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Abstract

High-dispersion spectroscopy of brown dwarfs and exoplanets enables exciting science cases, e.g., mapping
surface inhomogeneity and measuring spin rate. Here, we present L-band observations of HR 8799c using Keck
NIRSPEC (R=15,000) in adaptive optics (AO) mode (NIRSPAO). We search for molecular species (H2O and
CH4) in the atmosphere of HR 8799c with a template-matching method, which involves cross-correlation between
reduced spectra and a template spectrum. We detect H2O but not CH4, which suggests disequilibrium chemistry in
the atmosphere of HR 8799c, and this is consistent with previous findings. We conduct planet signal injection
simulations to estimate the sensitivity of our AO-aided high-dispersion spectroscopy observations. We conclude
that 10−4 contrast can be reached in the L band. The sensitivity is mainly limited by the accuracy of line list used in
modeling spectra and detector noise. The latter will be alleviated by the NIRSPEC upgrade.

Key words: methods: observational – planetary systems – planets and satellites: atmospheres – planets and
satellites: composition – techniques: high angular resolution – techniques: spectroscopic

1. Introduction

High-dispersion spectroscopy provides a way of resolving
spectral lines and extracting rich information therein. By
monitoring periodic line profile variation, surface inhomogene-
ity (e.g., clouds and/or spots) of a nearby brown dwarf (BD),
Luhman 16 B, has been retrieved via the Doppler imaging
technique(Crossfield et al. 2014). By comparing line width
with instrumental line broadening, the spin rate of a directly-
imaged exoplanets has been measured(Snellen et al. 2014;
Bryan et al. 2018). In addition, high-dispersion spectroscopy
can significantly increase the sensitivity of a coronagraphic
system, enabling detection and characterization of rocky
planets in habitable zones(Sparks & Ford 2002; Riaud &
Schneider 2007; Kawahara & Hirano 2014). Therefore, high-
dispersion coronagraphy (HDC) emerges as an active area of
study for future ground-based extremely large telescopes and
space missions(Snellen et al. 2015; Lovis et al. 2017; Mawet
et al. 2017; Wang et al. 2017; Hoeijmakers et al. 2018).

HR 8799 bcde is the only multi-planet system that has been
directly imaged(Marois et al. 2008, 2010). The system has
been extensively studied by previous observational campaigns.
The astrometric measurements of the four planets have been
measured to a few milliarcsecond precision(Konopacky et al.
2016; Wertz et al. 2017). The atmospheres of planets in this
system have been studied by multi-band photometry and low-
resolution spectroscopy(e.g., Skemer et al. 2014; Bonnefoy
et al. 2016; Zurlo et al. 2016). As one of the most scientifically
intriguing and the most studied systems, HR 8799 will be a
prime target for future HDC instruments(e.g., Lovis et al.
2017; Mawet et al. 2016).

Observing the HR 8799 planetary system with high-
dispersion spectroscopy aided by adaptive optics (AO) is a
major step toward future HDC observations. An AO system
significantly reduces the stellar light at the planet location
compared to the seeing-limited condition. High-dispersion

observation aided by AO thus reduces a major noise source:
photon noise of contaminating stellar light(Snellen et al.
2015). Konopacky et al. (2013) conducted AO-aided integral
field unit (R∼4000) observations of HR 8799c using Keck
OSIRIS. Using a template-matching method, which involves
cross-correlating the observed spectrum with a template
spectrum for the planet or an individual molecular species,
they detected water (H2O) and carbon monoxide (CO) in the
atmosphere of HR 8799c. A similar study was conducted for
HR 8799 b and resulted in simultaneous detection of H2O, CO
and methane (CH4) in the K band(Barman et al. 2015).
In principle, higher spectral resolution would lead to a higher

peak in a cross-correlation function (CCF), thus increasing
detection significance. However, there may be practical limits
because light is dispersed onto more pixels, e.g., detector noise.
As of today, AO-aided high dispersion spectroscopy of
exoplanets has been conducted on a few exoplanets for spin
measurements (Snellen et al. 2014; Bryan et al. 2018) and
molecular detection(Hoeijmakers et al. 2018, and references
therein).
In this paper, we report high-dispersion (R∼15,000)

observations of HR 8799c using Keck NIRSPEC in AO
mode. We attempt to (1) characterize its atmospheric chemical
composition and (2) understand the fundamental and practical
limits of AO-aided high-dispersion spectroscopy. This paper
will shed light on observations with upcoming instruments in
the near future, e.g., the upgraded NIRSPEC(Martin et al.
2014) and CRIRES+(Follert et al. 2014), and the Keck Planet
Imager and Characterizer(KPIC, Mawet et al. 2016). With the
higher sensitivity provided by these instruments, there will be
more targets and higher signal-to-noise ratios (S/N) for studies
of BDs and exoplanets.
The paper is organized as follows. We present the

observation in Section 2. In Section 3, we provide details of
the procedure to reduce raw data to wavelength-calibrated
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spectra. We describe our data analyses and the extraction of the
planet signal in Section 4. Results are reported in Section 5. We
conduct sensitivity analyses in Section 6 in order to understand
the threshold planet/star flux ratio to which our observation
and data reduction are sensitive. Conclusions and a discussion
are given in Section 7.

2. Keck NIRSPAO Observation of HR 8799c

2.1. Instrument Setup

We observed HR 8799c using NIRSPEC in AO mode in the
L band with the “ML” filter. We selected a slit size of
0 068×2 26. The first value, 0 068, is slit width. The slit
width is sampled by 5 pixels on the detector, corresponding to a
spectral resolution of R∼15,000. We chose this slit width to
ensure sufficient planet flux enters the slit in the presence of
guiding error and the resulting flux loss. The second value,
2 26, is the slit length. The slit length ensures that both the star
and planet c are contained within the slit. Planet–star separation
and position angle were calculated to milliarcsec and a tenth of
a degree precision for the epochs in which observations were
conducted. Two independent codes for astrometry prediction
were used(Wang et al. 2016; Wertz et al. 2017) and they gave
consistent values for separation and position angle (see
Table 1).

