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The diagonal Padé approximants of the perturbation series for the eigenvalues of the anharmonic os-
cillator @ 3kt perturbation of /,Z - K<) converge to the eigenvalues.

Recently there has been coasiderable interest
in applying the method of Padé approximants [1})
to strong interaction physics [2]. This interest is
based on the assumption that the diagonal Padé's
based on the Feynman series for the partial wave
scattering amplitude converge to tha “"correct
answer”. We report here a study of the Palé ap-
proximants for the energy levels., E;(3). of the
anharmonic oscillator whose Haniltonian is
p2 + k2 + 3x4. Our main resalt is that the diagon-
al Padé’s based on the Rayleigh-Schridinger
series for an«? perturbation of /)2 1 K© converge
for any eigenvalue and that the limit is the actual
eigenvalue.

We feel that this result is of some interest
both in itself. and in relation to the work of
Bessis et al. and Copley and Masson. The Hamil-
tonian p© + K2 + 3K is closely analogous to a
field theory with the Hamiltonian density :7¢: +
+ :(Vo)zz +m© 0% +3 107 :. The analogy is
strengthened by the fact that the perturbation
series for the Green’'s function diverge in both
cases. For the anharmonic oscillator it has been
proved and for the field theory it is hoped that
the series is asymptotic to the actual Green's
function. What we prove here is that for the
cigenvalues of the anharmonic oscillator. the
Padé approximants formed from the divergent
Ravleigh-Schriddinger perturbation series con-
verge to the right answer.

We first recall that the Padé approximants

* Under contract of C.1.C.P.
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associated with a formal power series. Eun P
are defined as follows: f[V-Mlis that unique ra-
tional function of degree M in the numerator and
N in the denominator satisfying

M+N
le'Ml(z) - i O(ZN+AI+1)

Apé =

Our proof of convergence will depend on anal-
ytic properties recently established for the an-
harmonic oscillator energy levels as functions of
the coupling constant ¥ [4.5]. Explicitly. we use:

(a) Ex(B: has an analytic continuation to a cut
plane. cul along the negative real axis I.

We return to a proof of this fact. which is the
heart of the argument, near the conclusion of the
note.

) ImE, (3 0ifImg O

This follows from the simple observation
Im E;(B3) - Im 3ady.

(c) The Rayleigh-Schridinger series is asymp-
totic to E,(3) as 3 -~ 0. uniformly in jarg3, = 7.
For 3 - 0. this follows from results of Kato

[7]. For arbitrary 3. it can be proved directly

T The earliest studies of analyticity used a non-rigor-

ous WKB related approximation (3]. In the field
theory case. there are no exact theories whose anal-
vtie properties can be similarly analvzed. However.
one is very close to a 1(.-‘)4)3 theory for which the Padé
approximants might converge [6).

This is a non-trivial statement since E, (3) has in-
finitely many branch points near 3 0 [4]. They
happen to he on the scecond sheet,
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using Hilbert space arguments [4] or from Kato's
results and the analytic and positivity properties
(a). (b)[5].

(d) For g large and fixed n. (E, B)l clplure=
C0n51der the Hamiltonian p2 + K2 + BiA (o
real. 0) with eigenvalues E 2(cv B). As Syman-
zik has pomted out [8]. since the scaling p — g p

K BV s umtarxly implementable. E,(1.53) =
,3" ‘E,,(,S"’ ) for 3 real. By analytic contmu-
ation, this holds in the entire cut 3 plane. Since
Epla, 1) is analytic at o = 0. the bound follows
withany C E,(0.1).
{e) Fix n. If a;), are the Rayleigh-Schridinger
coefficients for E,(3). then a,, == CD™ mM.
This follows from the usual recursive relations
for the a,,, by an inductive argument [4].
Now one proves that any diagonal Fadé se-
quence. f V.~ 1'([3) (j fixed). for an eigenvalue,
E(3). converges uniformly on compacts of the cut
plane. From (a). (b). (c) and (d), it follows that

o0
a, = (- l)’“lf yRdply)y  for a1 (1)
0
where
dp(y) = lim [#y]"}Im E(-y-1+ie)dy (2)
€ —0*
From (b). we conclude that dp(y) is a positive

measure so that (-a, ) defines a series of Stieltjes.
It thus follows from general theorems on Padé
approximants {1]. that fw 71 converges for any
fixed j T. say to Jj(B). Each fj obeys (a). (b). (c)
and thus both (2) and
dpj(y) = lim (z9)° 1Imf]( y-1iie)dy

