii) when proving Conjecture 2. If Conjecture 2 is

true under these assumptions, then it must be also true without

these assumptions; otherwise, it will lead to a contradiction

for the minimal counterexample. For example, the condition

(i) implies that “it is enough to prove Conjecture 2 only for

the case where all the inequalities in (8) are strict”.

Secondly, if one of the conditions listed in Lemma 2 does

not hold, then, the problem can be reduced to the one with a

smaller parameter m,n or k. The way in which it is reduced

can be found in the proof of Lemma 2 for parts (i)-(iii).

Thirdly, it can help us to solve the problem for small

parameters. The conditions (v) and (vii) already imply that

Conjecture 2 is true for m ≤ 5 because by condition (vii),

there exists a set Qi with size at least 3, whose size is upper

bounded by m − 3 in condition (v). By a little more work,

we can also solve m = 6 as shown in Theorem 2:

Theorem 2: Conjecture 2 is true for m ≤ 6. ⋄

Proof: Assume the contrary. Then, there exists a minimal

counterexample S1, . . . , Sm such that m ≤ 6. By (v) and (vii),

m ≥ 6. Hence, m = 6. By (v) and (vi), |Qi| ∈ {2, 3} for all

i ∈ [n]. If Qi and Qj are size 3, then |Qi ∩Qj| 6= 1 by (iii).

There will be three cases:

Case 1. |{Qi : i ∈ [n], |Qi| = 2}| ≥ 2. Assume

that Q1 and Q2 are two different sets of size 2. By (viii),

their intersection must have exactly one element. W.l.o.g.

assume that Q1 = {1, 2} and Q2 = {1, 3}. By (viii), for

any i ∈ [n], |Qi ∩ Q1| ≥ 1 and |Qi ∩ Q2| ≥ 1; hence,

either 1 ∈ Qi or 2, 3 ∈ Qi. For any j = 4, 5, 6, there

is a set containing j but not 1, which has to be {j, 2, 3}.

Let Q3 = {2, 3, 4}, Q4 = {2, 3, 5}, Q5 = {2, 3, 6}. Let Q6

be the set containing 4 but not 2. Then, 1 ∈ Q6. Since

|Q4 ∪ Q6|, |Q5 ∪ Q6| 6= 5, we have 5, 6 ∈ Q6, which means

|Q6| ≥ 4. Contradiction.

Case 2. |{Qi : i ∈ [n], |Qi| = 2}| = 1. W.l.o.g. let

Q1 = {1, 2}. If Qi 6= Q1, then |Qi| = 3 and by (viii) either

1 ∈ Qi or 2 ∈ Qi. Let Q2 be the set containing 3 but not 2.

Then, wlog. Q2 = {1, 3, 4}. Let Q3 be the set containing 3 but

not 1. Then, Q3 = {2, 3, 4}. Let Q4 be the set containing 5 but

not 2. Then, Q4 = {1, 5, x} for some x. Since |Q2∩Q4| 6= 1,

x ∈ {3, 4}. Then, |Q3 ∩Q4| = 1. Contradiction.

Case 3. For all i ∈ [n], |Qi| = 3. Let Q1 = {1, 2, 3}. Let

Q2 contain 2 but not 3. Then, wlog Q2 = {1, 2, 4}. Let Q3

contain 2 but not 1. Then, Q3 = {2, 3, 4}. Let Q4 contain 3
but not 2. Then, Q4 = {1, 3, 4}. Let 5 ∈ Q5. Then, Q5 has at

least one element from {1, 2, 3, 4}. Wlog assume that 1 ∈ Q5.

Then, Q5 = {1, 2, 5}. |Q3 ∩Q5| = 1. Contradiction. �

IV. CONCLUSION

We have established the correctness of the GM-MDS con-

jecture of Dau et al. for m ≤ 6, where m is the number

of distinct support sets defined on the rows of the generator

matrix. The result subsumes all earlier known results on the

GM-MDS conjecture except for those pertaining to sparsest

and balanced generator matrices. Our results followed has a

careful study of properties that must hold for any minimal

counterexample to the conjecture. It remains to be seen

whether this approach can be extended to prove the conjecture

for values of m beyond 6.
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