We set slit angle to match the position angle of HR 8799c.
In this setup, spectra of both star and planet are recorded on the
detector. We use the stellar spectrum as a reference for both
telluric line absorption and planet position. HR 8799 is an
early-type star (Teff=7435 K and =glog 4.35) and rotates
relatively fast with a v isin of 37.5 km s−1 (Gray & Kaye 1999),
so we used it as a telluric standard. Because we know the
precise planet–star separation, the planet spectrum (while not
visible in raw data) can be traced relative to the stellar
spectrum.

We observed astrometric standard stars to measure the plate
scale (in the unit of arcsec per pixel) along the slit direction.
This is used to convert the planet–star separation in the unit of
arcsec to pixels along the slit. HO 482 AB(Prieur et al. 2014)
was chosen from the Sixth Catalog of Orbits of Visual Binary
Stars(Hartkopf et al. 2001).6 At the time of observation (UT
2016 August 14), the position angle and angular separation
were 15.10 degrees and 0 558 for HO 482 AB. We reduced the
astrometric standard stars the same way as we did for HR
8799c data (see Section 3). The resulting plate scale was
0 0179±0 0006. The planet scale uncertainty was calculated
using the root mean square (rms) of the measurements from

five spectral orders. The actual uncertainty of plate scale may
be larger because of systematic errors in determining the orbit
of the astrometric standard star, HO 482 AB. Following Prieur
et al. (2014), we estimated the actual uncertainty of plate scale
to be 0 001.

2.2. Observing in the L Band

We observed HR 8799c in the L band on UT 2016 August
12–14, 2017 July 6, and 2017 November 6. Data obtained on
August 14 were not used because of one-magnitude cloud
extinction and highly variable sky background and water
content. A summary of observations is given in Table 1.
We used the “Stare” mode, in which a target stays at a fixed

position in the slit without any dithering pattern. The “Stare”
mode allowed for a more effective duty circle, as no overhead
was incurred by dithering. Total on-target time was 15.6 hr.
Compared to the wall time duration of 18.2 hr, the duty circle
was 86%.
Exposure time was set to be 60 s and 3 coadd per frame. We

obtained 74, 79, 78, and 81 frames on four respective half-
nights. On UT 2016 August 12–13 and 2017 July 6, peak flux
recorded on the detector was ∼8000 ADU, depending on target
airmass and seeing condition. On 2017 November 6, peak flux
was ∼4000 ADU because of poor AO performance despite
good seeing condition.
Sky background in the L band is a major noise source. We

therefore list in Table 1 the range of sky background
fluctuation, which was mostly between ∼1000 and 2000
ADU. The values were well below the nonlinear range for
NIRSPEC detector (15,500 ADU) and the charge persistence
threshold (4000 ADU).7

2.3. Observing in the K Band

We observed HR 8799c in the K band on UT 2016 August
11. The K-band data allowed us to independently measure the
absolute radial velocity (RV) for HR 8799 (Section 5.1.2).
Exposure time was set to be 60 s and 1 coadd per frame. Peak
flux recorded on the detector is ∼10,000–20,000 ADU
(gain=5.8 e−1 per ADU), depending on target airmass and
seeing condition.

3. Data Reduction

3.1. Adapting PyNIRSPEC to “Stare” mode Observation

We reduced raw data from NIRSEPC using the Python-
based package PyNIRSPEC(Boogert et al. 2002; Piskorz et al.

Table 1
Summary of L-band Observations for HR 8799c

Date Startinga Endinga Duration Seeing Separation PA Starb Skyb

UT hh:mm hh:mm hh:mm arcsec mas degree ADU ADU

2016 Aug 12 10:54 15:14 4:20 0 60 944.4±0.9 329.8±0.1 7969 1015–1859
2016 Aug 13 10:50 15:18 4:28 0 60 944.4±0.9 329.8±0.1 8438 1066–1588
2017 Jul 06 10:34 15:04 4:30 0 80 942.0±1.3 331.4±0.1 7273 970–1702
2017 Nov 06 05:22 10:14 4:52 0 54 941.2±1.5 331.9±0.1 4902 1131–2609

Notes.
a In UT.
b Per pixel at 3.8 μm.

6 http://ad.usno.navy.mil/wds/orb6/orb6frames.html 7 https://www2.keck.hawaii.edu/inst/nirspec/Specifications.html
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2016; Bryan et al. 2018). Because PyNIRSPEC is customized
for data obtained with a dithering pattern, we adapted the code
so that it worked for the “Stare” mode observation.
Specifically, we treated HR 8799 data as the data for dither
position “A.” We added another set of mock-up data with zero
values for all pixels and treated the mock-up data set as the data
for dither position “B.” In this way, PyNIRSPEC can
successfully process the data obtained in the “Stare” mode.

3.2. Data Reduction Procedures in PyNIRSPEC

Raw images were subtracted by darks and then flat-fielded.
Bad pixels were identified in dark frames and their values were
replaced by interpolating surrounding pixels.

The raw images were then divided into different orders
(Figure 1). Each order was processed independently, including
the following procedures: rectification and wavelength calibra-
tion (as detailed in Section 7.4). The final data products of
PyNIRSPEC are wavelength-calibrated rectified 2D spectra.

4. Data Analyses

HR 8799c is 2×10−4 times the flux of its host star in the L
band(Currie et al. 2014). In a reduced 2D spectrum, the planet
signal is entirely overwhelmed by the sky background
emission. Stellar continuum has a flux level of a few tens of
thousands electrons per pixel. In comparison, the planet signal
is only a few electrons per pixel. Additionally, correlated noise
from the detector is another form of non-negligible noise and
needs to be removed. We describe our strategy of cleaning the
planet spectrum based on principle component analysis (PCA)
in Section 4.2. In Section 4.3, we describe the procedures of
extracting planet signal using a template matching method.

4.1. Grouping 2D Spectra

In principle, one could combine all 2D spectra and conduct
data analyses to extract planet signal. However, we found that
features in the 2D spectra changed over time. For example,
speckles appeared and disappeared in slit. The potential for
capturing time-varying features in spectra is lost when stacking
up all data.