€ —0*
solve the moment problem for the (a,). i.e.. obey
(1). By (e). >_\Ia |-1/@n+1) _ o g0, by a theorem
of Carleman [1]. p pj. Thusf E is entire and
has a zero asymptotic series. i. f E =0.
This completes the proof.

We have made numerical calculations for the
ground state to check the rate of convergence of
the Padé approximants. In table 1, we list
f[90 20](/3) for 3=0.1. 0.2, 1.0 computed us-
ing the Rayleigh-Schrodinger (oeff1c1enls found
by Bender and Wu {3|. We compare 712%- 20 with

= Using (» alone. one can prove :E,¢dy| - CjjBt. This
would imply (1) for » -2 which would suffice for our

results.

T In ref. 1. this is only proved for j - 0. when ¢q. (1)
holds! However. (—E(,’}))'1 ()bC\s ()= {d) with the in-
verse power series so (-E-H[N.Nj) _EW-j.N]

converges. One of us (B.S.) would like to thank Prof-
essor D.Masson for a discussion of this point.
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Table 1
Comparison of Padé with rigorous bounds.
3 Upper bound () Lower hound ¢y

7120.20) (¢

0.1 1.065 286 1.065 285 1.065 285509543

0.2 1.118293 1.118292 1.118292 654 3¢5
0.3 1.164 055 1.164 041 1164 047 1564230
0.4 1.204 548 1.204 791 1.204 810 31(0603)
0.5 1.241 957 1.2+ 811 1.241 853 9(48 135)
0.6 1.276 195 1.275909 1.275 983 (105974
0.7 1.308 110 1.307 324071 1.307 7T47(246 301)
0.8 1.338 096 1.337397 1.337 5401 726 579)
0.9 1.266442 1.364 3490 1.36566(2398 911
1.0 1.393371 1.392131 1.392 3(37 481 861)

() From Bazlev-Fox [12]. table 1. A Ravleigh-Ritz
method was used on the first Five even parity levels,

thy From Reid [12]. table 3 except as noted by (-) which
are taken from Bazlev-Fox |12].

(¢1 We have thrown out the last three digits from a
double precision answer assuming them insignificant
because of round-off error, The figures in p.u(ir,} I]gﬁos
represent digits which are not constant llomj on.

Table 2
_fl‘\l N l(ﬂ) forpg <1

N B 0.1 B 0.2 3 1.0

1 1.063829787234 1.111 111111111 1.272727272727

2 1.065217852490 1117540578275 1.348 289096707

3 1.065280680051 1.118 183011861 1.373 799864956
4 T.065285049128 1.118272 722955 1 .383 756197228

5 1.065285455329 1.118288405206 1.388 075603 359
6 1.065285502030 1.118291631 125 1.390103 754 651

7 1065285308357 1.1182923K2860 1.391116612108
8 1 065285509335 1.118292576:357 1.391 648 018 148
9 1.065285509503 1.115292630-404 1.391 93% 365 335
10 1.065285509535 1.118292646573 1.392102495074
11 1. - 1115292651 703 1.392 198 009 942
12 1. 543 1118292653416 1.392255010021
13 1.118292 654 014 1,392 289 7¢4 380
14 1118292651231 1.392311 424163
15 IIR 292654 313 1,392 325157322
16 500543 1118292651345 1.392333991 014
17 0632855005343 1118292651357 1.392 335973510
18 509543 1118292654 358 1.392:339 559160
19 309543 111K 292654352 1.392 3401 333 864
20 09543 1.1 07 1