On the contrary, using the 2D spectrum from a single frame
is prone to stochastic phenomena such as cosmic ray events.
After experimenting with a set of grouping numbers ranging

from 6 to 40 frames, we decided to group every 10 frames and
use the median for subsequent analyses. This corresponds to a
34 minute time duration for an L-band observation. We found
that, in such a timescale, speckle features in the obtained 2D
spectra remained relatively stable and cosmic-ray events were
removed reasonably well.

4.2. Principle Component Analysis

Planet signal is buried in a variety of noise sources, including
photon noise, speckle noise, and detector noise. Among these
noise sources, photon noise is fundamental and impossible to
circumvent. However, speckle noise and detector-correlated
noise may be removed. This can be done by building a model
of patterns caused by these noises at positions excluding the
planet location. The model is then applied to the planet location
to correct for the noise patterns. This goal can be achieved by
PCA as detailed below.

4.2.1. Extracting 1D Spectrum

In the following, we describe the procedure to extract a 1D
spectrum from a 2D rectified wavelength calibrated spectrum.
The slit direction of the 2D spectrum was oversampled by a
factor of ∼4 with a plate scale of 0 0045 per pixel. We
extracted a 1D spectrum at a given slit location with the
following equation:

d= · ( ) ( )S I K , 1i i j j,

where i and j are pixel numbers along the dispersion direction
and the slit direction, Si is the 1D spectrum at the jth pixel along
the slit, Ii,j is a 2D spectrum, and Kj is a kernel function in the
form of a Gaussian function that centers at the jth pixel with a
varying δ, i.e., the standard deviation of the Gaussian function.
The chosen δ ranged from 0 009 to 0 063, i.e., from a fraction
of the stellar point spread function (PSF) full width at half
maximum (FWHM) to about one PSF FWHM. The wavelength
for each pixel i can be calculated using the wavelength solution
obtained in Appendix A.2.

4.2.2. Building a Reference Library for 1D Spectra

Correlated noise may exist in both the spatial and temporal
dimensions. In order to capture the correlated noise and remove

Figure 1. Reducing L-band raw data (left) into rectified 2D spectra (right). On the left side of the detector, the noise pattern is repeated every eighth row. In raw data,
the height of each order is 130 pixels on the left side and 120 pixels on the right side. The spectral trace of HR 8799 is clearly visible along with sky emission lines. In
contrast, the spectral trace of HR 8799c is buried in noise and thus not visible from either raw data or reduced 2D spectra. The gray box indicates the region used for
subsequent data analyses.

3

The Astronomical Journal, 156:272 (12pp), 2018 December Wang et al.



it from the planet spectrum, we built a 1D spectral library that
encompassed both the spatial and temporal dimensions (see
illustration in top left panel of Figure 2). For each 2D spectrum,
we extracted 1D spectra at different positions along the slit
direction. The locations for the 1D spectra excluded two ends
of the slit with a height of 2×δ and the areas in the vicinity of
the planet, ±3×δ from the planet location. The 1D spectra
were extracted with an increment of 2×δ along the slit.

We repeated the same procedure for 2D spectra taken at
different times. This allowed us to build a 1D spectral library
for the following PCA.

4.2.3. PCA for Highly Correlated Spectra

Not all spectra in the library were useful in identifying
correlated noise in 1D planet spectrum. Intuitively, only those
spectra that were close to the planet spectrum in the spatial and
temporal dimension were correlated with the planet spectrum.
We identified the highly correlated spectra in our library via the
cross-correlation method. We cross-correlated the planet
spectrum with all spectra in the library and picked the ones
that gave a significant peak (above three times the root mean
square, i.e., rms) in the CCF. Typically, we had at least 30
highly correlated spectra for PCA (see an illustration in the top
right panel of Figure 2).
We subtracted the median value off the highly correlated

spectra and normalized each spectrum by dividing the

Figure 2. Illustration of data reduction and analyses. Top left: building a spectral reference library. Star, planet, and reference traces are marked in red, green, and blue,
respectively. Top right: raw planet spectrum (green) vs. reference spectra (blue). The spectra share many similar features, e.g., regions marked in gray. Bottom right:
PCA removes common features shared by the raw planet spectrum and reference spectra. Cleaned planet spectrum (green) is cross-correlated with template spectra
(CH4—blue, H2O—red). Bottom left: CCFs and stellar RV marked as red dashed lines.
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difference of the 90th and 10th percentile values. We then
conducted PCA and found the principle components in these
spectra, which were later subtracted from the planet spectrum.
The first few principle components are normally caused by
speckle noise, detector-correlated noise, and telluric features.
We describe the PCA math with the following equation:

= ( )S UEV , 2T

where S is an n×m array, m is the number of pixels of each
spectrum, and n is the number of spectra that are highly
correlated with the planet spectrum, U, E, and VT are the result
of single value decomposition (SVD) of S. Here, U is an n×n
array that contains the left singular vectors, E is an n×n
diagonal matrix of the singular values (or the eigenvalues), and
VT is an n×m array containing the right singular vectors,
where T denotes the transpose operation. Columns in V are
eigenvectors, representing principle directions.

4.2.4. Removing Principle Components from the Planet Spectrum

We projected the planet spectrum onto principle directions
and subtracted the first few projections from the planet
spectrum. This helped to remove any correlated noise from
the planet spectrum. The operation is described by the
following equation:

å= - ´
=

˜ ( · ) ( )P P P V V , 3i i
k

N

i k k
1

where P and P̃ are the planet spectra before and after the first N
principle components are removed, i is the subscript for pixel
number, k is the subscript for eigenvector number, and Vk is the
kth eigenvector from PCA.

4.2.5. Combining Planet Spectra at Different Times

We denote the planet spectrum after PCA as the reduced
planet spectrum. Because the reduced planet spectra were
obtained at different times, we describe how they were
combined to form a final planet spectrum for subsequent
analyses.

We subtracted the median value from each reduced planet
spectrum. We formed a p×m array of reduced planet spectra
for PCA, where m is the number of pixels in each reduced
planet spectrum and p is the number of spectra at different
times. We used the first principle component of the p×m
array, i.e., E11×V1 (see Equation (3)), as the final planet
spectrum. This is very similar to taking the median of all
reduced planet–planet spectra. For example, the L-band final
planet spectrum is shown in the bottom right panel of Figure 2.

4.3. Template Matching

4.3.1. Generating Templates

We generated high-resolution emission spectra using well-
tested atmospheric modeling tools. Temperature structures
were generated for models that iterated to radiative-convective
equilibrium, in the absence of a parent star, assuming
equilibrium chemistry, following Marley et al. (2002, 2012)
and Fortney et al. (2008). We then generated line-by-line
spectra at R=200,000 using the code described in the
appendix of Morley et al. (2015). To isolate the contributions
of particular molecules, most spectra were generated with one

or two molecules, namely CH4 and H2O, with all other opacity
removed. The model opacity database was described in detail
in Freedman et al. (2008), with updates in Freedman et al.
(2014) and references therein. In particular, for CH4 and H2O
respectively, the first-principles line lists of Yurchenko &
Tennyson (2014) and Barber et al. (2006) were used.

4.3.2. Template Matching With Cross-correlation

Planet signal can be extracted by cross-correlating the final
reduced planet spectrum with a template spectrum. While the
planet signal is overwhelmed by noise at single pixel level, the
cross-correlation operation integrates planet signal of all pixels
with a matching template. This technique has proven to be
effective in extracting faint planet signal in the presence of
strong contamination(e.g., Snellen et al. 2010; Piskorz et al.
2016).

4.3.3. Combining Cross-correlation Functions

Because cross-correlation was performed for each spectral
order, we describe here how CCFs were combined to construct
the final CCF. Each CCF was normalized by its rms value and
resampled into the same velocity scale. Next, CCFs for
different orders were summed up to form a CCF for a single
night. Note that we gave equal weight to each order in the
summation process. While the weight may be different and
determined by CCF S/N for each order(Bouchy et al. 2001),
we were concerned whether the measured CCF S/N for each
order accurately reflected the information content therein, given
unknown noise properties and the choice of window function.
Alternatively, we could in principle inject simulated signal into
each order and estimate the contribution to combined CCF.
However, model uncertainties such as molecular abundance,
mixing ratio, and cloud coverage may significantly alter the
flux of the planet and the spectral information in each order,
making the determination of order contribution impractical. As
such, we assigned equal weight to each spectral order to
construct a combined CCF for each night.
To construct the final CCF, we also summed up CCFs for

different nights with weights that are determined by injection
simulation (see Section 6.2). The weights are a measure of data
quality for each night. The final CCF was used to detect
atmospheric molecular species and to access the detection
significance.

4.3.4. Using Templates for Single Molecular Species

Templates involving multiple molecular species are more
uncertain than templates for single molecular species, because
the former has an additional parameter, i.e., mixing ratio
between different species (as will be shown in Section 7.1).
Therefore, we use template spectra for single molecular
species, namely H2O and CH4. These two species dominate
opacity in the L band. Using templates for single molecular
species circumvents the caveat of miscalculating the relative
abundance. The results for single species can be combined to
create a stronger peak in the resulting CCF(Konopacky et al.
2013; Hoeijmakers et al. 2018) if the model for multiple
species is correct.

5
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4.3.5. Exploring Optimal Parameters for Planet/Molecular Detection

In the data analyses procedures described in this section,
there are several parameters that can be changed to optimize the
data analyses. These parameters are (1) the standard deviation
of the Gaussian function used to extract the 1D spectrum,
which is referred to as extraction width; (2) the number of
principle components to be removed from the planet spectrum;
and (3) the planet location. The planet location may vary in
pixel space because of the uncertainty of the plate scale we
measure. We stepped through the above three parameters
within a reasonable range in order to fully explore the optimal
parameters in data analyses. Specifically, extraction width
ranged from 0 009 to 0 063; a maximum number of 20 was
set for principle components to be removed; and positional
error for the planet was assumed to be 4%, consistent with the
measurement error of the plate scale. The optimization was
done on a nightly basis because observation condition varied
from night to night.

5. Result

We find a peak in the H2O CCF that shows a consistent RV
with the stellar RV of HR 8799 (see the bottom left panel of
Figure 2). We find no significant peak in the CH4 CCF.

5.1. Detection of H2O in the L band

We detect H2O in the L band in the atmosphere of HR
8799c with an S/N of 4.6 (Figure 2). CCF S/N is defined as
the ratio between the peak value and the CCF rms. Below, we
provide multiple lines of evidence for the detection.

5.1.1. Uncertainty of Each CCF Data Point

Each data point of the CCF has its own uncertainty, which is
estimated using the jackknife resampling method. Specifically,
we create eight subsamples by removing one of the eight
grouped L-band spectra in each night. We then redo the data
analyses on the eight subsamples, resulting in eight CCFs. An
estimate of each data point of the CCF x̄ is:

å=
=

¯ ¯ ( )x
n

x
1

, 4
i

n

i
1

where x̄i is the CCF data point of the subsample that leaves the
ith subsample out and n is the total number of subsamples. The
variance of the CCF data point is:

å=
-

-
=

( ¯ ¯) ( )n

n
x xVar

1
. 5

i

n

i
1

2

We use the 1σ value as the uncertainty of each data point of the
CCF, i.e., s = Var .

5.1.2. Consistent Planet and Star Radial Velocities

The H2O CCF peak has an RV of 8.9±2.5 km s−1. Positive
RV indicates blueshift throughout this paper. In comparison,
we measure the stellar RV at 10.9±0.5 km s−1. We describe
below how planet RV and stellar RV are calculated.

We fit the CCF with a Gaussian function. The peak of the
Gaussian function is 8.9±2.5 km s−1. We estimate the
uncertainty by randomizing CCF data points based on their
uncertainties and repeating the fitting process.

We measure stellar RV using the Hydrogen Bracket gamma
line in the K band (λ0=2.16612 μm). There are two telluric
lines next to the Bracket gamma line at λ=2.16345 μm and
λ=2.16869 μm. We can therefore calibrate the wavelength in
the Bracket gamma line region. Anchoring the two telluric
lines, we use a linear fit to calculate wavelength as a function of
pixels. We then use a quadratic function to fit for the line center
of the Bracket gamma line. We measure the stellar RV at
10.9±0.5 km s−1. In comparison, the RV for HR 8799 is
12.6±1.4 km s−1 (Gontcharov 2006). These two values are
consistent within 1-σ, and both values agree with the
planet RV.
Planet RV due to orbital motion needs to be taken into

consideration when comparing planet RV and stellar RV.
Semi-amplitude of planet orbital RV is estimated at 2.7 km s−1

assuming a nominal plant mass of 7 Jupiter mass, a nominal
stellar mass of 1.47 solar mass, and orbital parameters reported
in Wertz et al. (2017). The time of periastron passage for HR
8799c is largely uncertain because only partial orbit has been
observed. Planet orbital RV can range from −2.7 to 2.7 km s−1,
depending on the value of the time of periastron passage within
measurement uncertainty. However, the measured CCF RV is
not significantly altered by the planet orbital RV even when the
full range of possible planet orbital RV is considered.