392337481 861

rigorous upper and lower bounds as computed by
Bazley-Fox and Reid [9]¥. We note for compari-
son that the sum of the first 41 terms of the
Rayleigh-Schrodinger series is of order 10

1 Notice that we give this lower bound only as a check
of the numerical calculations. lndccd_l’[f'\’ V1, for pos-
itive 3 is itself necessarily a lower bound of E@3).
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even for 3 = 0.1. In table 2. we show the rate of
convergence of f{N N'(B) This get worse as [3 in-
creases which is to be expected smcef (/3
some constant Cy as 8 — while E(B) CB'”

3 =0,

Let us return to the proof of (a). the cut plane
analyticity for E,(3). The absence of poles and
non ramified isolated essential singularities for
Im 3 # 0 is a direct consequence of the Herglotz
property (b) [4.5]. When $ is real and positive,
analyticity is a consequence of the Kato-Rellich
theorems on regular perturbations.

To eliminate natural boundaries and branch
points a more detailed study is needed [5]. The
best characterization of an energy level for real
@ and 3 - 0 is the number of zeros of its wave
function inx space. It turns out that this notion
can be generalized to complex a and 3. Let us

start from the wave equation

2

HY = (- d2-+a.\'2 +,\-4)1.,b =Ela.DyYlxy.a.E)
dx

with the boundary condition

XN —+

¥~ exp-L3 for

The energy levels are given implicitly by
vy =0, a. E) =0 for odd levels

all/(x-O a. E)=0

ox

for even levels

where ¥(x = 0, a. E) is entire in @ and E. Around

a point o gEq. where £q is finite. the energy is

an analytic function of a fractional power of a-ag.
What we can prove by integrating ¥ *(2)[H - E] X

x Y (z) along rays in the complex z plane is the
following: for [argal 57 - €. € arbitrarily
small. |¥] is strictly positive for

l7-¢' argz in and -}7-argz- -l7+e’

and for | z| large if |argz| {7. Therefore if we

vary a continuously and hence E continuously (if
il does nol go through infinity) the number of ze-
ros of the wave functions in the sector |argz|
< 7 cannot vary. That E will remain bounded
during this continuous motion in the a plane is
established as follows: when we start, with o on
the real axis. we have a finite number of zeros »
in this sector. all of which are real. Now inte-
grating the wave equation from the origin in the
Volterra form we can prove that E|{ cannot get
too large for complex a because if it did the
"free" solution sin (VEz) or cos (VEz) would dom-
inate for finite |z| and. applying the Rouché
theorem to a suitable finite region inside |argz |

7 we would get a number of zeros larger than
n. which would be a contradiction *.

Since E remains bounded. the only possible
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singularities of E(«) are branch points. However,
if we turn around such a branch point and come
back to the real axis we fall back on a real wave
function with the same number of zeros z as the
one we started from. Therefore there cannot be
any branch point for |arga | 5. If we return
through scaling to the variable 8 we find that all
energy levels E,(3) are analytic in a cut plane.

Finally let us discuss the extension to x2™
perturbations and several dimensions. For K 2m
perturbatlons there are indications that a,, ~

DR pM -1 5o that Carleman’'s criterion
E|(1n|‘1/(2”*1) = o breaks down at k8. Since
Carleman’s criterions is sufficient but not ne-
cessary, our proof thatf; = E breaks down but
the equality may still hold. A numerical analysis
of this «8 problem is in progress (10]. Similarly
for several dimensional coupled anharmonic os-
cillators. one part of the proof breaks down: for
the proof that E, (3) has no branch points in the
cut plane depends on keeping track of zeros. a
more complicated affair in several variables.

It is a pleasure to thank A.Dicke. H. Epstein,
V. Glaser. D. Masson, E. Stein and K. Symanzik
for very valuable comments. Two of us (A. M.
and B. S.) are grateful to N. N. Khuri for arrang-
ing a meeting which stimulated this work.

* We hope to find an argument which does not make ex-
plicit use of the wave equation to show that E remains
bounded. but the matter is not vet completely clear.

It would obviously be hetter for it could be generalized
to more degrees of freedom.
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