5.1.3. Low False Positive Rate

CCF S/N is sensitive to the choice of window function and
noise properties; we discuss here a more appropriate way of
assigning detection significance. We investigate the probability
of the CCF peak arising from random fluctuation. We follow
the same data analysis procedure, except that we permutate the
final spectra before cross-correlating with a template spectrum.
We repeat this exercise 105 times. We find that two of the
randomization processes produce a CCF peak with an S/N
higher than 4.6. This corresponds to a false positive rate of
2.0×10−5, which translates into a detection significance of
4.2-σ.

5.1.4. Favorable Bayesian Information Criterion

We compare the Bayesian Information Criterion (BIC) for
two models: a Gaussian function and a flat line. This is to test
whether a Gaussian fit to the CCF has a lower BIC than a flat
line fit, i.e., the CCF is better represented by a Gaussian
function than a flat line. We calculate BIC with the following
equation:

= -( ) · ( ˆ) ( )n k LBIC ln 2 ln , 6

where n is the number of data points of CCF, and k is the
number of free parameters in a model. For the Gaussian model
we use, there are four free parameters, including a y offset from
zero, amplitude, mean, and standard deviation. The flat line
model has only one free parameter, i.e., the y offset from zero.
In Equation (6), ( ˆ)Lln is the log-likelihood function:
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where xi is the ith data point of a CCF, σi is the associated
measurement uncertainty, and μ is the predicted value at the ith
data point by a model.
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Based on Equation (6) and (7), the difference of BIC
between a Gaussian model and a flat line model is −49.9,
strongly favoring a Gaussian model.

5.1.5. Non-detection of H2O at the Star Location

Because Earthʼs atmosphere also contains the molecular
species that we are searching for, we test here whether sky,
telluric, and other correlated noise removal residual would
result in a false detection. We change the search location to the
star location and perform the data analyses as described in
Section 4. To demonstrate that the PCA residual (after
removing telluric lines and correlated noise) does not cause a
false detection, we cross-correlate the residual with an H2O
template. As shown in the top panel of Figure 3, no significant
CCF peak is found.

We also demonstrate that telluric lines are successfully
removed. This is shown by cross-correlating the PCA residual

with a telluric line template. The resulting CCF does not show a
significant peak (middle panel of Figure 3).

5.1.6. Non-detection of H2O When Injecting a Flat Spectrum

To further test the validity of the H2O detection as shown in
Figure 2, we show here that the CCF peak only appears when
there is a planet signal and when the spectrum of the planet
matches with the template. As will be described in Section 6.2,
we inject a flat (featureless) spectrum with a planet–star
contrast of 2×10−4 at a non-planet location (sep=1 05).
After applying the same data analysis procedure as for the real
data, there is no significant CCF peak (bottom panel of
Figure 3).

5.2. Non-detection of CH4

The CCF for CH4 is consistent with being flat, within error
bars (see Figure 2). CH4 is therefore not detected with
significance in L-band data. We discuss this further in
Section 7.1.

6. Sensitivity Analysis

In this section, we attempt to understand the fundamental
sensitivity of the observation of HR 8799c and the level of
planet signal loss at each stage of data reduction and analysis.
We start the sensitivity analyses from a simulation that
considers a realistic noise budget (Section 6.1). This allows
us to understand the fundamental sensitivity of the observation
in the presence of a variety of noise sources.
We then inject planet signal in the reduced spectra

(Section 6.2) and in the raw data (Section 6.3). By comparing
the results of the injection experiment and the simulation in
Section 6.1, we can identify the stage where the planet signal is
significantly compromised. This diagnosis points to directions
for future improvement.

6.1. Simulation with Realistic Noise Budget

6.1.1. Introduction of Simulation Procedures

The details of the simulation are provided in Section 2 of
Wang et al. (2017). We briefly describe the procedures in the
simulation. The flux recorded on a detector can be described by
the following equation:

= + ´ ´ +( ) ( )f f f C f f , 8detector planet star transmission sky

where C is the starlight reduction factor at the planet location.
Noise is then added to the flux with the following equation:

= + ´ + ´ ( )f n tnoise RN dark , 9exp
2

exp

where f is the flux incident on the detector, followed by terms
for readout noise (RN) and dark current (dark), where nexp is
the number of readout within a total observation time texp.
Parameters used in the simulation are provided in Tables 2
and 3.
The simulated spectrum is then passed to a data reduction

pseudo-pipeline that removes sky emission and telluric lines,
which results in a reduced planet spectrum. The reduced planet
spectrum is cross-correlated with a template spectrum. The
resulting CCF is used for planet detection and assessment of
detection significance. We simulate 100 observations and
record the median of the CCF S/Ns.

Figure 3. Top: CCF between the stellar spectrum (after removing telluric lines
and correlated noise with PCA) and a H2O template spectrum. This
demonstrates that the PCA residual does not generate a peak at the star
location. Middle: same as top, except that the template spectrum is now a
telluric line spectrum. This demonstrates that telluric lines are successfully
removed by PCA and does not generate a peak at the star location. Bottom:
CCF for a flat (featureless) injected spectrum at a non-planet location. This
demonstrates that there is no peak in CCF even if there is a planet signal but
with a flat spectrum.
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6.1.2. Spectra Used in Simulation

We use Fortney Group model spectra as the input planetary
spectra. For the stellar spectrum, we use a BT-Settl
spectrum(Baraffe et al. 2015) with Teff=7400 K and log
(g)=4.5. The metallicity [Fe/H] is set to zero for both planet
and star. Planet and star fluxes are adjusted such that the model
flux is consistent with the absolute flux measured from
photometry.

We consider two scenarios. In the first scenario, the input
spectrum and the template do not match. We use a planet
model with a 1% CH4 mixing ratio (with respect to equilibrium
CH4 abundance) as the input spectrum, and a planet model with
100% CH4 mixing ratio (i.e., the equilibrium CH4 abundance)
as the template spectrum. In the second scenario, the input
spectrum matches with the template spectrum, where both
spectra are assumed to be the planet model spectrum with
100% CH4 mixing ratio.

6.1.3. Simulation Results

In the mismatch scenario, the input spectrum is essentially
dominated by H2O opacity because of a low CH4 mixing ratio.
Therefore, H2O is detected at a much higher significance than
CH4 (15.65 versus 3.59, see also Table 4). If any unknown
noise is unaccounted for in our simulation, CH4 may be
undetectable and H2O would be detected at a lower
significance. This is consistent with our observational results,
i.e., detection of H2O at 4.6σ and non-detection of CH4.
The mismatch scenario has two implications. First, it is

better to use a template spectrum consisting of only one
molecular species for cross-correlation if the mixing ratio of
different species is uncertain. Using an H2O template spectrum
results in a 15.65σ detection whereas using a template spectrum
with a mismatched mixing ratio (1% versus 100% CH4 mixing
ratio) results in a much lower detection significance (4.96σ).
Second, a mismatched template spectrum could lead to a

substantially reduced detection significance. In this case, the
detection significance is reduced by at least a factor of 3. This
stresses the importance of a matched template, or alternatively,
the potential of using the template matching technique for
spectral inference. That is, we can explore a large parameter
space to generate model spectra. The best-matched model

Table 2
Telescope and Instrument Parameters for Simulated Observations of HR 8799c

Parameter Value Unit

Telescope aperture 10.0 m
Spectral resolution 15,000 L
Pixels per resolution element 5.0 L
L-band spectral range [3.783, 3.806], [3.604, 3.626], [3.441, 3.462], [3.292, 3.312], [3.156, 3.175] μm
Exposure time 41580 second
Slit width 1.0 λ/D
Wavefront correction residuala 260 nm
Starlight reduction at planet position 10−3 L
Telescope+instrument throughputb 1.4% L
Readout noise 23 e−

Number of readouts 460 L
Dark current 0.8 e− s−1

Notes.
a Private communication with Peter Wizinowich.
b The throughput is calculated such that simulated stellar continuum level is the same as the observed stellar continuum level.

Table 3
HR 8799 and Planet c

Parameter Value Unit References

Star
Effective temperature

(Teff)
7193 K Baines et al. (2012)

Surface gravity ( glog ) 4.03 cgs Baines et al. (2012)
Distance 39.40 pc van Leeuwen (2007)
V isin 37.5 km s−1 Kaye & Strassme-

ier (1998)
Radial velocity 12.4 km s−1 Gontcharov (2006)
Planet
Effective temperature

(Teff)
1100–1350 K Bonnefoy et al. (2016)

Surface gravity ( glog ) 3.5–3.9 cgs Bonnefoy et al. (2016)
Metallicity ([M/H]) 0.0–0.5 dex Bonnefoy et al. (2016)
Semimajor axis (a) 42.8 AU Zurlo et al. (2016)
Angular separation* 0.941–0.944 arcsec Wertz et al. (2017);

Wang et al. (2016)
Planet/star contrast

in L
2×10−4 L Currie et al. (2014)

Table 4
Detection Significance Based on Simulated Observations for HR 8799c

Scenario: Mismatch Match
Input: Fortney 1% CH4 Fortney 100% CH4

Template: Fortney Fortney
Ordera allb, CH4,H2O all, CH4,H2O

1 1.63, −0.16, 4.41 5.05, 4.71, 0.97
2 1.48, 0.89, 7.76 2.55, 2.27, 0.43
3 3.54, 2.77, 7.10 2.68, 3.00, 0.66
4 0.43, −0.64, 5.73 2.92, 2.78, 0.26
5 2.65, 2.11, 9.05 2.95, 2.96, 0.46
Allc 4.96, 3.59, 15.65 7.51, 7.23, 1.34

Notes.
a See Appendix A.2 for wavelength range for each order.
b Use Fortney 100% CH4 model as a template.
c Summation of quadrature of detection significance for all orders with higher
than zero detection significance.
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spectra (i.e., the ones that give the highest detection
significance) would help us infer the physical and chemical
conditions on an exoplanet.

In the match scenario, only CH4 is detected because CH4

dominates the opacity if the atmosphere is in chemical
equilibrium. This is at odds with our observation. More
discussion on chemical equilibrium, CH4 mixing ratio, and
modeling uncertainty will be given in Section 7.

6.2. Injecting Planet Signal into the Reduced Planet Spectra

We inject simulated planet signal into reduced data and test
whether HR 8799c can be detected.

6.2.1. Creating Injection Signal

We use an L-band planetary model spectrum containing H2O
and CH4 as the simulated planet spectrum. The planet spectrum
is multiplied by the Earth’s telluric spectrum and then
spectrally blurred to match the spectral resolution in observa-
tion (R=15,000). The spectrum is normalized by dividing by
the median value.

6.2.2. Injecting into Reduced Spectra

We calculate the stellar PSF along the slit by taking the
median value of each row. We obtain the integrated stellar flux
per spectral channel by integrating flux along the slit at the
position of the stellar PSF. Planet PSF is assumed to be the
same as the stellar PSF but with greatly reduced flux and a
positional shift along the slit. To inject simulate planet signal
for each spectral channel, we (1) multiply the stellar PSF by a
planet–star contrast to form a planet PSF; (2) shift the planet
PSF to the planet location; and (3) multiply the planet PSF by a
value that corresponds to the normalized planet spectrum for
that spectral channel.

6.2.3. Injection Results

We inject a planet signal that is 2×10−4 times fainter than
the central star (i.e., the planet–star contrast in the L band for
HR 8799 c) at a different angular distance to the star (0 909,
0 963, and 1 017). We consider two scenarios: a
CH4-dominated atmosphere and an H2O-dominated atmos-
phere. For the CH4-dominated atmosphere, the injection signal
is detected at the 3.3σ, 4.1σ, and 4.9σ levels (shown in
Figure 4), suggesting that 2×10−4 sensitivity can be achieved
with the reduced data. For an H2O-dominated atmosphere, the
injection signal is detected at the 6.3σ, 5.5σ, and 5.5σ levels. A
comparison between the two scenarios indicates that detection

significance depends on the dominating opacity. When
compared to the result of the 4.6σ detection of H2O and the
non-detection of CH4 in real data, there are two implications:
(1) HR 8799c is likely to have an H2O-dominated atmosphere;
and (2) the template we use in cross-correlation is not a perfect
match to the spectrum of HR 8799c, resulting in a decrease of
detection significance from >5.5σ to 4.6σ.
In addition, when compared to simulations in Section 6.1

that account for all known noise sources (Table 4), detection
significance reduces by a factor of 3.4. This implies that an
additional noise source is not accounted for in the simulations
in Section 6.1. The unknown noise could come from either the
data reduction and analysis processes, or the noise introduced
by the instrument and the detector.

6.3. Injecting Planet Signal into Raw Data

We also inject simulated planet signal into raw data. We
create the injection signal the same way as described in
Section 6.2.1. Injecting planet signal in raw data is different
from planet injection in reduced data. The reduced data are
rectified but raw data are curved and exhibit uneven order
height (see Appendix A.1). To simulate the curvature, we use
the polynomial function that describes the stellar trace to
generate a curved planet spectrum. To account for the uneven
order height, we use the measured expansion rate. These two
treatments result in a planet trace that is in parallel with the
stellar trace in the angular separation space.
Similar to the injection experiment on reduced data, we

inject a planet signal that is 2×10−4 times fainter than the
central star at different angular distance to the star (0 909,
0 963, and 1 017). For a CH4-dominated atmosphere, the
injection signal is detected at the 2.7σ, 4.1σ, and 5.1σ levels.
For an H2O-dominated atmosphere, the injection signal is
detected at the 6.4σ, 6.4σ, and 5.9σ levels. These numbers are
comparable to the results for the reduced data injection,
suggesting that the impact of data reduction and signal
extraction is small. When combining results from the injection
experiments for both the raw data and the reduced data, it is
suggested that the noise is mainly from the unknown noise
introduced by the instrument and the detector.

7. Summary and Discussion

We conduct high-dispersion spectroscopy for HR 8799 and
its planet c using Keck NIRSPEC in AO mode. We detect H2O
but not CH4 in the L band.
We conduct sensitivity analyses to investigate the detection

threshold of our observations. The sensitivity analyses include
(1) an end-to-end simulator accounting for a realistic noise
budget and (2) planet signal injection experiments at different
stages of data reduction and analysis. We conclude that the L-
band observations have sufficient sensitivity to detect either
CH4 or H2O, depending on which molecular species dominates
L-band opacity.

7.1. CH4 Depletion versus Incomplete Line List

We detect H2O but not CH4 in the L band. This could be due
to at least two reasons. First, it is possible that there is a low
abundance of CH4 in the planet’s atmosphere. This would
concur with the findings of Konopacky et al. (2013). Such a
low abundance, given the planet’s effective temperature, is at
odds with predictions from equilibrium chemistry. This is a

Figure 4. Cross-correlation function for an injected planet signal (planet–star
contrast=2×10−4). The injection can be detected at 4.9σ. Red dashed line
indicates stellar RV.

9

The Astronomical Journal, 156:272 (12pp), 2018 December Wang et al.



now well-known phenomenon in field T dwarfs and should be
expected in imaged planets (e.g., Marley et al. 2012), caused by
gas from the deeper, hotter atmosphere being brought up to the
visible atmosphere via convection. A slow chemical conversion
timescale for CO converting to (thermochemically favored)
CH4 leads to an atmospheric enriched in CO and depleted in
CH4, compared to equilibrium. It has been suggested that at the
low surface gravities of imaged planets, compared to BDs, this
effect should be more pronounced (e.g., Zahnle &
Marley 2014).

Second, it is possible that CH4 is indeed detectable (although
weak) but the line positions from Yurchenko & Tennyson
(2014) are not modeled accurately enough to enable cross-
correlation analysis. To our knowledge there has not yet been
an L-band cross-correlation detection of CH4 in a BD, imaged
planet, or transiting planet. The only K-band detection of CH4

with the cross-correlation technique has been made for HR
8799b at R∼4000 by Barman et al. (2011). First-principles
calculations of warm/hot CH4 line positions are still develop-
ing and there are not yet any suitable high-temperature high-
resolution data for detailed and direct comparisons.

7.2. Mixing Ratio of CH4

As previously discussed, we find the L-band spectrum to be
dominated by H2O lines instead of CH4 lines. We can
investigate at what CH4 mixing ratio H2O lines start to
dominate the spectrum. We take the same atmosphere model
but decrease the CH4 mixing ratio with respect to the
equilibrium abundance. Figure 5 shows that H2O lines start
to appear at 10% of CH4 mixing ratio. At less than 10% CH4

mixing ratio, H2O becomes the major opacity at wavelengths
longer than 3.5 μm. However, CH4 signal is clearly seen even
when mixing ratio is at 1%. This implies that the CH4 mixing
ratio could be much lower than 1% of the equilibrium value.

In order to further examine the level at which CH4 is
depleted, we use a template in which CH4 is depleted by 1000
times with respect to the chemical equilibrium value. The
resulting CCF S/N is 4.4, lower than the CCF S/N given by
using an H2O-only template (see Section 5). We note that the
difference may be due to random fluctuation in the data
processing procedure. However, if the difference is astro-
physical in origin, then it indicates that an H2O-only template
matches better than the CH4-depleted template. Therefore, CH4

may be depleted by more than 1000 times with respect to the
chemical equilibrium value.

7.3. Modeling Uncertainty

A high-fidelity template is the key to improve the sensitivity
of high-dispersion spectroscopy. No CCF peak would appear if

the template is physically off the true spectrum. Results in
Table 4 suggest that a mismatch between an input spectrum and
a template spectrum would reduce detection significance by at
least a factor of 3. In practice, we find it helpful to generate
models with varying CH4 mixing ratios. The variation mimics
the effect of vertical mixing, which is largely unconstrained by
observation at the moment. In general, varying atmospheric
modeling parameters and exploring a large physically moti-
vated parameter space is necessary in detecting molecules and
understanding the physical and chemical processes in exoplanet
atmospheres.

7.4. The Prospect of Upgraded NIRSPEC

We show in Table 4 that planet c should be detected if
accounting for realistic noise sources. However, CCF S/N is
reduced in injection experiments. Planet signal must be lost at
some stages of data recording, reduction, and analysis.
Conducting sensitivity analyses allows us to separate issues

that cause planet signal loss. By comparing results from
injections into the reduced and raw data, we conclude that the
planet signal is not significantly weakened from raw to reduced
data. This points to one stage where planet signal may be
significantly weakened, i.e., from entering the telescope to the
detector.
It has been known that NIRSPEC detector has a correlated

noise issue, most noticeable at long wavelengths (the L and M
bands). However, this correlated noise has never been properly
understood (private communication with Ian McLean, PI of
NIRSPEC). We speculate here some possible sources for the
observed correlated noise. First, there are repeated patterns
every eighth column. This is likely to be caused by a
particularly noisy output channel. Second, the periodical noise
seen in Figure 2 has a periodicity of ∼16 pixels. This is
possibly due to some temporal noise of output channels.
During the readout, every eight columns are read by eight
output channels for each quadrant. It is possible that correlated
noise appears when readout frequency beats with the frequency
of the temporal noise. Third, if the temporal noise has a much
lower frequency than the pixel rate, then the noise would cause
certain columns to have higher or lower values than the average
value, causing the correlated noise that we see along columns.
Finally, if the correlated noise comes from the detector itself,
then the noise may be from the stage of transistor and/or
multiplexer.
The situation could be improved by the detector upgrade for

NIRSPEC that is currently ongoing(Martin et al. 2014). The
upgraded NIRSPEC will be available starting in 2018B. The
improved sensitivity will allow detection of CH4 in the L band
based on our simulation. When combined with KPIC(Mawet
et al. 2017), HDC will be demonstrated at Keck and the
combination will pave the way for future HDC instruments at
giant segmented mirror telescopes (GSMT).
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acknowledge Rowan Swain for carefully proofreading the
manuscript. We thank Jason Wang and Olivier Wertz for
providing precise astrometric predictions for HR 8799c. We
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McLean, Mike Fitzgerald, and Emily Martin, for valuable input
on the correlated noise of ALADDIN InSb detectors. We thank
Geoff Blake and his group for offering advice for NIRSPEC L-

Figure 5. Model spectra at different CH4 mixing ratios. Spectral orders in the L
band for NIRSPEC are marked by regions between gray lines.
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pipeline. The data presented herein were obtained at the W. M.
Keck Observatory, which is operated as a scientific partnership
among the California Institute of Technology, the University of
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wish to recognize and acknowledge the very significant cultural
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Appendix
Rectification and Wavelength Calibration

A.1. Rectifying Spectral Order

Rectifying spectral order for HR 8799c data required special
care because: (1) two spectra needed to be extracted, one for
the star and one for the planet; and (2) the planet spectrum was
unseen.

The situation was complicated by the shape of each spectral
order. Along the dispersion direction, the trace of the spectrum
curled smoothly. Along the slit direction, the height of each
order differed from one end of the spectrum to the other end.
Spectral orders at the blue end were 10 pixels higher than
spectral orders at the red end (130 pixels versus 120 pixels) for
the L-band data.

Without correcting for the uneven order height, straightening
the HR 8799 stellar spectrum would result in a tilted HR
8799c planet spectrum. Consequently, unwanted noise would
be introduced when extracting the HR 8799c spectrum.
Therefore, we corrected for the order height distortion by
expanding/shrinking each spectral column such that order
heights were the same throughout all spectral channels. After
the correction, order height was 130 pixels.

We then proceeded to find the trace of the stellar spectrum
and rectified the spectrum. This process also rectified the planet
spectrum. We calculated the flux centroid offset along the slit
direction using the middle part of the spectrum as a reference.
This was done by cross-correlating flux of each column with
the flux of the middle column. We fitted the centroid offset as a
function of pixel with a third-order polynomial function. We
then used the function to shift the flux so that the stellar
spectrum was straight and oriented horizontally.

Raw data in the L band exhibited strong sky emission lines
(see Figure 1). These lines did not align with the vertical
direction on the detector. This misalignment is because the slit
was slightly tilted with respect to the detector column direction.
Thus, the same column on the detector did not always have the
same wavelength solution, i.e., there is a slight wavelength shift
from row to row. The tilted slit caused a problem in removing
sky background emission: subtracting the median flux of each
column would result in residuals on the top and bottom parts of
the spectrum.

Therefore, we needed to correct for the “tilted slit.” The
process is similar to straightening the stellar spectrum. We
cross-correlated each row (excluding rows with the stellar
spectrum trace) and found the relative shift. The shift as a
function of row number was fitted by a third-order polynomial.
Flux of each row was then shifted so that the orientation of the
slit was aligned with the vertical direction of the detector.

We then removed sky background emission by subtracting
the median flux of each column. The rectified sky-subtracted
2D spectra are shown on the right of Figure 1.

A.2. Wavelength Calibration

We used telluric absorption lines in the stellar spectrum as a
reference for wavelength calibration. Through comparison with
synthetic telluric absorption spectra generated by the HITRAN
database(Rothman & Gordon 2009), we identified lines and
recorded their corresponding pixel locations and wavelengths.
We then fitted wavelengths of identified lines as a function of
pixel with a fourth-order polynomial function. The typical
fitting residual was 1×10−5− 2×10−5 μm. This residual
corresponds to 1–2 km s−1 in RV shift. Because of prominent
noise patterns on the left side of detector (Figure 1), we used
only the right half of the detector for the following data
reduction and analyses.
There are five spectral orders in L-band data. The

wavelength ranges for the five orders were: 3.783–3.806 μm
(order 1), 3.604–3.626 μm (order 2), 3.441–3.462 μm (order 3),
3.292–3.312 μm (order 4), and 3.156–3.175 μm (order 5).
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